
Version 1.0.3

A Practical Guide for Developers, Managers, OS Experts, and Companies

Open Source License Compendium
How to Achieve Open Source License Compliance∗

Karsten Reincke† Greg Sharpe‡

2018-06-14

∗) This text is licensed under the Creative Commons Attribution-ShareAlike 3.0
Germany License (http://creativecommons.org/licenses/by-sa/3.0/de/): Feel free
“to share (to copy, distribute and transmit)” or “to remix (to adapt)” it, if you
“[. . .] distribute the resulting work under the same or similar license to this one”
and if you respect how “you must attribute the work in the manner specified by the
author(s) [. . .]”):
In an internet based reuse please mention the initial authors in a suitable manner,
name their sponsor Deutsche Telekom AG and link it to http://www.telekom.com.
In a paper-like reuse please insert a short hint to http://www.telekom.com, to the
initial authors, and to their sponsor Deutsche Telekom AG into your preface. For
normal citations please use the scientific standard.
[based on myCsrf (= mind your Scholar Research Framework) ©K. Reincke CC BY 3.0 https://github.com/kreincke/mycsrf/)]

†) Deutsche Telekom AG, Products & Innovation, T-Online-Allee 1, 64295 Darmstadt
‡) Deutsche Telekom AG, Telekom Deutschland GmbH, Landgrabenweg, Bonn

The Open Source Community is a swarm: it is more powerful
than a set of arbritarily selected experts. We are proud to have its
support. Gladly we thank (in alphabetical order):

Eitan Adler,
Stefan Altmeyer (Deutsche Telekom AG),

Ronald Dauster,
John Dobson,

Steffen Härtlein,
Ta’Id Holmes (Deutsche Telekom AG),
Michael Kern (Deutsche Telekom AG),

Michael Machado (Deutsche Telekom AG),
Thorsten Müller (Deutsche Telekom AG),

Tanja Neske (Deutsche Telekom AG),
Oliver Podebradt (Deutsche Telekom AG),

Thomas Quiehl (Deutsche Telekom AG),
Peter Schichl (Deutsche Telekom AG),

Michael Schierl,
Helene Tamer (T-Systems Internationl AG),

Bernhard Tsai (Deutsche Telekom AG),
Thomas Weißschuh (Amadeus Germany GmbH),

. . . additionally all the feedback giving participants of the European
Legal & Licensing Workshop 2013 in Amstardam

and all the others. . .

2

Contents

1 Introduction 12

2 Open Source: The Same Idea, Different Licenses 17
2.1 The protecting power of the GNU Affero General Public License (AGPL) . . . 27
2.2 The protecting power of the Apache License (Apache-2.0) 29
2.3 The protecting power of the BSD licenses 30
2.4 The protecting power of the CDDL [tbd] 31
2.5 The protecting power of the Eclipse Public License (EPL) 31
2.6 The protecting power of the European Union Public License (EUPL) 33
2.7 The protecting power of the GNU General Public License (GPL) 35

2.7.1 GPL-2.0 . 35
2.7.2 GPL-3.0 . 36

2.8 The protecting power of the GNU Lesser General Public License (LGPL) . . . 38
2.8.1 LGPL-2.1 . 39
2.8.2 LGPL-3.0 . 40

2.9 The protecting power of the MIT license 41
2.10 The protecting power of the Mozilla Public License (MPL) 42
2.11 The protecting power of the Microsoft Public License (MS-PL) 44
2.12 The protecting power of the Postgres License (PostgreSQL) 45
2.13 The protecting power of the PHP License 46
2.14 Summary . 46

3 Open Source: About Some Side Effects 49
3.1 The problem of implicitly releasing patents 49

3.1.1 AGPL statements concerning patents 53
3.1.2 Apache-2.0 statements concerning patents 54
3.1.3 CDDL statements concerning patents 55
3.1.4 EPL statements concerning patents 56
3.1.5 EUPL statements concerning patents 57
3.1.6 GPL statements concerning patents 57

3.1.6.1 GPL-2.0 . 58
3.1.6.2 GPL-3.0 . 58

3.1.7 LGPL statements concerning patents 59
3.1.7.1 LGPL-2.1 . 59
3.1.7.2 LGPL-3.0 . 60

3.1.8 MPL statements concerning patents 60
3.1.9 MS-PL statements concerning patents 61

3.2 Excursion: Why linking is a secondary criterium 61
3.3 Excursion: What is a ’Derivative Work’ - the basic idea of open source 65
3.4 Excursion: Reverse Engineering and Open Source 68

3.4.1 Reverse Engineering in the LGPL-v2 73
3.4.1.1 Linguistical Clarification 74
3.4.1.2 Logical Clarification . 77
3.4.1.3 Empirical Clarification 81

3

Contents

3.4.1.4 Final Conclusion . 83
3.4.1.4.1 Distributing works with manually copied portions of

the Library evokes the copyleft effect: 83
3.4.1.4.2 Distributing scripts does not need reverse engineering: 85
3.4.1.4.3 Distributing statically combined bytecode requires the

permission of reverse engineering: 85
3.4.1.4.4 Distributing statically combined binaries require the

permission of reverse engineering: 87
3.4.1.4.5 Distributing dynamically combinable bytecode and link-

able object code does not require the permission of
reverse engineering: 88

3.4.1.4.6 LGPL-v2 compliance with or without permitting re-
verse engineering: 90

3.4.1.5 Final Securing . 91
3.4.2 Reverse Engineering in the LGPL-v3 93
3.4.3 Reverse Engineering in the other Open Source Licenses 98
3.4.4 Reverse Engineering in Open Source Licenses: Summary 101

3.5 Excursion: The problem of license compatibility [tbd] 102
3.6 Excursion: open source software and money [tbd] 102

4 Open Source Use Cases: Concept and Taxonomy 103

5 Open Source Use Cases: Find the License Fulfilling To-do Lists 108
5.1 A standard form for gathering the relevant information 108
5.2 The taxonomic Open Source Use Case Finder 110
5.3 The open source use cases and its to-do list references 112

6 Open Source License Compliance: To-Do Lists 127
6.1 Some general remarks on ’giving’ someone a file 127
6.2 AGPL licensed software . 128

6.2.1 AGPL-3.0-C1: Using the software only for yourself under additional
restrictions . 128

6.2.2 AGPL-3.0-C2: Passing the unmodified software as independent sources 129
6.2.3 AGPL-3.0-C3: Passing the unmodified software as independent binaries 130
6.2.4 AGPL-3.0-C4: Passing the unmodified library as embedded sources . . 131
6.2.5 AGPL-3.0-C5: Passing the unmodified library as embedded binaries . . 132
6.2.6 AGPL-3.0-C6: Passing a modified program as source code 133
6.2.7 AGPL-3.0-C7: Passing a modified program as binary 134
6.2.8 AGPL-3.0-C8: Passing a modified library as independent source code . 136
6.2.9 AGPL-3.0-C9: Passing a modified library as independent binary 137
6.2.10 AGPL-3.0-CA: Passing a modified library as embedded source code . . 138
6.2.11 AGPL-3.0-CB: Passing a modified library as embedded binary 140
6.2.12 AGPL-3.0-CC: Executing a modified program with network interaction 141
6.2.13 AGPL-3.0-CD: Executing a (modified) library as embedded component

with network interaction . 143
6.2.14 Discussions and Explanations . 144

6.3 Apache-2.0 licensed software . 149
6.3.1 Apache-2.0-C1: Using the software only for yourself 150
6.3.2 Apache-2.0-C2: Passing the unmodified software as source code 150
6.3.3 Apache-2.0-C3: Passing the unmodified software as binaries 151
6.3.4 Apache-2.0-C4: Passing a modified program as source code 152
6.3.5 Apache-2.0-C5: Passing a modified program as binary 153

4

Contents

6.3.6 Apache-2.0-C6: Passing a modified library as independent source code . 154
6.3.7 Apache-2.0-C7: Passing a modified library as independent binary . . . 155
6.3.8 Apache-2.0-C8: Passing a modified library as embedded source code . . 156
6.3.9 Apache-2.0-C9: Passing a modified library as embedded binary 157
6.3.10 Discussions and Explanations . 158

6.4 BSD licensed software . 160
6.4.1 BSD-3-Clause-C1: Using the software only for yourself 161
6.4.2 BSD-3-Clause-C2: Passing the unmodified software as source code . . . 162
6.4.3 BSD-3-Clause-C3: Passing the unmodified software as binary 162
6.4.4 BSD-3-Clause-C4: Passing a modified program as source code 163
6.4.5 BSD-3-Clause-C5: Passing a modified program as binary 164
6.4.6 BSD-3-Clause-C6: Passing a modified library as independent source code 164
6.4.7 BSD-3-Clause-C7: Passing a modified library as independent binary . . 165
6.4.8 BSD-3-Clause-C8: Passing a modified library as embedded source code 166
6.4.9 BSD-3-Clause-C9: Passing a modified library as embedded binary . . . 167
6.4.10 BSD-2-Clause-C1: Using the software only for yourself 168
6.4.11 BSD-2-Clause-C2: Passing the unmodified software as source code . . . 168
6.4.12 BSD-2-Clause-C3: Passing the unmodified software as binary 169
6.4.13 BSD-2-Clause-C4: Passing a modified program as source code 169
6.4.14 BSD-2-Clause-C5: Passing a modified program as binary 170
6.4.15 BSD-2-Clause-C6: Passing a modified library as independent source code 171
6.4.16 BSD-2-Clause-C7: Passing a modified library as independent binary . . 171
6.4.17 BSD-2-Clause-C8: Passing a modified library as embedded source code 172
6.4.18 BSD-2-Clause-C9: Passing a modified library as embedded binary . . . 173
6.4.19 Discussions and Explanations . 174

6.5 CDDL licensed software [tbd] . 176
6.5.1 CDDL-1: Using the software only for yourself 176
6.5.2 CDDL-2: Passing the unmodified software as source code 177
6.5.3 CDDL-3: Passing the unmodified software as binaries 177
6.5.4 CDDL-4: Passing a modified program as source code 177
6.5.5 CDDL-5: Passing a modified program as binary 178
6.5.6 CDDL-6: Passing a modified library as independent source code 178
6.5.7 CDDL-7: Passing a modified library as independent binary 178
6.5.8 CDDL-8: Passing a modified library as embedded source code 179
6.5.9 CDDL-9: Passing a modified library as embedded binary 179
6.5.10 Discussions and Explanations . 180

6.6 EPL-1.0 licensed software . 180
6.6.1 EPL-1.0-C1: Using the software only for yourself 181
6.6.2 EPL-1.0-C2: Passing the unmodified software as source code 182
6.6.3 EPL-1.0-C3: Passing the unmodified software as binaries 183
6.6.4 EPL-1.0-C4: Passing a modified program as source code 184
6.6.5 EPL-1.0-C5: Passing a modified program as binary 185
6.6.6 EPL-1.0-C6: Passing a modified library as independent source code . . 186
6.6.7 EPL-1.0-C7: Passing a modified library as independent binary 188
6.6.8 EPL-1.0-C8: Passing a modified library as embedded source code . . . 189
6.6.9 EPL-1.0-C9: Passing a modified library as embedded binary 190
6.6.10 Discussions and Explanations . 192

6.7 EUPL-1.1 licensed software . 194
6.7.1 EUPL-1.1-C1: Using the software only for yourself 196
6.7.2 EUPL-1.1-C2: Passing the unmodified software as independent sources 197
6.7.3 EUPL-1.1-C3: Passing the unmodified software as independent binaries 197

5

Contents

6.7.4 EUPL-1.1-C4: Passing the unmodified library as embedded sources . . 199
6.7.5 EUPL-1.1-C5: Passing the unmodified library as embedded binaries . . 199
6.7.6 EUPL-1.1-C6: Passing a modified program as source code 201
6.7.7 EUPL-1.1-C7: Passing a modified program as binary 202
6.7.8 EUPL-1.1-C8: Passing a modified library as independent source code . 203
6.7.9 EUPL-1.1-C9: Passing a modified library as independent binary 204
6.7.10 EUPL-1.1-CA: Passing a modified library as embedded source code . . 205
6.7.11 EUPL-1.1-CB: Passing a modified library as embedded binary 207
6.7.12 Discussions and Explanations . 208

6.8 GPL licensed software . 209
6.8.1 GPL-2.0-C1: Using the software only for yourself 211
6.8.2 GPL-2.0-C2: Passing the unmodified software as independent sources . 212
6.8.3 GPL-2.0-C3: Passing the unmodified software as independent binaries . 212
6.8.4 GPL-2.0-C4: Passing the unmodified library as embedded sources . . . 213
6.8.5 GPL-2.0-C5: Passing the unmodified library as embedded binaries . . . 214
6.8.6 GPL-2.0-C6: Passing a modified program as source code 216
6.8.7 GPL-2.0-C7: Passing a modified program as binary 217
6.8.8 GPL-2.0-C8: Passing a modified library as independent source code . . 218
6.8.9 GPL-2.0-C9: Passing a modified library as independent binary 220
6.8.10 GPL-2.0-CA: Passing a modified library as embedded source code . . . 221
6.8.11 GPL-2.0-CB: Passing a modified library as embedded binary 222
6.8.12 GPL-3.0-C1: Using the software only for yourself 224
6.8.13 GPL-3.0-C2: Passing the unmodified software as independent sources . 224
6.8.14 GPL-3.0-C3: Passing the unmodified software as independent binaries . 225
6.8.15 GPL-3.0-C4: Passing the unmodified library as embedded sources . . . 226
6.8.16 GPL-3.0-C5: Passing the unmodified library as embedded binaries . . . 227
6.8.17 GPL-3.0-C6: Passing a modified program as source code 228
6.8.18 GPL-3.0-C7: Passing a modified program as binary 230
6.8.19 GPL-3.0-C8: Passing a modified library as independent source code . . 231
6.8.20 GPL-3.0-C9: Passing a modified library as independent binary 232
6.8.21 GPL-3.0-CA: Passing a modified library as embedded source code . . . 234
6.8.22 GPL-3.0-CB: Passing a modified library as embedded binary 235
6.8.23 Discussions and Explanations . 236

6.9 LGPL licensed software . 241
6.9.1 LGPL-2.1-C1: Using the software only for yourself 243
6.9.2 LGPL-2.1-C2: Passing the unmodified software as independent source code244
6.9.3 LGPL-2.1-C3: Passing the unmodified software as independent binaries 244
6.9.4 LGPL-2.1-C4: Passing the unmodified library as embedded source code 246
6.9.5 LGPL-2.1-C5: Passing the unmodified library as embedded binaries . . 246
6.9.6 LGPL-2.1-C6: Passing a modified program as source code 248
6.9.7 LGPL-2.1-C7: Passing a modified program as binary 248
6.9.8 LGPL-2.1-C8: Passing a modified library as independent source code . 249
6.9.9 LGPL-2.1-C9: Passing a modified library as independent binary 250
6.9.10 LGPL-2.1-CA: Passing a modified library as embedded source code . . 251
6.9.11 LGPL-2.1-CB: Passing a modified library as embedded binary 253
6.9.12 LGPL-3.0-C1: Using the software only for yourself 254
6.9.13 LGPL-3.0-C2: Passing the unmodified software as independent source code255
6.9.14 LGPL-3.0-C3: Passing the unmodified software as independent binaries 256
6.9.15 LGPL-3.0-C4: Passing the unmodified library as embedded source code 257
6.9.16 LGPL-3.0-C5: Passing the unmodified library as embedded binaries . . 258
6.9.17 LGPL-3.0-C6: Passing a modified program as source code 259

6

Contents

6.9.18 LGPL-3.0-C7: Passing a modified program as binary 260
6.9.19 LGPL-3.0-C8: Passing a modified library as independent source code . 262
6.9.20 LGPL-3.0-C9: Passing a modified library as independent binary 263
6.9.21 LGPL-3.0-CA: Passing a modified library as embedded source code . . 264
6.9.22 LGPL-3.0-CB: Passing a modified library as embedded binary 265
6.9.23 Discussions and Explanations . 267

6.10 MIT licensed software . 271
6.10.1 MIT-C1: Using the software only for yourself 272
6.10.2 MIT-C2: Passing the unmodified software 273
6.10.3 MIT-C3: Passing a modified program 273
6.10.4 MIT-C4: Passing a modified library independently 274
6.10.5 MIT-C5: Passing a modified library as embedded component 274
6.10.6 Discussions and Explanations . 275

6.11 MPL-2.0 licensed software . 276
6.11.1 MPL-2.0-C1: Using the software only for yourself 277
6.11.2 MPL-2.0-C2: Passing the unmodified software as source code 278
6.11.3 MPL-2.0-C3: Passing the unmodified software as binaries 279
6.11.4 MPL-2.0-C4: Passing a modified program as source code 280
6.11.5 MPL-2.0-C5: Passing a modified program as binary 281
6.11.6 MPL-2.0-C6: Passing a modified library as independent source code . . 283
6.11.7 MPL-2.0-C7: Passing a modified library as independent binary 284
6.11.8 MPL-2.0-C8: Passing a modified library as embedded source code . . . 285
6.11.9 MPL-2.0-C9: Passing a modified library as embedded binary 287
6.11.10Discussions and Explanations . 288

6.12 Microsoft Public License . 290
6.12.1 MS-PL-C1: Using the software only for yourself 291
6.12.2 MS-PL-C2: Passing the unmodified software 292
6.12.3 MS-PL-C3: Passing a modified program as source code 292
6.12.4 MS-PL-C4: Passing a modified program as binary 293
6.12.5 MS-PL-C5: Passing a modified library independently as source code . . 294
6.12.6 MS-PL-C6: Passing a modified library independently as binary 295
6.12.7 MS-PL-C7: Passing a modified library as embedded source code 295
6.12.8 MS-PL-C8: Passing a modified library as embedded binary 296
6.12.9 Discussions and Explanations . 297

6.13 PostgreSQL License . 298
6.13.1 PostgreSQL-C1: Using the software only for yourself 298
6.13.2 PostgreSQL-C2: Passing the unmodified software 299
6.13.3 PostgreSQL-C3: Passing a modified program 299
6.13.4 PostgreSQL-C4: Passing a modified library independently 300
6.13.5 PostgreSQL-C5: Passing a modified library as embedded component . . 300
6.13.6 Discussions and Explanations . 301

6.14 PHP-3.0 licensed software . 302
6.14.1 PHP-3.0-C1: Using the software only for yourself 302
6.14.2 PHP-3.0-C2: Passing the unmodified software as source code 303
6.14.3 PHP-3.0-C3: Passing the unmodified software as binary 304
6.14.4 PHP-3.0-C4: Passing a modified program as source code 304
6.14.5 PHP-3.0-C5: Passing a modified program as binary 305
6.14.6 PHP-3.0-C6: Passing a modified library as independent source code . . 306
6.14.7 PHP-3.0-C7: Passing a modified library as independent binary 307
6.14.8 PHP-3.0-C8: Passing a modified library as embedded source code . . . 307
6.14.9 PHP-3.0-C9: Passing a modified library as embedded binary 309

7

Contents

6.14.10Discussions and Explanations . 310

7 Conclusion 311

8 Appendices 313
8.1 Some Additional Remarks on the OSLiC Quotation Style 313
8.2 Some Widespread Open Source Myths 314

8.2.1 Why . 317
8.2.2 What . 325

Periodicals, Shortcuts, and Abbreviations 327

Bibliography 329

8

Backlog

• Insert task lists for AL, AFL, CDDL, MPL-1.[0—1], MS-RL, OSL

• Complete the concept of being a derivative work in the context of software development

• Explain how to deal with modifications transforming a proapse into a snimoli and v.v.

• Discuss license compatibility

• Explain the relationship between open source and earning money

• Enrich the literature list

9

Contents

Table 1: History of the Open Source License Compendium

2015-03-01 1.0.0 Target Release
▷ Form expanded by a 6th AGPL relevant question
▷ Expanded OSUC-03 by AGPL subtypes L(ocal) & I(nternet)
▷ Added AGPL specific finder and license fulfilling to-do lists

2015-01-21 0.99.9 ▷ added solution for the reverse engineering challenge
2014-03-09 0.99.1 ▷ Generate data file for use in OSCAd from the LATEXsource

▷ Fixed Bug in LGPL C9 Case
▷ general copy-editing of chapter 6

2014-01-08 0.98.2 ▷ New section about the patent clauses in the CDDL
▷ hyperlinked PDF file (using hyperref and pdftex)
▷ general copy-editing of chapter 1 to 5

2013-11-27 0.98.1 Korean FLOSS conference release
2013-08-19 0.97.2 ▷ incorpation of the typo fixes offered by M.Schierl

▷ some improvements concerning the derivative work
▷ enhancing that the OSLiC deals with prototypic cases

2013-07-28 0.97.1 ▷ indirectly used secondary literature added
▷ LGPL specific finder improved
▷ OSCAd aligned, interface improved

2013-05-20 0.96.1 Linux Days release
▷ open source use cases and licenses specific usecase renamed
▷ version matches the content of OSCAd

2013-04-15 0.95.2 FSFE LLW post release
▷ to-do lists for nearly all popular OSI licenses
▷ improved finder for GPL and EUPL
▷ simplified form and improved structure of the OSLiC finder

2013-04-05 0.95.1 FSFE LLW pre release
▷ to-do lists for all permissive and all weak copyleft licenses

2013-03-15 0.94.1 Chemnitzer Linux Day release
▷ to-do lists for all permissive and some weak copyleft licenses
▷ branches merged and new master published

2013-03-08 0.90.1 CeBIT release
▷ to-do lists for the some important licenses added

2013-02-16 0.8.90 ▷ new arguing structure focused on the topic license fulfillment
▷ new classifying license review
▷ new top down introduction

2012-12-28 0.8.0 internal EOY release
▷ many distributed improvements unified in branch kreinck

2012-08-25 0.5.2 ▷ MIT license fulfilling to-do lists
▷ using integrated Eclipse spell checking methods

2012-07-06 0.4.0 break through release
▷ open source use case definition and taxonomy
▷ open source use case based general finder
▷ BSD specific mini finder & BSD fulfilling to-do lists

2012-03-22 0.2.1 ▷ framework published as first community edition
2012-01-31 0.1.8 ▷ renamed existing introduction as prolegomena

▷ inserted a shorter top-down written introduction
▷ added an OSLiC disclaimer & many bibliographic data

2011-09-29 0.1.4 ▷ document history integrated
2011-09-12 0.1.0 ▷ introduction completed: purpose and methods

10

Disclaimer

This book shall be thoroughly developed—together with the open source commu-
nity. At the end it shall deliver reliable information. But nevertheless, the OSLiC
can not offer more than the opinion(s) of its authors and contributors. It is only
one voice of the chorus discussing the open source licenses. For protecting the
authors and contributors from charges and claims of indemnification we adopt
the lightly modified GPL3 disclaimer:

THERE IS NO WARRANTY FOR THE OSLiC, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE TEXT “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE OSLiC IS WITH YOU.
SHOULD THE OSLiC PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE OSLiC AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE OSLiC (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE OSLiC TO COOPERATE WITH ANY OTHER TOOLS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Particularly, it must be highlighted that - referred to your solitary case - the OSLiC
can not and shall not replace a legal review or a legal advice by lawyers. The
OSLiC is only dealing with prototypic use cases. So, it may inspire developers,
managers, open source experts, and companies to find good solutions which they
finally should let be reviewed by legal counselors.1

1) For German readers: The OSLiC naturally respects the German ’Rechtsdienstleistungsgesetz’.
It only contains legal reflections addressed to a general public. The OSLiC may only be read
as an “nur an die Allgemeinheit gerichtete Darstellung und Erörterung von Rechtsfragen.”

11

1 Introduction

This chapter briefly describes the idea behind the OSLiC, the way it should be used
and the way it can be read—which is indeed not quite the same.

This book focuses on just one issue: What needs to be done in order to act in
accordance with the licenses of those open source software we use? The Open
Source License Compendium aims at reliably answering this question—in a simple
and easy to understand manner. However, it is not just another book on open
source in general.2 The intention is, rather, for it to be a tool for simplifying the
activities for achieving license conformity.

This compendium was created out of necessity at Deutsche Telekom AG to counter
a challenge some of its software developers and project managers were facing: Of
course, the company itself wants to behave as license compliantly as its employees,
but, unfortunately, they could not find a reference text which simply lists what
precisely must be done in order to comply with the license of that piece of open
source being used.

As some of these co-workers in Telekom projects, even we—the initial authors of
the OSLiC—did not want to become open source license experts only for being
able to use open source software in accordance with their respective licenses. We
did not want to become lawyers. We just wanted to do more efficiently, what
in those days claimed much time and many resources. We were searching for
clear guidance instead of having to determine a correct way through the jungle of
open source licenses—over and over again, project for project. We loved using the
high-quality open source software to improve our performance. We liked using

2) Meanwhile, there are tons of literature dealing with open source. Trying to expand your
knowledge by means of books and articles might let you get lost in literature: our list of
secondary literature may adumbrate this ‘danger of being overwhelmed’. But nevertheless,
our bibliography at the end of the OSLiC is not complete. Moreover, it is not intended to be
complete. It is only an extract representing the background information we did not directly
cite in the OSLiC. If we were forced to indicate two books for attaining a good overview
on the topic of open source (licenses) we would name (a) the ‘Rebel Code’ (for a German
version cf. Moody, Glyn: Die Software-Rebellen. Die Erfolgsstory von Linus Torvalds und
Linux; transl. from the American [edition, 2000] by Annemarie Pumpering; Landsberg
am Lech: verlag moderne industrie, 2001, ISBN 3–478–38730–2, passim—for an English
version cf. Moody, Glyn: Rebel Code: Linux And The Open Source Revolution; [New York]:
Basic Books, 2002, ISBN 978–0738206707, p. passim) and (b) the ‘legal basic conditions’ (cf.
Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen der
Freien Software; 3rd edition. München: Verlag C.H. Beck, 2011, passim). But fortunately,
we are not forced to do so.

12

1 Introduction

it legally. But we did not like to laboriously discuss the legal constraints of the
many and different open source licenses.

What we needed was an easy-to-use handout which would lead us without any
detours to executable lists of work items. We wished to obtain to-do lists, tailored
to our usecases and our licenses. We needed reliable lists of tasks we only had to
execute for being sure that we were acting in accordance with the open source
license. When we started out, such a compendium did not exist.

For solving this problem our company took three decisions:

The first decision our company arrived at was to support a small group of employees
to act as a board of open source license experts : They should offer a service for the
whole company. Projects, managers, and developers should be able to ask this
board what they have to do for complying with a specific open Source License
under specific circumstances. And this board should answer with authoritative
to-do lists whose executions would assure that the requestors are acting according
to the corresponding open source licenses. The idea behind this decision was
simple. It would save cost and increase quality if one had one central group of
experts instead of being obliged to select (and to train) developers—over and over
again, for every new project. So, the OSRB (the Telekom Open Source Review
Board) was founded as an internal expert group—as a self-organizing, bottom-up
driven community.

The second decision our company took was to allow this Telekom OSRB to collect
their results systematically—in the form of a reusable compendium. The idea
behind this decision was also simple: The more the internal service became known,
the more the workload would increase: the more work, the more resources, the
more costs. So, such a compendium should save costs and enable the requestors
to find answers by themselves without becoming license experts: For all default
cases, they should find an answer in the compendium instead of having to request
that their work is analyzed by the OSRB. Thus, the planned Telekom Open Source
License Compendium will prevent the need to increase the size of the OSRB in
the future.

The third decision our company reached was to allow the Telekom OSRB to create
the compendium in the same mode of cooperation that open source projects
usually use. Again, a simple reason evoked this ruling: If in the future—as
a rule—not a reviewing OSRB, but a simple manual should assure the open
source license compliant behavior of projects, programmers, and managers, this
book had of course to be particularly reliable. There is a known feature of the
open source working model: the ongoing review by the cooperating community
increases the quality. Therefore, the decision not only to write an internal ‘Telekom
handout,’ but to enable the whole community to use, modify, and redistribute a
broader Open Source License Compendium was a decision for improving quality.
Consequently, the OSRB decided to publish the OSLiC as a set of LATEXsources,

13

1 Introduction

publicly available via the open repository GitHub.3 And it licensed the OSLiC
under Creative Commons Attribution-ShareAlike 3.0 Germany License.4

But to publish the OSLiC as a free book has another important connotation—at
least for the Telekom OSRB : It is also intended to be an appreciative giving back
to the open source community which has enriched and simplified the life of so
many employees and companies over so many years.

Altogether, the OSLiC follows five principles:

To-do lists as the core, discussions around them Based on a simple form for
gathering information concerning the use of a piece of open source software
and its license, the OSLiC shall offer an easy to use finder taking the requestor
to the respective to-do list for ensuring license conformity. In addition, all
these elements of the OSLiC should comprehensibly be introduced and
discussed without disturbing the usage itself.

Quotations with thoroughly specified sources The OSLiC shall be revisable
and reliable. It shall comprehensibly argue and explicitly specify why it
adopts which information, from whom, in which version, and why.5

Not clearing the forest, but cutting a swath The OSLiC has to deal with li-
censes and their legal aspects, no doubt. But it shall not discuss all details of

3) Get the code by using the link https://github.com/dtag-dbu/oslic; get project informa-
tion by http://dtag-dbu.github.com/oslic/ or by http://www.oslic.org/.

4) This text is licensed under the Creative Commons Attribution-ShareAlike 3.0 Germany
License (http://creativecommons.org/licenses/by-sa/3.0/de/): Feel free “to share (to
copy, distribute and transmit)” or “to remix (to adapt)” it, if you “[. . .] distribute the
resulting work under the same or similar license to this one” and if you respect how “you
must attribute the work in the manner specified by the author(s) [. . .]”): In an internet based
reuse please mention the initial authors in a suitable manner, name their sponsor Deutsche
Telekom AG and link it to http://www.telekom.com. In a paper-like reuse please insert a
short hint to http://www.telekom.com, to the initial authors, and to their sponsor Deutsche
Telekom AG into your preface. For normal citations please use the scientific standard.

5) For that purpose, we are using an ‘old-fashioned’ bibliographic style with footnotes, instead
of endnotes or inline-hints. We want to enable the users to review or to ignore our comments
and hints just as they prefer—but on all accounts without being disturbed by large inline
comments or frequent page turnings. We know that modern writer guides prefer less ‘noisy’
styles (pars pro toto cf. MLA: MLA Handbook for Writers of Research Papers; 7th edition.
New York: The Modern Language Association of America, 2009, ISBN 978–1–60329–024–1,
passim). But for a reliable usage—challenged by the often modified internet sources—these
methods are still a little imprecise (for details → OSLiC, pp. 313. For a short motiva-
tion of the style used in the OSLiC cf. Reincke, Karsten: Classical Scholar Texts With
Footnotes based on LaTeX, BibTeX, Koma, jurabib and mykeds-CSR; 2012 ⟨URL: http:
//www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html⟩ – refer-
ence download: 2013-02-10, passim. For a more elaborated legitimizing version cf. Rein-
cke, Karsten: (Geistes-) Wissenschaftliche Texte mit jurabib. Dienst am Leser, Dienst
am Scholaren: Über Anmerkungsapparate in Fußnoten - aber richtig. [n.l.], 2012
⟨URL: http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf⟩ – reference
download: 2013-02-10, passim).

14

http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf

1 Introduction

every aspect. It shall focus on one possible way to act according to a license
in a specific usecase—even if it is known that there might be alternatives.6

Take the license text seriously! The OSLiC shall not give general lectures on
legal discussions, much less shall it participate in them. It shall only find one
dependable way for each license and each usecase to comply with the license.
The main source for this analysis shall be the exact reading of the open
source licenses themselves—based on and supported by the interpretation of
benevolent lawyers and rationally arguing software developers. The OSLiC
shall respect that open source licenses are written for software developers
(and sometimes by developers).

Trust the swarm! The OSLiC shall be open for improvements and adjustments
encouraged and stimulated also by other people than employees of Deutsche
Telekom AG.

Based on these principles the OSLiC offers two methods for being used:

First and foremost the readers expect to simply and quickly find those to-do lists
fitting their needs. Here is the respective process:7

6) The OSLiC shall not counsel projects with respect to their specific needs. This must remain
the task for lawyers and legal experts. The OSLiC cannot and shall not replace a legal review
or a legal advice by lawyers. It shall inspire developers, managers, open source experts, and
companies to find good solutions, which they finally should have reviewed by legal counselors.
For the German readers let us repeat again: The OSLiC naturally respects the German
Rechtsdienstleistungsgesetz. It only contains legal reflections addressed to a general public.
Its content may only be read as a “nur an die Allgemeinheit gerichtete Darstellung und
Erörterung von Rechtsfragen”.

7) For the well known ‘quick and dirty hackers’—as we tend to be, too—we have integrated a
shortcut: If you already know the license of the open source package you want to use and if
you are very familiar with the meaning of the open source use cases we defined, then you
might directly jump to the corresponding license specific chapter, without ‘struggling’ with
OSLiC 5 query form (→ OSLiC p. 108), the taxonomic Open Source Use Case Finder (→
111) or the Open Source U se Case page (→ 112ff.): Some of the chapters dedicated to
specific open source licenses start with a license specific finder offering a set of license specific
use cases—which, according to the complexity of the license, in some cases could be stripped
down. But the disadvantage of this method is that you have to apply your knowledge about
the use cases and their side effects by yourself without being systematically guided by the
OSLiC process.

15

1 Introduction

∀ open source
components

select next open
source component

analyze its role as part
of software system

determine usage of final
software product / service

detect respective
open source license

fill in the 5 query
form (→ p. 108) success?

traverse taxonomic Open
Source Use Case Finder (→
111) & jump to indicated Open
Source Use Case page (→ 112ff.)

Determine page of license
and use case specific to-
do list being presented
in license specific chapter

Jump to indicated page &
process license and use case
specific to-do list (→ 128ff.)

more? stop

no

yes

yes

no

Second, the readers might wish to comprehend the whole analysis. So, we
briefly discuss open source license taxonomies as the basis for a license compliant
behavior.8 We consider some side effects of acting according to the open source
licenses.9 Finally, we study the structure of open source use cases.10

So, let us close our introduction by using, modifying, and (re)distributing a well
known wish of a well known man: Happy (Legally) Hacking.

8) → OSLIC “Open Source: The Same Idea, Different Licenses”, pp. 17
9) → OSLiC “Open Source: About Some Side Effects”, pp. 49

10) → OSLiC “Open Source Use Cases: Concept and Taxonomy”, pp. 103

16

2 Open Source: The Same Idea, Different Licenses

This chapter describes different license models which follow the common idea of
free open source software. We want to discuss existing ways of grouping licenses
to underline the limits of building such clusters: These groups are often used as
‘virtual prototypical licenses’ which are supposed to provide simplified conditions
for acting according to the respective real license instances. But one has to meet
the requirements of a specific license, not one’s own generalized idea of a set of
licenses. Nonetheless, we, too, offer a new way of structuring the world of the open
source licenses. We will use a novel set of grouping criteria by referring to the
common intended purpose of licenses: each license is designed to protect something
or someone against something or someone. Following this pattern, we can indeed
summarize all Open Source Licenses in a comparable way.

Grouping open source licenses11 is commonly done. Even the set of the open source
licenses12 itself is already a cluster being established by a set of grouping criteria:
The “distribution terms” of each software license that intends to become an open
source license “[. . .] must comply with the [. . .] criteria” of the Open Source
Definition,13 maintained by the Open Source Initiative14 and often abbreviated
as OSD. So, this OSD demarcates ‘the group of [potential] open source licenses’
against ‘the group of not open sources licenses.’15

Another way to cluster the Free Software Licenses is specified by the “Free

11) Talking about licenses is sometimes a bit tricky: Normally, they have a longer official name
and a well known, often abbreviating inofficial nickname. But that’s not enough for talking
about a specific license adequately: one has additionally to refer to the version of the license
itself. The Linux Foundation offers a set of normalized names and identifiers, to minimize
the confusion how to denote a license correctly (cf. The Linux Foundation: SPDX License
List; 2013 ⟨URL: http://spdx.org/licenses/⟩ – reference download: 2014-03-14, wp).
The OSLiC tries to use these SPDX identifiers as far as possible. But sometimes the OSLiC
wants to group specific licenses by their authors without discriminating the release numbers.
Then, the OSLiC uses prefixes of the SPDX.

12) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted; 2012 [n.y.]
⟨URL: http://opensource.org/licenses/alphabetical⟩ – reference download: 2013-01-
22, wp.

13) cf. Open Source Initiative: The Open Source Definition; 2012 [n.y.] ⟨URL: http://www.
opensource.org/docs/osd⟩ – reference download: 2012-06-21, wp.

14) cf. Open Source Initiative: The Open Source Initiative; 2012 [n.y.] ⟨URL: http://www.
opensource.org/about/⟩ – reference download: 2013-01-22, wp.

15) More precisely: meeting the OSD is only a necessary condition for becoming an open
source license. The sufficient condition for becoming an open source license is the approval
by the OSI, which offers a process for the official approval of open source license (cf.
Open Source Initiative: The [OSI] Licence Review Process; 2012 [n.y.] ⟨URL: http:
//www.opensource.org/approval⟩ – reference download: 2013-01-22, wp).

17

http://spdx.org/licenses/
http://opensource.org/licenses/alphabetical
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd
http://www.opensource.org/about/
http://www.opensource.org/about/
http://www.opensource.org/approval
http://www.opensource.org/approval

2 Open Source: The Same Idea, Different Licenses

Software Definition.” This FSD contains four conditions which must be met by
any free software license: any FSD compliant license must grant “the freedom
to run a program, for any purpose [. . .]”, “the freedom to study how it works,
and adapt it to (one’s) needs [. . .]”, “the freedom to redistribute copies [. . .]”,
and finally “the freedom to improve the program, and release your improvements
[. . .]”16 Surprisingly this definition implies that the requirement the sourcecode
must be openly accessible is ‘only’ a derived condition. If the “freedom to make
changes and the freedom to publish improved versions” shall be “meaningful”,
then the “access to the source code of the program” is a prerequisite. “Therefore,
accessibility of source code is a necessary condition for free software.”17

The difference between the OSD and the FSD has often been described as a
difference of emphasis:18 Although both definitions “[. . .] (cover) almost exactly
the same range of software”, the Free Software Foundation—as it is said—“prefers
[. . .] (to emphazise) the idea of freedom [. . .]” while the OSI wants to underline
the philosophically indifferent “development methodology.”19

A third method to group of free software and free software licenses is specified
by the “Debian Free Software Guideline”, which is embedded into the “Debian
Social Contract”. This “DFSG” contains nine defining criteria, which—as Debian
itself says—have been “[. . .] adopted by the free[sic!] software community as the
basis of the Open Source Definition.”20

16) cf. Stallman, Richard M.: Free Software Definition; originally written in 1996; In Stallman:
Free Software, Free Society: Selected Essays, 2002, p. 41.

17) cf. id., ibid.
18) This is also the viewpoint of Richard M. Stallman: On the one hand, he clearly states that

the “Free Software movement” and the “open source movement” generally “[. . .] disagree
on the basic principles, but agree more or less on the practical recommendations” and that
he “[. . .] (does) not think of the open source movement as an enemy”. On the other hand,
he delineates the two movements by stating that “for the open source movement, the issue
of whether software should be open source is a practical question, not an ethical one”, while
“for the Free Software movement, non-free software is a social problem and free software is
the solution” (cf. Stallman, Richard M.: Why ’Free Software’ is Better than ’Open Software’;
originally written in 1998; In Stallman: Free Software, Free Society: Selected Essays, 2002,
p. 55). Consequently, Richard M. Stallman summarizes the positions in a simple way: “[. . .]
‘open source’ was designed not to raise [. . .] the point that users deserve freedom”. But he
and his friends want “to spread the idea of freedom” and therefore “[. . .] stick to the term
‘free software’” (id., l.c., p. 59). For a brush-up of this position, expressing again that “(o)pen
source is a development methodology [and that] free software is a social movement” with
an “ethical imparative” cf. Stallman, Richard : Viewpoint: Why ”Open Source” Misses the
Point of Free Software; in: Commununications of the ACM, 52 June (2009), No. 6 ⟨URL:
http://doi.acm.org/10.1145/1516046.1516058⟩ – reference download: 2011-12-29, p. 31

19) pars pro toto: cf. Fogel, Karl : Producing Open Source Software; How to Run a Successful
Free Software Project; Beijing, Cambridge, Köln [...]: O’Reilly, 2006, ISBN 978–0–596–
00759–1, p. 232.

20) cf. Debian: The Debian Free Software Guidelines (DFSG); 2013 [n.y.] ⟨URL: http://www.
debian.org/social_contract#guidelines⟩ – reference download: 2013-01-22, p. wp.

18

http://doi.acm.org/10.1145/1516046.1516058
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines

2 Open Source: The Same Idea, Different Licenses

A rough understanding of these methods might result in the conclusion that these
three definitions are extensionally equal and only differ intensionally. But that
is not true. To unveil the differences, let us compare the clusters OSI approved
licenses, OSD compliant licenses, DFSG compliant licenses, and FSD compliant
licenses extensionally, by asking whether they could establish different sets of
licenses.21

First, the difference most easy to determine is that of an unidirectional inclusion:
By definition, the OSI approved licenses and the OSD compliant licenses meet the
requirements of the OSD.22 But only the OSI approved licenses have successfully
passed the OSI process23 and therefore are officially listed as open source licenses.24

Hence, on the one hand, OSI approved licenses are open source licenses and vice
versa. On the other hand, both—the OSI approved licenses and the open source
licenses—are OSD compliant licenses, but not vice versa.

Second, a similar argumentation allows us to distinguish the DFSG compliant
licenses from the OSI approved licenses. As it is stated, the OSD “[. . .] is based
on the Debian Free Software Guideline and any license that meets one definition
almost meets the other.”25 But then again, meeting the definition is not enough
for being an official open source license: the license has to be approved by the
OSI.26 Thus, it follows that all OSI approved licenses are also DFSG compliant
licenses, but not vice versa.

Third, by ignoring the “few exceptions” which have appeared “over the years,”27

it can be said that, because of their ‘kinsmanlike’ relation, at least the OSD
compliant licenses are also DFSG compliant licenses and vice versa.

Last but not least, it must be stated that the (potential) set of free software
licenses must be greater than all the other three sets: On the one side, the FSD
requires that a license of free software must not only allow to read the software,
but must also permit to use, to modify, and to distribute it.28 These conditions
are covered by at least the first three paragraphs of the OSD concerning the topics
“Free Redistribution,” “Source Code,” and “Derived Works.”29 On the other side,
the OSD contains at least some requirements which are not mentioned by the FSD
and which nevertheless must be met by a license in order to be qualified as an

21) Indeed, for analyzing the extensional power of the definition we have to regard all potentially
covered licenses, not only the already existing licenses, because the subset of really existing
licenses still could be expanded be developing new licenses which fit the definition.

22) cf. Open Source Initiative: The Open Source Definition, 2012, wp.
23) cf. id., ibid.
24) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
25) cf. Fogel : Producing Open Source Software, 2006, p. 233.
26) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
27) cf. Fogel : Producing Open Source Software, 2006, p. 233.
28) cf. Stallman: Free Software Definition, 1996, p. 41.
29) cf. Open Source Initiative: The Open Source Definition, 2012, wp.

19

2 Open Source: The Same Idea, Different Licenses

OSD compliant license.30 It follows then that there may exist licenses which fulfill
all conditions of the FSD and nevertheless do not fulfill at least some conditions
of the OSD.31 So, the set of all (potential) Free Software Licenses must be greater
than the set of all (potential) open source licenses and greater than the set of
OSD compliant licenses.

All in all, we can visualize the situation as follows:

All Software Licenses

FSD Compliant Licenses

OSD Compliant Licenses

DFSG Compliant License
s

OSI approved licenses =
open source licenses

It should be clear without longer explanations that these clusters don’t allow
to extrapolate to the correct compliant behaviour according to the open source
licenses: On the one hand, all larger clusters do not talk about the open source
licenses. On the other hand, the open source license cluster itself only collects
its elements on the basis of the OSD which does not stipulate concrete license
fulfilling actions for the licensee.

The next level of clustering open source licenses concerns the inner structure of
these OSI approved licenses. Even the OSI itself has recently discussed whether
a different way of grouping the listed licenses would better fit the needs of the
visitors of the OSI site.32 And finally the OSI came up with the categories “popular
and widely used (licenses) or with strong communities,” “special purpose licenses,”
“other/miscellaneous licenses,” “licenses that are redundant with more popular

30) For example, see the condition that “the license must be technology-neutral” (cf. Open
Source Initiative: The Open Source Definition, 2012, wp).

31) Again: we must consider the extensional potential of the definitions, not the set of really
existing licenses. In this context, it is irrelevant that actually all existing Free Software
Licenses like GPL, LGPL or AGPL indeed are also classfied as open source licenses. We are
referring to the fact that there might be generated licenses which fulfill the FSD, but not
the OSD.

32) cf. Open Source Initiative: OSI Mailing List. License-discuss. Draft of new OSI li-
censes landing page; 2012 [n.y.] ⟨URL: http://projects.opensource.org/pipermail/
license-discuss/2012-April/000332.html⟩ – reference download: 2013-01-29, wp.

20

http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html
http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html

2 Open Source: The Same Idea, Different Licenses

licenses,” “non-reusable licenses,” “superseded licenses,” “licenses that have been
voluntarily retired,” and “ uncategorized licenses.”33

Another way to structure the field of open source licenses is to think in “types of
open source licenses” by grouping the academic licenses, “named as such because
they were originally created by academic institutions,”34 the reciprocal licenses,
named as such because they “[. . .] require the distributors of derivative works
to distribute those works under same license including the requirement that the
source code of those derivative works be published,”35 the standard licenses, named
as such because they refer to the reusability of “industry standards,”36 and the
content licenses, named as such because they refer to “[. . .] other than software,
such as music art, film, literary works” and so on.37

Both kinds of taxonomies directly help to find the relevant licenses that should be
used for new (software) projects. But again: none of these categories allows us to
infer license compliant behaviour, because the categories are mostly defined based
on license external criteria: whether a license is published by a specific kind of
organization or whether a license deals with industry standards or other kind of
works than software inherently does not determine a license fulfilling behaviour.

Only the act of grouping into academic licenses and reciprocal licenses touches
the idea of license fulfillment tasks, if one—as it has been done—expands the
definition of the academic licenses by the specification that these licenses “[. . .]
allow the software to be used for any purpose whatsoever with no obligation on
the part of the licensee to distribute the source code of derivative works.”38 With
respect to this additional specification, the clusters academic licenses and the
reciprocal licenses indeed might be referred as the “main categories” of (open
source) licenses:39 By definition, they are constituting not only a contrary, but
contradictory opposite. However, it must be kept in mind that they constitute an
inherent antagonism, an antinomy inside of the set of open source licenses.40

33) cf. Open Source Initiative: Open Source Licenses by Category; 2013 [n.y.] ⟨URL: http:
//opensource.org/licenses/category⟩ – reference download: 2013-01-29, wp.

34) cf. Rosen, Lawrence: Open Source Licensing. Software Freedom and Intellectual Property
Law; Upper Saddle River, New Jersey: Prentice Hall PTr, 2005, ISBN 0–13–148787–6,
p. 69.

35) cf. id., l.c., p. 70.
36) cf. id., ibid.
37) cf. id., l.c., p. 71.
38) cf. id., ibid.
39) cf. id., l.c., p. 179.
40) Hence, it is at least a little confusing to say that “the open source license (OSL) is a

reciprocal license” and “the Academic Free License (AFL) is the exact same license without
the reciprocity provisions” (cf. id., l.c., p. 180): If the BSD license is an AFL and if an
AFL is not an OSL and if the OSI approves only OSLs, then the BSD license can not be an
approved open source license. But in fact, it still is (cf. Open Source Initiative: The Open
Source Licenses, alphabetically sorted, 2012, wp).

21

http://opensource.org/licenses/category
http://opensource.org/licenses/category

2 Open Source: The Same Idea, Different Licenses

Similiar in nature to the clustering into academic licenses and reciprocal licenses
is the grouping into permissive licenses, weak copyleft licenses, and strong copyleft
licenses : Even Wikipedia uses the term “permissive free software licence” in the
meaning of “a class of free software licence[s] with minimal requirements about
how the software can be redistributed” and “contrasts” them with the“copyleft
licences” as those with “reciprocity / share-alike requirements.”41

Some other authors name the set of academic licenses the “permissive licenses”
and specify the reciprocal licenses as “restrictive licenses”, because in this case—
as a consequence of the embedded “copyleft” effect—the source code must be
published in case of modifications. They also introduce the subset of “strong
restrictive licenses” which additionally require that an (overarching) derivative
work must be published under the same license.42 The next refinement of such
clustering concepts directly uses the categories “[open source] licenses with a strict
copyleft clause,”43 “[open source] licenses with a restricted copyleft clause,”44 and
“[open source] licenses without any copyleft clause.”45 Finally, this viewpoint can
directly be mapped to the categories strong copyleft and weak copyleft: While on
the one hand, “only changes to the weak-copylefted software itself become subject
to the copyleft provisions of such a license, [and] not changes to the software
that links to it”, on the other hand, the “strong copyleft” states “[. . .] that the
copyleft provisions can be efficiently imposed on all kinds of derived works.”46

Based on this approach to an adequate clustering and labeling,47 we can develop

41) cf. Wikipedia (en): Permissive free software licence; n.l., 2013 [n.y.] ⟨URL: http:
//en.wikipedia.org/wiki/Permissive_free_software_licence⟩ – reference download:
2013-02-02, wp.

42) pars pro toto cf. Buchtala, Rouven: Determinanten der Open Source Software-Lizenzwahl.
Eine spieltheoretische Analyse; Frankfurt am Main, Berlin, Bern [... etc.]: Peter Lang, 2007
(= Informationsmanagement und strategische Unternehmensführung), [Vol./No.] 12), ISBN
978–3–631–57114–9, p. 57.

43) Originally stated as “Lizenzen mit einer strengen Copyleft-Klausel.” Cf. Jaeger a. Metzger :
Open Source Software. Rechtliche Rahmenbedingungen der Freien Software, 2011, p. 24.

44) Originally stated as “Lizenzen mit einer beschränkten Copyleft-Klausel.” Cf. id., l.c., p. 71.
45) Originally stated as “Lizenzen ohne Copyleft-Klausel.” Cf. id., l.c., p. 83.
46) cf. Wikipedia (en): Copyleft; n.l., 2013 [n.y.] ⟨URL: http://en.wikipedia.org/wiki/

Copyleft⟩ – reference download: 2013-02-02, wp.
47) Finally, we should also mention that there exists still other classifications which might become

important in other contexts. For example, the ifross license subsumes under the main category
“Open Source Licenses” the subcategories “Licenses without Copyleft Effect,” “Licenses
with Strong Copyleft,” “Licenses with Restricted Copyleft,” “Licenses with Restricted
Choice,” or “Licenses with Privileges”—and lets finally denote these categories also licenses
which are not listed by the OSI (cf. ifross: License Center; 2011 [n.y.] ⟨URL: http:
//www.ifross.org/ifross_html/lizenzcenter-en.html⟩ – reference download: 2013-02-
26, wp). This is reasonable if one refers to the meaning of the OSD (cf. Open Source
Initiative: The Open Source Definition, 2012, wp). The OSLiC wants to simplify its object
of study by referring to the approved open source licenses (cf. Open Source Initiative: The
[OSI] Licence Review Process, 2012, wp) listed by the OSI (cf. Open Source Initiative: The

22

http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Copyleft
http://www.ifross.org/ifross_html/lizenzcenter-en.html
http://www.ifross.org/ifross_html/lizenzcenter-en.html

2 Open Source: The Same Idea, Different Licenses

the following picture:

OSI approved licenses

open source licenses

pe
rm

issive licenses

Apache-

2.0

BSD-X-

Clause

MIT MS-PL

Post-

greSQL

PHP-

3.X

copyle
ft licenses

we
ak

copyleft licenses

EPL-

1.X

EUPL-

1.X

LGPL-

Y.Y

MPL-

X.Y

st
ro

ng copyleft

licenses

GPL-

X.Y

AGPL-

3.X

This extensionally based clarification of a possible open source license taxon-
omy is probably well-known and often—more or less explicitly—referred to.48

Unfortunately, this taxonomy still contains some misleading underlying messages:

Permissive has a very positive connotation. So, the antinomy of permissive licenses
versus copyleft licenses implicitly signals, that the permissive licenses are in some
sense better than the copyleft licenses. Naturally, this ‘conclusion’ is evoked by
confusing the extensional definition and the intensional power of the labels. But
that is the way we—the human beings—like to think.

Anyway, this underlying message is not necessarily ‘wrong.’ It might be convenient
for those people or companies who only want to use open source software without
being restricted by the obligation to give something back as it has been introduced
by the ‘copyleft.’49 But there might be other people and companies who emphasize

Open Source Licenses, alphabetically sorted, 2012, wp).
48) Even the FSF itself uses the term ‘permissive non-copyleft free software license’ (pars pro

toto: cf. Free Software Foundation: Various Licenses and Comments about Them; 2013
[n.y.] ⟨URL: http://www.gnu.org/licenses/license-list.html⟩ – reference download:
2013-02-08, wp/section ‘Original BSD license’) and contrasts it with the terms ‘weak copyleft’
and ‘strong copyleft’ (pars pro toto: cf. id., l.c., wp/section ‘European Union Public License’)

49) De facto, copyleft is not copyleft. Apart from the definition, its effect depends on the
particuar licenses which determine the conditions for applying the copyleft ‘method.’ For
example, in the GPL, the copyleft effect is bound to the criteria of ‘being distributed.’ Later

23

http://www.gnu.org/licenses/license-list.html

2 Open Source: The Same Idea, Different Licenses

the protecting effect of the copyleft licenses. And, indeed, at least the open source
license50 GPL51 has initially been developed to protect the freedom, to enable the
developers to help their “neighbours”, and to get the modifications back:52 So,
“Copyleft” is defined as a “[. . .] method for making a program free software and
requiring all modified and extended versions of the program to be free software as
well.”53 It is a method54 by which “[. . .] the code and the freedoms become legally
inseparable”.55 Because of these disparate interests of hoping not to be restricted
and hoping to be protected, it could be helpful to find a better label—an impartial
name for the cluster of permissive licenses. But until that time, we should at least
know that this taxonomy still contains an underlying declassing message.

The other misleading interpretation is—counter-intuitively—prompted by using
the concept of ‘copyleft licenses.’ By referring to a cluster of copyleft licenses as
the opposite of the permissive licenses, one implicitly also sends two messages:
First, that republishing one’s own modifications is sufficient to comply with the
copyleft licenses. And, second, that the permissive licenses do not require anything
to be done for obtaining the right to use the software. Even if one does not wish
to evoke such an interpretation, we—the human beings—tend to take the things

on, we will collect these conditions systematically (see chapter Open Source Use Cases:
Concept and Taxonomy, pp. 103). Therefore, here we still permit ourselves to use a somewhat
‘generalizing’ mode of speaking.

50) Although RMS naturally prefers to call it a Free Software License (s. p. 18)
51) As the original source cf. Free Software Foundation: GNU General Public License, version 2;

1991 [n.y. of the html page itself] ⟨URL: http://www.gnu.org/licenses/gpl-2.0.html⟩ –
reference download: 2013-02-05, wp. Inside of the OSLiC, we constantly refer to the license
versions which are published by the OSI, because we are dealing with officially approved
open source licenses. For the ‘OSI-GPL’ cf. Open Source Initiative: GNU General Public
License, version 2 (GPL-2.0). Version 2, June 1991; 1991 [n.y. of the html page itself] ⟨URL:
http://opensource.org/licenses/GPL-2.0⟩ – reference download: 2013-02-05, wp

52) The history of the GNU project is multiply told. For the GNU project and its initiator cf.
pars pro toto Williams, Sam: Free as in Freedom. Richard Stallman’s Crusade for Free
Software; Beijing [... etc.]: O’Reilly, 2002, ISBN 0–596–00287–4, passim. For a broader
survey cf. pars pro toto Moody : Die Software-Rebellen, 2001, passim. A very short version
is delivered by Richard M. Stallman himself where he states that—in the years when the
early free community was destroyed—he saw the “nondisclosure agreement” which must
be signed , “[. . .] even to get an executable copy” as a clear “[. . .] promise not to help
your neighbour”: “A cooperating community was forbidden.” (cf. Stallman, Richard M.:
The GNU Project; originally published in ’Open Sources: Voices from the Open Source
Revolution, O’Reilly, 1999’; In Stallman: Free Software, Free Society: Selected Essays, 2002,
p. 16).

53) cf. Stallman, Richard M.: What is Copyleft? originally written in 1996; In Stallman: Free
Software, Free Society: Selected Essays, 2002, p. 89.

54) Based on the American legal copyright system, this method uses two steps: first one states,
“[. . .] that it is copyrighted [. . .]” and second one adds those “[. . .] distribution terms,
which are a legal instrument that gives everyone the rights to use, modify, and redistribute
the program’s code or any program derived from it but only if the distribution terms are
unchanged” (cf. id., ibid.).

55) cf. id., ibid.

24

http://www.gnu.org/licenses/gpl-2.0.html
http://opensource.org/licenses/GPL-2.0

2 Open Source: The Same Idea, Different Licenses

as simple as possible.56 But because of several aspects, this understanding of the
antinomy of copyleft licenses and permissive licenses is too misleading for taking
it as a serious generalization:

On the one hand, even the ‘strongly copylefted’ GPL imposes other obligations in
addtion to republishing derivative works. For example, it also requires giving “[. . .]
any other recipients of the [GPL licensed] Program a copy of this License along
with the Program.”57 Furthermore, the ‘weakly copylefted’ licenses require also
more and different criteria to be fulfilled for acting in accordance with these licenses.
For example, the EUPL requires that the licensor, who does not directly deliver
the binaries together with the sourcecode, must offer a sourcecode version of his
work free of charge,58 while the MPL requires that under the same circumstances
a recipient “[. . .] can obtain a copy of such Source Code Form [. . .] at a charge no
more than the cost of distribution to the recipient [. . .]”59 And last but not least,
also the permissive licenses require tasks to be fulfilled for a license compliant
usage—moreover, they also require different things. For example, the BSD license
demands that “the (re)distributions [. . .] must (retain [and/or]) reproduce the
above copyright notice [. . .]”. Because of the structure of the “copyright notice”,
this compulsory notice implies that the authors / copyright holders of the software
must be publicly named.60 As opposed to this, the Apache License requires
that “if the Work includes a ‘NOTICE’ text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file” which often means that
you have to present central parts of such files publicly61—parts which can contain

56) And indeed, in the experience of the authors sometimes such simplifications gain their
independent existence and determine decisions at the management level. But that is not the
fault of the managers. It is their job to aggregate, generalize and simplify information. It
is the job of the experts to offer better viewpoints without overwhelming the others with
details.

57) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §1.
58) The German version of the EUPL uses the phrase “problemlos und unentgeltlich(sic!)

auf den Quellcode (zugreifen können)” (cf. Europäische Gemeinschaft a. European com-
mission Joinup: Open-Source-Lizenz für die Europäische Union; 2007 ⟨URL: http://
joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf⟩ – reference
download: 2013-02-08, pp. 3, section 3) while the English version contains the specifi-
cation “the Source Code is easily and freely accessible” (cf. European Community a.
European commission Joinup: European Union Public Licence v. 1.1. 2007 ⟨URL:
http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.1.1%20-%20Licence.pdf⟩ –
reference download: 2013-02-08, pp. 2, section 3)

59) cf. Open Source Initiative: Mozilla Public License 2.0 (MPL-2.0); 2013 [n.y.] ⟨URL:
http://opensource.org/licenses/MPL-2.0⟩ – reference download: 2013-02-07, section
3.2.a.

60) cf. Open Source Initiative: The BSD 2-Clause License; 2012 [n.y.] ⟨URL: http://www.
opensource.org/licenses/BSD-2-Clause⟩ – reference download: 2012-07-03, wp.

61) cf. Open Source Initiative: Apache License, Version 2.0; 2004 [n.y. of the page itself]
⟨URL: http://opensource.org/licenses/Apache-2.0⟩ – reference download: 2013-02-07,

25

http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.1.1%20-%20Licence.pdf
http://opensource.org/licenses/MPL-2.0
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/Apache-2.0

2 Open Source: The Same Idea, Different Licenses

much more information than only the names of the authors or copyright holders.

So, no doubt—and contrary to the intuitive interpretation of this taxonomy—each
open source license must be fulfilled by some actions, even the most permissive one.
And for ascertaining these tasks, one has to look into these licenses themselves,
not the generalized concepts of licenses taxonomies. Hence again, we have to
state that even this well known type of grouping of open source licenses does not
allow to derive a specific license compliant behavior: The taxonomy might be
appropriate, if one wants to live with the implicit messages and generalizations of
some of its concepts. But the taxonomy is not an adequate tool to determine, what
one has to do for fulfilling an open source license. A license compliant behaviour
for obtaining the right to use a specific piece of open source software must be
based on the concrete open source license by which the licensor has licensed the
software. There is no shortcut.

Nevertheless, human beings need generalizing and structuring viewpoints for
enabling themselves to talk about a domain—even if they finally have to regard
the single objects of the domain for specific purposes. We think that there is a
subtler method to regard and to structure the domain of open source licenses. So,
we want to offer this other possibility to cluster the open source licenses :62

We think that, in general, licenses have a common purpose: they should protect
someone or something against something. The structure of this task is based
on the nature of the word ‘protect’ which is a trivalent verb: it links someone
or something who protects, to someone or something who is protected and both
combined to something against which the protector protects and against the other
one is protected. Licenses in general do that. Moreover, to “protect” the “rights”
of the licensees is explicitly mentioned in the GPL-2.0,63 in the LGPL-2.1,64 and
the GPL-3.065—by which the LGPL-3.0 inherits this purpose.66 Following this
viewpoint, we want to generally assume that open source licenses are designed
to protect: They can protect the user (recipient) of the software, its contributor
resp. developer and/or distributor, and the software itself. And they can protect
them against different threats:

wp. section 4.4.
62) even if we also have to concede that, ultimately, one has to always look into the license itself
63) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. Preamble.
64) cf. Open Source Initiative: The GNU Lesser General Public License, version 2.1 (LGPL-2.1);

1999 [n.y. of the html page itself] ⟨URL: http://opensource.org/licenses/LGPL-2.1⟩ –
reference download: 2013-03-06, wp. Preamble.

65) cf. Open Source Initiative: GNU General Public License, version 3 (GPL-3.0); 2007 [n.y.
of the html page itself] ⟨URL: http://opensource.org/licenses/GPL-3.0⟩ – reference
download: 2013-03-05, wp. Preamble.

66) cf. Open Source Initiative: The GNU Lesser General Public License, version 3.0 (LGPL-3.0);
2007 [n.y. of the html page itself] ⟨URL: http://opensource.org/licenses/LGPL-3.0⟩ –
reference download: 2013-03-06, wp. prefix.

26

http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/LGPL-3.0

2 Open Source: The Same Idea, Different Licenses

• First, we assume, that—in the context of open source software—the user
can be protected against the loss of the right to use it, to modify it, and to
redistribute it. Additionally, he can be protected against patent disputes.

• Second, we assume, that open source contributors and distributors can be
protected against the loss of feedback in the form of code improvements and
derivatives, against warranty claims, and against patent disputes.

• Third, we assume, that the open source programs and their specific forms—
may they be distributed or not, may they be modified or not, may they be
distributed as binaries or as sources—can be protected against the re-closing
resp. against the re-privatization of their further development.

• Fourth, we want to assume that new on-top developments being based
on open source components can be protected against the privatization for
enlarging the world of freely usable software.67

With respect to these viewpoints, one gets a subtler picture of the license specific
protecting power. Thus, we are going to describe and deduce the protecting power
of each of the open source licenses on the following pages. Table 2.1 summarizes
the results as a quick reference.68

2.1 The protecting power of the GNU Affero General Public
License (AGPL)

[TODO...]

67) In a more rigid version, this capability of a license could also be identified as the power to
protect the community against a stagnation of the set of open source software—but this
description is at least a little to long to be used by the following pages

68) → table 2.1 on p. 28. In February 2014, the Black Duck list of the “Top 20 Open Source
Licenses” additionally mentions the Artistic License (AL), the Code Open Project License,
the Common Public License, the zlib/png License, the Academic Free License (AFL), the
Microsoft Reciprocal License (MS-RL) and the Open Software License (OSL) (cf. Black
Duck : Top 20 Open Source Licenses; 2014 [n.y] ⟨URL: http://www.blackducksoftware.
com/resources/data/top-20-open-source-licenses⟩ – reference download: 2014-02-11,
wp.). The Code Open Project License and Common Public License are still not OSI approved
open source licenses. (cf. Open Source Initiative: The Open Source Licenses, alphabetically
sorted, 2012, wp.). Thus, finally the OSLiC should additionally analyze not only the AGPL
and the CDDL, but also the AL, the AFL, the MS-RL, the OSL and the zlib/png License
for being able to justiufiably say, that the OSLiC covers the most important open source
licenses.

27

http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

2 Open Source: The Same Idea, Different Licenses

Table 2.1: Open Source Licenses as Protectors
Open are protecting
Source Users Contributors Open Source Software O

n
-T

o
p

D
e
v
e
lo
p
.

Licensesa (Distributors) not distributed as
who have already got who spread open dis- unmodified modified
sources or binaries source software tribu-

ted

sou
rces

b
in
aries

sou
rces

b
in
aries

against
the loss of P

a
ten

t
D
isp

u
tes

L
o
ss

o
f
F
eed

b
ack

W
a
rra

n
ty

C
laim

s

P
a
ten

t
D
isp

u
tes

the right to Re-Closings / Re-Privatization P
riva

tiza
tio

n

u
se

it

m
o
d
ify

it

red
istrib

u
te

it

of already opened software

Apache 2.0 ✓ ✓ ✓ ✓ ¬ ✓ ✓ ¬ ✓ ¬ ✓ ¬ ¬

BSD
3-Cl ✓ ✓ ✓ ¬ ¬ ✓ ¬ ¬ ✓ ¬ ✓ ¬ ¬
2-Cl ✓ ✓ ✓ ¬ ¬ ✓ ¬ ¬ ✓ ¬ ✓ ¬ ¬

MIT ✓ ✓ ✓ ¬ ¬ ✓ ¬ ¬ ✓ ¬ ✓ ¬ ¬
MS-PL ✓ ✓ ✓ ✓ ¬ ✓ ✓ ¬ ✓ ¬ ✓ ¬ ¬

PostgreSQL ✓ ✓ ✓ ¬ ¬ ✓ ¬ ¬ ✓ ¬ ✓ ¬ ¬
PHP 3.0 ✓ ✓ ✓ ¬ ¬ ✓ ¬ ¬ ✓ ¬ ✓ ¬ ¬
CDDL 1.0 ✓ ✓ ✓ – – – – – – – – – –
EPL 1.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ¬ ✓ ✓ ✓ ✓ ¬
EUPL 1.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ¬ ✓ ✓ ✓ ✓ ¬

LGPL
2.1 ✓ ✓ ✓ ¬ ✓ ✓ ¬ ¬ ✓ ✓ ✓ ✓ ¬
3.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ¬ ✓ ✓ ✓ ✓ ¬

MPL
1.0 – – – – – – – – – – – – –
1.1 – – – – – – – – – – – – –
2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ¬ ✓ ✓ ✓ ✓ ¬

MS-RL ✓ ✓ ✓ – – – – – – – – – –

AGPL 3.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GPL
2.1 ✓ ✓ ✓ ¬ ✓ ✓ ¬ ¬ ✓ ✓ ✓ ✓ ✓
3.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ¬ ✓ ✓ ✓ ✓ ✓

a) ’✓’ indicates that the license protects with respect to the meaning of the column, ‘¬’ indicates
that the license does not protect with regard to the meaning of the column, and ‘–’ indicates,
that the corresponding statement must still be evaluated. Slanted names of licenses indicate
that these licenses are only listed in this table while the corresponding mindmap (→ p. 48)
does not cover them

28

2 Open Source: The Same Idea, Different Licenses

2.2 The protecting power of the Apache License (Apache-2.0)

As an approved open source license,69 the Apache License70 protects the user
against the loss of the right to use, to modify and/or to distribute the received copy
of the source code or the binaries.71 Furthermore, based on its patent clause,72 the
Apache-2.0 protects the users against patent disputes.73 Because of this patent
clause and the “disclaimer of warranty” together with the “limitation of liability,”
the Apache license also protects the contributors and distributors against patent
disputes and warranty claims.74 Finally, the Apache-2.0 protects the distributed
sources themselves against a change of the license which would convert the work
to closed software, because, first, one “[. . .] must give any other recipients of the
Work or Derivative Works a copy of (the Apache) license,” second, “in the Source
form of any Derivative Works that (one) distributes”, one has “[. . .] to retain
[. . .] all copyright, patent, trademark, and attribution notices [. . .],” and third,
one must “[. . .] include a readable copy [. . . of the] NOTICE file” being supplied
by the original package one has received.75

But the Apache License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: the Apache license does not
contain any sentence requiring that one has also to publish the source code. In
the same spirit, the Apache-2.0 does not protect the undistributed software or
the distributed binaries against re-closing (neither in unmodified nor in modified
form) because the Apache License allows to (re)distribute the binaries without
also supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, the Apache-2.0 does not protect the on-top developments
against privatization.

69) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
70) The Apache License, version 2.0 is maintained by the Apache Software Foundation (cf. Apache

Software Foundation: Apache License, Version 2.0; 2004 ⟨URL: http://www.apache.org/
licenses/LICENSE-2.0⟩ – reference download: 2011-08-31, wp). Of course, the OSI is
hosting a duplicate of the Apache license (cf. Open Source Initiative: APL-2.0, 2004, wp)
and is listing it as an officially approved open source license (cf. Open Source Initiative: The
Open Source Licenses, alphabetically sorted, 2012, wp). The Apache license 1.1 is classified
by the OSI as “superseded license”(cf. Open Source Initiative: The Open Source Licenses
by Category, 2013, wp). In the same spirit, the Apache Software Foundation itself classifies
the releases 1.0 and 1.1 as “historic” (cf. Apache Software Foundation: Licenses; 2013 [n.y]
⟨URL: http://www.apache.org/licenses/⟩ – reference download: 2013-02-25, wp). Thus,
the OSLiC only focuses on the most recent license Apache-2.0 version. For those who have
to fulfill these earlier Apache licenses it could be helpful to read them as siblings of the
BSD-2-Clause and BSD-3-Clause licenses.

71) cf. Open Source Initiative: APL-2.0, 2004, wp. §2.
72) → OSLiC pp. 54
73) cf. id., l.c., wp. §3.
74) cf. id., l.c., wp. §3, §7, §8.
75) cf. id., l.c., wp. §4.

29

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

2 Open Source: The Same Idea, Different Licenses

2.3 The protecting power of the BSD licenses

As approved open source licenses,76 the BSD Licenses77 protect the user against
the loss of the right to use, to modify and/or to distribute the received copy of the
source code or the binaries.78 Additionally, they protect the contributors and/or
distributors against warranty claims of the software users, because these licenses
contain a ‘No Warranty Clause.’79 And finally they protect the distributed sources
against a change of the license which closes the sources, because each modification
and “redistributions of [the] source code must retain the [. . .] copyright notice,
this list of conditions and the [. . .] disclaimer”:80 Therefore it is incorrect to
distribute BSD licensed code under another license—regardless of whether it closes
the sources or not.81

But the BSD Licenses protect neither the users nor the contributors and/or dis-
tributors against patent disputes (because they do not contain any patent clause).
They do not protect the contributors against the loss of feedback (because they
do not ‘copyleft’ the software). Moreover, they do not protect the undistributed
software or the distributed binaries against re-closing—neither in unmodified nor
in modified form—because they allow to redistribute only the binaries without
also supplying the source code.82 Finally, the BSD licenses do not protect the
on-top developments against privatization.

76) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
77) BSD has to be resolved as Berkely Software Distribution. For details of the BSD license

release and namings cf. Open Source Initiative: The BSD 3-Clause License; 2012 [n.y.] ⟨URL:
http://www.opensource.org/licenses/BSD-3-Clause⟩ – reference download: 2012-07-04,
wp. editorial

78) cf. Open Source Initiative: The Open Source Definition, 2012, wp. §1ff.
79) one for all version cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.
80) cf. id., ibid.
81) In common sense based discussions you may have heard that BSD licenses allow to republish

the work under another, an own license. Taking the words of the BSD License seriously that
is not valid under all circumstances: Yes, it is true, you are not required to redistribute the
sourcecode of a modified (derivative) work. You are allowed to modify a received version and
to distribute the results only as binary code and to keep your improvements closed. But if
you distribute the source code of your modifications, you have retain the licensing, because
“Redistribution [. . .] in source [. . .], with or without modification, are permitted provided
that [. . .] (the) redistributions of source code [. . .] retain the above copyright notice, this
list of conditions and the following disclaimer” (cf. id., ibid.)

82) see both, the BSD-2-Clause License (cf. id., ibid.), and the BSD-3Clause License (cf. Open
Source Initiative: The BSD 3-Clause License, 2012, wp)

30

http://www.opensource.org/licenses/BSD-3-Clause

2 Open Source: The Same Idea, Different Licenses

2.4 The protecting power of the CDDL [tbd]

As an approved open source license,83 the Common Develop and Distribution
License protects the user against the loss of the right to use, to modify and/or to
distribute the received copy of the source code or the binaries84

[. . .]

2.5 The protecting power of the Eclipse Public License (EPL)

As an approved open source license,85 the Eclipse Public License86 protects the
user against the loss of the right to use, to modify and/or to distribute the
received copy of the source code or the binaries87. Furthermore, based on its
patent clause,88 the EPL protects the users also against patent disputes.89 Besides
this patent clause, the EPL contains the sections “no warranty” and “disclaimer of
liability.”90 These three elements together protect the contributors / distributors
against patents disputes and warranty claims. Finally, the EPL protects the
distributed sources themselves against a change of the license which would reset
the work as closed software: First, the Eclipse Public Licenses requires that if
a work—released under the EPL—“[. . .] is made available in source code form
[. . .] (then) it must be made available under this (EPL) agreement, too” while
this act of ‘making avalaible’ “must” incorporate a “copy” of the EPL into “each
copy of the [distributed] program” or program package.91 But in opposite to the
permissive licenses, the EPL does not only protect the distributed source code—
regardless whether it is modified or not. The EPL also protects the distributed
modified or unmodified binaries: The EPL allows each modifying “contributor”
and distributor “[. . .] to distribute the Program in object code form under (one’s)
own license agreement [. . .]” provided this license clearly states that the “source

83) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
84) cf. Open Source Initiative: Common Development and Distribution License (CDDL-1.0);

2004 [n.y. of the html page itself] ⟨URL: http://opensource.org/licenses/CDDL-1.0⟩ –
reference download: 2013-04-19, wp. §?.

85) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
86) The Eclipse Public License, version 1.0 is maintained by the Eclipse Software Foundation (cf.

Eclipse Foundation: Eclipse Public License, Version 1.0; 2005 [n.y. of the page itself] ⟨URL:
http://www.eclipse.org/org/documents/epl-v10.php⟩ – reference download: 2013-02-
20, wp). Of course, also the OSI is hosting a duplicate (cf. Open Source Initiative: Eclipse
Public License, Version 1.0; 2005 [n.y. of the page itself] ⟨URL: http://opensource.org/
licenses/EPL-1.0⟩ – reference download: 2013-02-20, wp).

87) cf. id., l.c., wp §2a.
88) → OSLiC pp. 56
89) cf. id., l.c., wp §2b & §2c.
90) cf. id., l.c., wp §5 & §6.
91) cf. id., l.c., wp §3.

31

http://opensource.org/licenses/CDDL-1.0
http://www.eclipse.org/org/documents/epl-v10.php
http://opensource.org/licenses/EPL-1.0
http://opensource.org/licenses/EPL-1.0

2 Open Source: The Same Idea, Different Licenses

code for the Program is available” and where the “licensees” can “[. . .] obtain it
in a reasonable manner on or through a medium customarily used for software
exchange.”92 Thus, one has to conclude that the EPL is a copyleft license.

But the Eclipse Public License is not a license with strong copyleft; the EPL
uses ‘only’ a weak copyleft effect:93 Indeed, the EPL says that for each EPL
licensed “program”—distributed in object form—a place must be made known
where one can get the corresponding source code.94 The term ‘Program’ is defined
as any “Contribution distributed in accordance with [. . .] (the EPL)” while the
term ‘Contribution’ refers—besides other elements—to “changes to the Program,
and additions to the Program.”95 Unfortunately, this is a circular definition:
‘Program’ is defined by ‘Contribution’; and ‘Contribution’ is defined by ‘Program.’
Nevertheless, one has to read the license benevolently. Uncontroversial should
be this: If one distributes any modified EPL licensed program, library, module,
or plugin, then one has to publish the modified source code, too. If one “adds”
some own plugins or additional libraries which are used by an EPL licensed
program (which on behalf of this use must have been modified by adding [sic!]
procedure calls) then one has to publish the code of both parts: that of the
program and that of the added elements. In this sense, the EPL clearly protects
the binaries against re-closings like other weak copyleft using licenses. But if
one distributes only an EPL licensed library which is used as a component by
another not EPL licensed on-top program, then this library does not depend on
the top development—provided that the library itself does not call any (program)
functions or procedures delivered by the overarching on-top development. Hence,
nothing is added to the library; and hence, no other code than that of the library
must be published. Therefore, the EPL does not use the strong copyleft effect in
the meaning of—for example – the GPL.

92) cf. Open Source Initiative: EPL-1.0, 2005, wp §3, esp. §3.b.iv.
93) Even if one can find contrary specifications in the internet. Pars pro toto cf. ifross: ifross

Lizenz-Center, 2011, wp: This page is listing the EPL in the section “Other Licenses with
strong Copyleft Effect”

94) cf. Open Source Initiative: EPL-1.0, 2005, wp §3, esp. §3.b.iv.
95) cf. id., l.c., wp §1.

32

2 Open Source: The Same Idea, Different Licenses

2.6 The protecting power of the European Union Public
License (EUPL)

As an approved open source license,96 the European Union Public License97

protects the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries.98 Furthermore, based on
its patent clause99, the EUPL protects the users against patent disputes.100

Besides this patent clause, the EUPL additionally contains a “Disclaimer of
Warranty” and a “Disclaimer of Liability.”101 These three elements together
protect the contributors / distributors against patents disputes and warranty
claims. Finally, the EUPL also protects the distributed sources against a re-
closing / re-privatization and the contributors against the loss of feedback. This
protection is based on two steps: First, the European Public License contains
a particular paragraph titled “Copyleft clause” which stipulates that “copies of
the Original Work or Derivative Works based upon the Original Work” must
be distributed “under the terms of (the European Union Public) License.”102

Second, the EUPL requires that each licensee—as long as he “[. . .] continues
to distribute and/or communicate the Work”—has also to “[. . .] provide [. . .]
the Source Code”, either directly or by “[. . .] (indicating) a repository where
this Source will be easily and freely available [. . .]”103 This condition seems to
be so important for the EUPL that the license repeats its message: in another
paragraph the EUPL requires again that “if the Work is provided as Executable
Code, the Licensor provides in addition a machine-readable copy of the Source
Code of the Work along with each copy of the Work [. . .] or indicates, in a notice
[. . .], a repository where the Source Code is easily and freely accessible for as
long as the Licensor continues to distribute [. . .] the Work.”104 Based on the
meaning of “Work” which is defined by the EUPL as “the Original Work and/or

96) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
97) The European Union Public License, version 1.1 is maintained by the European Union and

hosted under the label “Joinup” (cf. European Community a. European commission Joinup:
EUPL-1.1/EN, 2007, wp). This EUPL has officially been translated into many languages,
among others into German (cf. Europäische Gemeinschaft a. European commission Joinup:
EUPL-1.1/DE, 2007, wp). Because of this multi lingual instances, the OSI does not offer
its own version, but just a landing page linked to the lading page of the European host
“Joinup” (cf. Open Source Initiative: European Union Public License, version 1.1 (EUPL-1.1;
2007 [n.y. of the html page itself] ⟨URL: http://opensource.org/licenses/EUPL-1.1⟩ –
reference download: 2013-03-04, wp).

98) cf. id., l.c., wp §2.
99) → OSLiC pp. 57

100) cf. id., l.c., wp §2, at its end.
101) cf. id., l.c., wp §7 & §8.
102) cf. id., l.c., wp §5.
103) cf. id., ibid.
104) cf. id., l.c., wp §3.

33

http://opensource.org/licenses/EUPL-1.1

2 Open Source: The Same Idea, Different Licenses

its Derivative Works”105 it must be concluded that the EUPL is a copyleft license.

But nevertheless, the European Union Public License is not a license with strong
copyleft: On the one hand, if one takes the core of the EUPL then the license seems
to protect not only the modifications of the original work against re-closings and
(re-)privatization, but also the on-top developments because normally you have to
publish the source code in both cases. Understood in this way, the EUPL would be
a ‘strong copyleft license.’ But on the other hand, the EUPL additionally contains
a “Compatibility clause” stating that “if the Licensee Distributes [. . .] Derivative
Works or copies thereof based upon both the Original Work and another work
licensed under a Compatible Licence, this Distribution [. . .] can be done under
the terms of this Compatible Licence”106—while the term “Compatible Licence”
is explicitly defined by a list of compatible licenses, for example the Eclipse Public
License.107. Based on this compatibility clause the obligation to publish the code
of an on-top development can be subverted: As first step, you could release a
little, more or less futile on-top application licensed under the Eclipse Public
License108 which uses a library licensed under the EUPL. As second step, you add
this ‘EUPL library’ which you now may also distribute under the EPL instead
of retaining the EUPL licensing. So, finally you obtain the same work under the
Eclipse Public License which is a weak copyleft license109. Hence the protection
of the EUPL-1.1 is not as comprehensive as one might assume on the basis of
the license text itself,110 it can at most be a weak copyleft license—even if the
reader might get the impression that the authors of the EUPL wished to write a
strong copyleft license. Howsoever, the EUPL license does not protect the on-top
developments against a privatization.

105) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §1.
106) cf. id., l.c., wp §5.
107) cf. id., l.c., wp Appendix.
108) Taking the license text very seriously, it is not even necessary that this little futile application

must depend on the EUPL library by calling functions of EUPL library. The license text only
says that “another [any other] work licensed under a Compatible Licence” can be distributed
together with “derivative works”. By this wording, the license itself is establishing a contrast
between the derivative work and the other work—what indicates that the other work has
not necessarily also to be a derivative work.

109) → OSLiC, p. 31
110) This kind of specifiying the protective power of the EUPL is initially presented by the FSF

(cf. Free Software Foundation: Various Licenses and Comments about Them, 2013, pp.wp.
section ‘European Union Public License’). The EU answers that publishing such a trick
will comprise its user in the eyes of the open source community (cf. European Community
a. European commission Joinup: New FSF statements on the EUPL are a step in the
right direction; 2013 [n.y] ⟨URL: https://joinup.ec.europa.eu/community/eupl/news/
new-fsf-statements-eupl-are-step-right-direction⟩ – reference download: 2013-03-
05, p.wp). That is undoubtely true. But unfortunately, this argument does not close the
hole in the protecting shield put up by the EUPL.

34

https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction
https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction

2 Open Source: The Same Idea, Different Licenses

2.7 The protecting power of the GNU General Public License
(GPL)

The GNU General Public License—also known as GPL—is maintained and offered
by the Free Software Foundation and hosted as part of the well known “GNU
operating system homepage.”111 Currently, there are two versions of the GPL
which are classified as OSI approved open source licenses112, the GPL-2.0113 and
the GPL-3.0. 114 Although both versions of the GPL aim for the same results
and the same spirit, they differ with respect to textual and arguing structure.
Therefore, it is helpful to treat these two licenses separately.

2.7.1 GPL-2.0

The protecting power of the GPL-2.0 can easily be determined: First, the license
allows the users of a received software to “copy and distribute” unmodified “copies
of the [. . .] source code”115 as well as to “[. . .] modify [. . .] copies [. . .] or
any portion of it, [. . .] and (to) distribute such modifications [. . .]”116—not only
in the form of source code, but also in the form of binaries.117 Thus—and in
accordance of being an approved open source license118—the GPL-2.0 protects
the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries. Second, it protects the
contributors against warranty claims119 and—based on its copyleft effect120—also
against the loss of feedback. Third, the GPL-2.0 protects the source code itself
in a nearly complete mode against privatization: even if one initially distributes
only the binary version of a modification which one has generated (as a “work
based on the” original) by “copying” any portion of the original work into this
new derivative work,121 then one has nevertheless to offer a possibility to get the

111) cf. Free Software Foundation: GNU Operating System[:] Licenses; 2011 ⟨URL: http:
//www.gnu.org/licenses/⟩ – reference download: 2013-03-25, wp.

112) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
113) For the original version, offered by the FSF cf. Free Software Foundation: The GPL-2.0

License (FSF), 1991, wp. For the version, offered by the OSI cf. Open Source Initiative: The
GPL-2.0 License (OSI), 1991, wp.

114) For the original version, offered by the FSF cf. Free Software Foundation: GNU General
Public License [version 3]; 2007 [n.y. of the html page itself] ⟨URL: http://www.gnu.org/
licenses/gpl.html⟩ – reference download: 2013-03-06, wp. For the version, offered by the
OSI cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp.

115) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1.
116) cf. id., l.c., wp §2.
117) cf. id., l.c., wp §3.
118) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
119) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §11, §12.
120) cf. id., l.c., wp §3.
121) cf. id., l.c., wp §2.

35

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

2 Open Source: The Same Idea, Different Licenses

source code122—namely for “the modified work as whole.”123 This modified “work
based on the [original] Program” has to be read in a very broad sense; it “[. . .]
means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language.”124 Hence, in the context
of software distribution, the GPL-2.0 does not only protect the software against
re-privatization, but also possible on-top developments against privatization.

But the GPL-2.0 does not protect against patent disputes125—neither the users,
nor the contributors or distributors—and it does not protect the (modified)
software which is not distributed against (re-)privatization.126

2.7.2 GPL-3.0

An important modification of the GPL-3.0 is evoked by the use of the new wording
to “propagate” or to “convey” a “covered work”: On the one hand a “covered
work” denotes “either the unmodified Program or a work based on the Program”.
This “work based on the Program” is defined as a “modified version” of an
“earlier” instance of the program which has been derived from this earlier instance
by “(copying it) from or (adapting) all or part of it” in way other than exactly
copying the earlier instance.127 On the other hand, “to propagate a work” denotes
“copying, distribution (with or without modification), making available to the
public” and any other kind of treating the work “[. . .] except executing it on a
computer or modifying a private copy.”128 Third, the GPL 3.0 specifies that to
“convey” a work “[. . .] means any kind of propagation that enables other parties
to make or receive copies.”129 This specification shall later on help to clarify that
it is an act of distribution if the recipient himself actively copies or fetches a

122) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §4.
123) cf. id., l.c., wp §3.
124) cf. id., l.c., wp §0.
125) → OSLiC, p. 58
126) This is a ‘lack’ in the GPL which the AGPL wants to close: you are indeed allowed to modify

and install a GPL-2.0 licensed server software on your own machine for offering a service
based on this modified software without being obliged to give your improvements back to
the community. But—at least in Germany—this viewpoint seems to have to respect rigorous
limits. Sometimes, it is said that even distributing software over the parts of a holding is
already a distribution which—in the case of GPL-2.0 licensed software—would evoke the
obligation to distribute the source code, too. [IMPORTANT: citation still needed!]

127) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §0.
128) cf. id., l.c., wp. §0. The GPL 3.0 wants to cover the copyright systems of all countries of

the world without dealing with their particular constraints directly. Therefore it generally
states, that the meaning of the phrase “to propagate a work”—in the spirit of the FSF—is
whatever the specific copyright system wants to be covered by these words, “[. . .] except
executing it on a computer or modifying a private copy”.

129) cf. id., l.c., wp §0.

36

2 Open Source: The Same Idea, Different Licenses

program.

Referring to this new wording, the GPL-3.0 allows as a “basic permission” to
“[. . .] make, run and propagate covered works [. . .] without conditions so long
as your license otherwise remains in force.”130 This might be read as anything
is allowed without any restrictions—provided there does not exist any rule which
must be respected. Based on these specifications, the use and the modification of a
GPL-3.0 program only for yourself is not restricted.131

So, in general—like all the other open source licenses and in accordance to the
OSD132—also the GPL protects the user against the loss of the right to use, to
modify and/or to distribute the received copy of the source code or the binaries.133

Furthermore, based on its patent clauses, the GPL-3.0 protects the users and the
contributors of a software against patent disputes.134 Additionally, the GPL-3.0
tries to protect the contributors or distributors against warranty claims by its well
known “Disclaimer of Warranty”135 and “Limitation of Liability”136 which must
explicitly made been known at least in each case of source code distribution.137

Finally, the most forceful protection of the GPL-3.0 concerns the protection against
the loss of feedback and against the privatization: Whenever you distribute a
GPL-3.0 licensed program in the form of binaries, you have to make the source
accessible, too.138 Moreover, this obligation concerns every covered work, hence
not only the unmodified original, but also any modification or adaption derived
by any other kind of copying parts of the original into the “resulting work”:139

“You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License.”140 So, no doubt: the GPL wants also the source

130) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §2.
131) In general, you have to infer that you do not have to fulfill any tasks if you are using a

piece of open source software only for yourself—namely based of the fact that the particular
license rules focus only on the distribution of the software, not on the private use. But in
the GPL-3.0, this assertion concerning the private use becomes more explicit: It is one of
your “basic permissions” to “[. . .] make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains in force”. And “to
propagate a work” refers to anything “[. . .] except executing it on a computer or modifying
a private copy” (cf. id., l.c., wp. §2 and §0). Thus, the GPL-3.0 supports your total freedom
on your own machine: Do whatever you want to do; anything goes—as long as you do not
hand the result over to any third party in any sense.

132) cf. Open Source Initiative: The Open Source Definition, 2012, wp.
133) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §3, §4, §5, and §6.
134) → OSLiC, p. 58
135) cf. id., l.c., wp §15.
136) cf. id., l.c., wp §16.
137) cf. id., l.c., wp §4.
138) cf. id., l.c., wp §6.
139) cf. id., l.c., wp §0.
140) cf. id., l.c., wp §6.

37

2 Open Source: The Same Idea, Different Licenses

code of all on-top developments to be published, not only the modified programs
and libraries used as base of these on-top developments. The single mode of use,
the GPL does not protect against privatization, is the mode of using the software
only for yourself.141

2.8 The protecting power of the GNU Lesser General Public
License (LGPL)

The LGPL is maintained and offered by the Free Software Foundation and hosted
as part of the well known “GNU operating system homepage.”142 The meaning
of the name LGPL was changed in the course of time. First, in 1991, it should be
resolved as “GNU Library General Public License” and should denote the “first
released version of the library GPL” which was “[. . .] numbered 2 because it goes
with version 2 of the ordinary GPL.” Today, this license is marked as “superseded
by the GNU Lesser General Public License”143. This newer LGPL version from
1999 was released as “the successor of the GNU Library Public License, version 2,
hence [as] the version number 2.1.”144 Finally, in June 2007, the—for now—last
version of the LGPL was released—namely with a new structure: While GPL-2.0
and LGPL-2.1 are similar, but independent licenses, the LGPL-3.0 has to be read
as an addendum to GPL-3.0. At the beginning of the LGPL-3.0 license, the content
of the corresponding GPL-3.0 was included into the LGPL by the sentence that
“this version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented by
the additional permissions listed below.”145 Based on these differences, it seems
to be suitable to treat the different LGPLs separately.

141) Quite the contrary: The GPL-3.0 explicitly allows to delegate the modification to third
parties and allows to distribute the source code as working base “[. . .] to others for the
sole purpose of having them make modifications exclusively for you [. . .]” (cf. Open Source
Initiative: The GPL-3.0 License (OSI), 2007, wp. §2).

142) cf. Free Software Foundation: The GNU OS Licenses, 2011, wp.
143) cf. Free Software Foundation: GNU Library General Public License [version 2.0]; 1991 [n.y.

of the html page itself] ⟨URL: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.
html⟩ – reference download: 2013-03-25, wp.

144) cf. Free Software Foundation: GNU Lesser General Public License [Version 2.1]; 1999 [n.y.
of the html page itself] ⟨URL: http://www.gnu.org/licenses/lgpl-2.1.html⟩ – reference
download: 2013-03-06, wp.

145) cf. Free Software Foundation: GNU Lesser General Public License [version 3]; 2007 [n.y.
of the html page itself] ⟨URL: http://www.gnu.org/copyleft/lesser.html⟩ – reference
download: 2013-03-06, wp.

38

http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/copyleft/lesser.html

2 Open Source: The Same Idea, Different Licenses

2.8.1 LGPL-2.1

Like the other versions of the GPL or LGPL, the LGPL-2.1 also explicitly describes
its purpose as the task to “protect” the “rights” of the software users: it states that
generally all “[. . .] the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software [. . .]”146 Of course, the LGPL-2.1
is an approved open source license147 which protects the user against the loss of the
right to use, to modify and/or to distribute the received copy of the source code
or the binaries.148 But the LGPL-2.1 does not offer any sentences to infer that it
grants any patent rights to the software user.149 So, it does not protect anyone
against patent disputes, neither the users, nor the contributors / distributors.
Instead of this, the LGPL-2.1 contains a special section “No Warranty” offering
two paragraphs which together establish the protection of the contributors and
distributors against warranty claims.150 Finally, the LGPL-2.1 also protects the
distributed sources against a re-closing / re-privatization and the contributors
against the loss of feedback. For that purpose, the LGPL-2.1 on the one hand
states that the recipient “[. . .] may modify (his) copy or copies of the Library or
any portion of it [. . .] and copy and distribute such modifications [. . .]” provided
that the results of these modifications are “[. . .] licensed at no charge to all
third parties under the terms of (the LGPL-2.1).”151 On the other hand, this
LGPL version allows to distribute such modifications “in object code or executable
form” provided that one accompanies these entities “[. . .] with the complete
corresponding machine-readable source code” which itself must be distributed
under the terms of the LGPL-2.1.152

But contrary to the GPL, the LGPL does not require to publish the code of an
overarching program or any on-top development: It distinguishes the “work that
uses the Library” from the “work based on the Library”: First, it defines the
“Library” as any “software library or work” licensed under the LGPL-2.1 and adds
that “a ‘work based on the Library’ means either the Library or any derivative
work under copyright law.”153 Second, it defines the “work that uses the Library”
as any “[. . .] program that contains no derivative of any portion of the Library, but
is designed to work with the Library by being compiled or linked with it” whereas
this “work that uses the Library”—taken “in isolation”—clearly “[. . .] is not a
derivative work of the Library [. . .]”154 Third—and explictily “as an exception to

146) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp Preamble.
147) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
148) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §1, §2, §4.
149) → OSLiC, p. 59
150) cf. id., l.c., wp §15, §16.
151) cf. id., l.c., wp §2.
152) cf. id., l.c., wp §4.
153) cf. id., l.c., wp §0, emphasis ours.
154) cf. id., l.c., wp. §5, emphasis ours. To be exact: the LGPL states also, that this work can

39

2 Open Source: The Same Idea, Different Licenses

the Sections above”—the LGPL-2.1 allows to “[. . .] combine or link a ‘work that
uses the Library’ with the Library to produce a work containing portions of the
Library, and distribute that work under terms of (one’s own) choice” provided one
“(accompanies) the work with the complete corresponding machine-readable source
code for the Library”. Together, these three specifications clearly require that one
must publish / distribute the source code of the library itself—regardless, whether
it is modified or not, and regardless, whether one distributes the code directly or
makes ‘only’ written offer for receiving the source code of the library separately.155

But these specifications do not require that one also must publish / distribute
the source code of the work that uses the library or—as the OSLiC is using to
say—the the on-top developments.

Thus—no surprise—it has to be inferred that the LGPL does not protect the
on-top developments against a privatization. And of course, that is the reason
why it is called the GNU Lesser General Public License.

2.8.2 LGPL-3.0

The LGPL-3.0 wants to be read as an extension of the GPL-3.0. For that purpose,
it explicitly “[. . .] incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by (some) additional permissions [. . .]”156

Thus, the LGPL-3.0 inherits the most parts of the protecting power of the GPL-
3.0—except those parts which deal with the overarching on-top development: In
opposite of the GPL-3.0, the LGPL allows to embed LGPL-3.0 licensed libraries
into libraries of higher complexity157, into on-top applications158 and into sets
of reorganized library systems.159 Moreover, the LGPL-3.0 allows to “convey”
these overarching units “under terms of (one’s own) choice.”160 Therefore, one is
not necessarily obliged to publish the source code of these on-top developments,
too161—but, of course, one is obliged to publish the source code of the (modified)
embedded libraries themselves.

nevertheless become a derivative work under the particular circumstances of being linked to
the library. But even then, the LGPL allows to treat this ‘derivative work’ as a work which
is not a derivative work, provided one fulfills some additional conditions. With respect to
this viewpoint, the hint of the LGPL that the non-derivative work becomes a derivate work
by linking it, seems not to be as crucial as one might expect.

155) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §6.
156) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp just before §0.
157) cf. id., l.c., wp §3.
158) cf. id., l.c., wp §4.
159) cf. id., l.c., wp §5.
160) cf. id., l.c., wp §4.
161) To be exact: The LGPL-3.0 wants to assure that “combined works” can be re-combined on

the base of newer versions of the embedded library. For that purpose, one has either to use
“a suitable shared libary mechanism” which allows to replace the embedded library without
relinking the larger unit, or one has to publish at least “the minimal corresponding source

40

2 Open Source: The Same Idea, Different Licenses

Based on the already described protecting power of the GPL-3.0162 and on these
additional specifications of the LGPL-3.0, one can summarize the protecting power
of the LGPL-3.0 this way:

First, the LGPL protects the users against the loss of the right to use, to modify
and/or to distribute the received software. Additionally, it protects them against
patent disputes. Second, it protects the contributors and distributors against the
loss of feedback, against warranty claims and against patent disputes. Finally, it
protects the distributed software itself against re-privatization.

But the LGPL-3.0 does not protect the undistributed source code and does not
protect the on-top developments against privatization.

2.9 The protecting power of the MIT license

As an approved open source license,163 the MIT License164 protects the user against
the loss of the right to use, to modify and/or to distribute the received copy of the
source code or the binaries.165 Additionally, it protects the contributors and/or
distributors against warranty claims of the software users, because it contains a
‘No Warranty Clause.’166 And finally it protects the distributed sources against
a change of the license which would close the sources, because the “permission
[. . .] to use, copy, modify, [. . .] distribute, [. . .] (is granted) subject to the [. . .]
conditions, [that] the [. . .] copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.”167

But the MIT License does not protect the users or the contributors and/or
distributors against patent disputes (because it does not contain any patent
clause). Additionally, it does not protect the contributors against the loss of

[code]” and a set of binaries by which the user himself can relink the overarching unit on
the base of a newer version ob the embedded library (cf. Free Software Foundation: The
LGPL-3.0 License (FSF), 2007, wp. §4)

162) → OSLiC, p. 36
163) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
164) ‘MIT’ has to be resolved as “Massachusetts Institute of Technology” (cf. Wikipedia (en):

MIT License; n.l, 2011 ⟨URL: http://en.wikipedia.org/wiki/MIT_License⟩ – reference
download: 2011-09-20, wp).

165) cf. Open Source Initiative: The Open Source Definition, 2012, wp 1ff.
166) cf. Open Source Initiative: The MIT License; 2012 [n.y.] ⟨URL: http://opensource.org/

licenses/mit-license.php⟩ – reference download: 2012-08-24, wp.
167) cf. id., ibid.. The argumentation why the source code is protected, but not the binary form

follows that of the BSD licenses: By these requirements, one is not obliged to redistribute
the sourcecode of a modified (derivative) work. One is allowed to modify a received version
and to distribute the results only in binary form and to keep one’s improvements closed.
But if one distribute the source code of the modifications, the licensing is retained, simply
because the MIT “[. . .] permission note shall be included in all copies or substantial portions
of the software”.

41

http://en.wikipedia.org/wiki/MIT_License
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php

2 Open Source: The Same Idea, Different Licenses

feedback (because it does not ‘copyleft’ the software). Moreover, the MIT license
does not protect the undistributed software or the distributed binaries against
re-closings—neither in unmodified nor in modified form—because it allows to
redistribute only the binaries without also supplying the source code.168 Finally,
the MIT license does not protect the on-top developments against a privatization.

2.10 The protecting power of the Mozilla Public License
(MPL)

As an approved open source license,169 the Mozilla Public License170 protects
the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries.171 Furthermore, based on
its split and distributed patent clause,172 the MPL protects the users against
patent disputes.173 Besides this patent sections, the MPL additionally contains
a “Disclaimer of Warranty” and a “Limitation of Liability.”174 These three
elements together protect the contributors / distributors against patents disputes
and warranty claims. Finally, the MPL also protects the distributed sources
against a re-closing / re-privatization and the contributors against the loss of
feedback: The MPL clearly says that, on the one hand, “all distribution of

168) cf. Open Source Initiative: The MIT License, 2012, wp.
169) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
170) In 2012, the Mozilla Public License 2.0 (cf. Mozilla Foundation: Mozilla Public License

2.0 (MPL-2.0); 2012 ⟨URL: http://www.mozilla.org/MPL/2.0/⟩ – reference download:
2013-03-05, wp) has been released as a result of a longer “Revision Process”(cf. Mozilla
Foundation: About MPL 2.0: Revision Process and Changes FAQ; 2013 [n.y.] ⟨URL:
http://www.mozilla.org/MPL/1.1/⟩ – reference download: 2013-03-05, wp) by which the
Mozilla Public License 1.1 (cf. Mozilla Foundation: Mozilla Public License Version 1.1;
2013 [n.y.] ⟨URL: http://www.mozilla.org/MPL/1.1/⟩ – reference download: 2013-03-05,
wp) has been ousted. The OSI is also hosting its version of the MPL-2.0 (cf. Open Source
Initiative: The MPL-2.0 License (OSI), 2013, wp) and is listing it as an OSI approved license
(cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp)
while it classifies the MPL-1.1 as a “superseded license”(cf. Open Source Initiative: The
Open Source Licenses by Category, 2013, wp). The Mozilla Foundation itself says concerning
the difference between the two licenses that “the most important part of the license—the
file-level copyleft—is essentially the same in MPL 2.0 and MPL 1.1” (cf. Mozilla Foundation:
MPL 2.0: Revision Process and Changes, 2013, wp). By reading the MPL-1.1, one could
get the impression that fulfilling all conditions of the MPL-2.0 would imply also to act
in accordance to the MPL-1.1. Thus the OSLiC focuses on the MPL-2.0, at least for the
moment. Nevertheless, in this section we want to use the general label ‘MPL’ without any
release number for indicating that with respect to its protecting power the MPL-2.0 and the
MPL-1.1 can be taken as equipollent.

171) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §2.1.a.
172) → OSLiC pp. 60
173) cf. id., l.c., wp §2.1.b, §2.3, §5.2.
174) cf. id., l.c., wp §6 & §7.

42

http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/1.1/
http://www.mozilla.org/MPL/1.1/

2 Open Source: The Same Idea, Different Licenses

Covered Software in Source Code Form, including any Modifications [. . .] must
be under the terms of this License”175 and that, on the other hand, MPL licensed
software “[. . .] (distributed) in Executable Form [. . .] must also be made available
in Source Code Form [. . .]”176 So, it must be inferred that the MPL is a copyleft
license.

But nevertheless, the Mozilla Public License is not a license with strong copyleft.
It does not protect on-top developments against privatization: First, the MPL
does not use the term derivative work.177 Instead of this, the MPL denotes the
“[. . .] (initial) Source Code Form [. . .] and Modifications of such Source Code
Form” by the label “Covered Software”178—while the term “Modifications” refers
to “any file in Source Code Form that results from an addition to, deletion from, or
modification of the contents of Covered Software or any file in Source Code Form
that results from an addition to, deletion from, or modification of the contents of
Covered Software.”179 Second, the MPL contrasts the source code form and its
modifications with the “Larger Work” by specifying that the larger work is “[. . .]
material, in a seperate file or files, that is not covered software.”180 Finally, the
MPL states, that “you may create and distribute a Larger Work under terms of
Your choice, provided that You also comply with the requirements of this License
for the Covered Software.”181 Based on these specifications, one has to reason
that an on-top development which depends on MPL licensed libraries by calling
some of their functions, is undoubtably a derivative work,182 but also only a larger
work in the meaning of the MPL so that code of this on-top application needs
not to be published—provided, that the library and the on-top development are
distributed as different files.183 Hence, the MPL is license with a weak copyleft

175) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.1.
176) cf. id., l.c., wp §3.2.
177) cf. id., l.c., wp. The MPL-1.1 uses the term derivative work only in the context of writing

new “versions of the license”, not in the context of licensing software (cf. Mozilla Foundation:
Mozilla Public License Version 1.1, 2013, wp. §6.3).

178) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §1.4.
179) cf. id., l.c., wp. §1.10. The Mozilla Foundation denotes this reading by the term “file-level

copyleft” (cf. Mozilla Foundation: MPL 2.0: Revision Process and Changes, 2013, wp).
180) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §1.7.
181) cf. id., l.c., wp §3.3.
182) This follows from the general meaning of a derivative work as a benevolent software developer

would read this term (→ OSLiC, pp. 67). But again: The MPL does not focus on this
general aspect; it uses its own concept of a larger work.

183) It might be discussed whether integrating a declaration of a function, class, or method into
the on-top development by including the corresponding header files indeed means that one
is “including portions (of the Source Code Form)” into a file which therefore has to be taken
as “Modification” (cf. Mozilla Foundation: Mozilla Public License Version 1.1, 2013, wp.
§1.4). From the viewpoint of a benevolent developer it should be difficult to argue that the
including of declaring (header) files alone can evoke a derivative work. It is the call of the
function in one’s code which establishes the dependency. But that is not the point, the MPL
focuses. The MPL aims on the textual reuse of (defining) code snippets. Hence, one could

43

2 Open Source: The Same Idea, Different Licenses

effect and does not protect the on-top developments against privatization.

2.11 The protecting power of the Microsoft Public License
(MS-PL)

As an approved open source license,184 the Microsoft Public License protects
the user against the loss of the right to use, to modify and/or to distribute the
received copy of the source code or the binaries.185 Furthermore, based on its
patent clause,186 the MS-PL protects the users against patent disputes.187 Because
of this patent clause and of its concise disclaimer of warranty, the MS-PL also
protects the contributors / distributors against patents disputes and warranty
claims.188 Finally, the Microsoft Public License protects the distributed sources
themselves—and even “portions of these sources”—against a change of the license
which would reset the work as closed software, because first, one “[. . .] must
retain all copyright, patent, trademark, and attribution notices that are part of
the software,”189 and because, second, one must also incorporate “a complete copy
of this license” into one’s own distribution premised one distributes the source
code.190

But the Microsoft Public License does not protect the contributors against the
loss of feedback because it does not ‘copyleft’ the software: The license does not
contain any sentence which requires that one has to publish the sources, too.191

ignore the textual integration of parts of the declaring header files: it should not trigger that
one’s own work becomes a modification in the eyes of the Mozilla Findation. But of course,
one would circumvent the idea of the MPL if one hides defining code in header files and
reuses that code by one’s own compilation. This would undoubtably be an incorporation of
portions and therefore would make the incorporating file becoming a modification of the
MPL licensed initial work.

184) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
185) cf. Open Source Initiative: Microsoft Public License (MS-PL); 2013 [n.y.] ⟨URL: http:

//opensource.org/licenses/MS-PL⟩ – reference download: 2013-02-26, wp §2.
186) → OSLiC pp. 61
187) cf. id., l.c., wp §2.B and §3.B.
188) cf. id., l.c., wp §2B, §3B, §3D.
189) cf. id., l.c., wp §3C.
190) cf. id., l.c., wp §3D.
191) There seems to be some misunderstandings on the internet: The English wikipedia specifies

the MS-PL as a permissive license and the MS-RL as a license with copyleft effect (cf.
Wikipedia (en): Shared source; n.l, 2013 [n.y.] ⟨URL: http://en.wikipedia.org/wiki/
Shared_source⟩ – reference download: 2013-02-26, wp). The German wikipedia says that the
MS-PL is a license with a “schwachen [weak] copyleft” (cf. Wikipedia (de): Microsoft Public
License; n.l, 2013 [n.y.] ⟨URL: http://de.wikipedia.org/wiki/Microsoft_Public_
License⟩ – reference download: 2013-02-26, wp). And it says also that the “Microsoft
Reciprocal License” (MS-RL) is a license with weak copyleft, too (cf. Wikipedia (de):
Microsoft Reciprocal License; n.l, 2013 [n.y.] ⟨URL: http://de.wikipedia.org/wiki/

44

http://opensource.org/licenses/MS-PL
http://opensource.org/licenses/MS-PL
http://en.wikipedia.org/wiki/Shared_source
http://en.wikipedia.org/wiki/Shared_source
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL

2 Open Source: The Same Idea, Different Licenses

In the same spirit, the MS-PL does not protect the undistributed software or the
distributed binaries against re-closings—neither in unmodified nor in modified
form—because the MS-PL License allows to (re)distribute the binaries without
also supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, also the MS-PL does not protect the on-top developments
against a privatization.

2.12 The protecting power of the Postgres License
(PostgreSQL)

As an approved open source license,192 the PostgreSQL License protects the user
against the loss of the right to use, to modify and/or to distribute the received
copy of the source code or the binaries.193 Because of its disclaimer of warranty,
the PostgreSQL also protects the contributors / distributors against warranty
claims.194 Finally, the PostgreSQL protects the distributed sources themselves
against a change of the license which would reset the work as closed software,
because the “copyright notice” and the whole license must “[. . .] appear in all
copies.”195

But the PostgreSQL License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: The license does not contain
any sentence which requires that one has to publish the sources, too. In the
same spirit, the PostgreSQL does not protect the undistributed software or the
distributed binaries against re-closings—neither in unmodified nor in modified
form—because the PostgreSQL allows to (re)distribute the binaries without also
supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, the PostgreSQL does not protect the on-top developments
against a privatization.

Ms-RL⟩ – reference download: 2013-02-26, wp). But for the very thoroughly working “ifross
license center”, the MS-RL is a license with restricted (weak) copyleft, while the MS-PL is a
permissive license with some selectable options (cf. ifross: ifross Lizenz-Center, 2011, wp).
Based on the license text itself and these other readings, we decided to take the MS-PL as a
permissive license in accordance to the English wikipedia page and the ifross page.

192) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
193) cf. Open Source Initiative: The PostgreSQL Licence (PostgreSQL); 2013 [n.y.] ⟨URL:

http://opensource.org/licenses/PostgreSQL⟩ – reference download: 2013-02-27, wp.
194) cf. id., ibid.
195) cf. id., ibid.

45

http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://opensource.org/licenses/PostgreSQL

2 Open Source: The Same Idea, Different Licenses

2.13 The protecting power of the PHP License

As an approved open source license,196 the PHP-3.0 License protects the user
against the loss of the right to use, to modify and/or to distribute the received
copy of the source code or the binaries.197 Because of its disclaimer of warranty,
the PHP license also protects the contributors / distributors against warranty
claims.198 Finally, the PHP license protects the distributed sources themselves
against a change of the license which would reset the work as closed software,
because “redistributions of source code must retain the [. . .] copyright notice,
this list of conditions and the [. . .] disclaimer.”199

But the PHP-3.0 License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: The license does not contain
any sentence which requires that one has to publish the sources, too. In the
same spirit, the PHP license does not protect the undistributed software or the
distributed binaries against re-closings—neither in unmodified nor in modified
form—because the PHP license allows to (re)distribute the binaries without also
supplying the sources—even if the binaries rest upon sources modified by the
distributor.

2.14 Summary

All these specifications can not only be summarized by a table,200 but also by
a mindmap as it is shown at the end of this chapter. Moreover, based on these
specifications, one could generate new groups of open source licenses, new classes,
like ‘user protecting licenses,’201 ‘patent disputes fending licenses’ up to more
sophisticated taxonomies.

However, one must keep in mind that all of these grouping viewpoints do not
legitimate the conclusion that all members of a group can be respected by fulfilling
the same requirements. This would only be possible if the grouping criteria would
directly refer to the fulfilling tasks. Indeed, nearly all open source licenses do
differ with respect to these criteria, and even if the differences are very small, they
can’t be neglected.202 So: reflecting on possible classes of open source licenses is

196) cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
197) cf. Open Source Initiative: The PHP License 3.0 (PHP-3.0); 2013 [n.y.] ⟨URL: http:

//opensource.org/licenses/PHP-3.0⟩ – reference download: 2013-02-27, wp.
198) cf. id., ibid.
199) cf. id., ibid.
200) → OSLiC, p. 28
201) all of them because all of them have to fulfill the OSD
202) Pars pro toto: Both, the BSD license and the Apache license require that you provide an

indication to the developers of the application. But in case of the BSD license you have to

46

http://opensource.org/licenses/PHP-3.0
http://opensource.org/licenses/PHP-3.0

2 Open Source: The Same Idea, Different Licenses

a good method to become familiar with the area of open source licenses. But it is
not a method to determine, what needs to be done to obtain the right to use the
software. For that purpose every license must be considered individually.

publish the copyright notice / line, while in case of the Apache license you have exactly to
present the content of the notice file distributed together with the application.

47

2 Open Source: The Same Idea, Different Licenses

BSD
License

3-Clauses 2-Clauses

MIT
License

Apache
License

2.0

MicroSoft

Public

License

PostgreS[Q]
License

PHP
License

3.0

Mozilla
Public
License 1.1

2.0

Eclipse
Public
License

1.0

European
Public
License 1.1

1.2

Lesser
GNU
Public
License 2.1

3.0

GNU
Public
License 2.1

3.0

Affero
GNU
Public
License

3.0

protecting the
user, the con-
tributor & the
initial code
Permissive Licenses

protecting the
user, the con-
tributor, the
initial code, &
all direct deri-
vations
Weak Copyleft

protecting the
user, the con-
tributor, the
initial code,
all direct deri-
vations & the
(indirectly de-
rived) on-top-
developments
Strong Copyleft

Patent
Disputes

Loss of
Rights

Warranty
Claims

Loss of
Feeback

reclos-

ings

reclos-

ings

reclos-

ings

reclos-

ings

reclos-

ings

privati-

zings

closings

unmodified

Sources

unmodified

Binaries

modified

Sources

modified

Binaries

part of On-Top-

Developments

On-Top-Developments

Users

Con-
tribu-
tors

distri-
buted
Soft-
ware

undistributed
Software

open
source
license

p
ro
tectin

g

against

ag
ai
ns

t

p
ro
tectin

g

a
ga
in
st

against

ag
ai
ns

t

p
ro
te
ct
in
g

as
a
s

as

a
s

a
s

as

p
ro
te
ct
in
g

against

against

against

against

against

agai
nst

against

48

3 Open Source: About Some Side Effects

3.1 The problem of implicitly releasing patents

In this chapter, we briefly analyze the effects of patent clauses in open source
licenses—not in general, but with respect to the license fulfilling tasks they require,
also known as the ‘implicit acceptance of a patent use’ by distributing open source
software.

At least the free software movement frowns on the existence of software patents.203

One of the best known witnesses for that attitude is the GPL itself. Its preamble
purports that “[. . .] any free program is threatened constantly by software
patents.”204 One can read that the open source community fears three risks: First,
they are apprehensive of people who hijack the idea of a piece of open source
software they do not have developed, register a corresponding patent, and finally
try to earn money by preventing the use of the software or by involving its users
in patent ligitations.205 Second, they fear a bramble of general software patents
which practically prohibits them to develop open source software legally.206 Third,
they anticipate the possibility that (not quite benevolent) open source developers

203) For an early and elaborate description on the effects of software patents based on the
viewpoint of the free software movement see Stallman, Richard M.: Free Software: Freedom
and Cooperation; transcript of a speech given at New York University on 29 May 2001; In
Stallman: Free Software, Free Society: Selected Essays, 2002, wp. This lecture seems to have
been given more than once and printed later on (cf. Stallman, Richard M.: The Danger of
Software Patents; transcript of a speech given at University of Cambridge, London on the 25th
of March 2002; In Stallman: Free Software, Free Society: Selected Essays, 2002, wp). Within
the first decade of 2000, the focus switched to a more political fight against software patents
(cf. Stallman, Richard M.: Fighting Software Patents - Singly and Together; n.st. [2004]
⟨URL: http://www.gnu.org/philosophy/fighting-software-patents.html⟩ – reference
download: 2013-02-18, wp). But recently there seems to have appeared another turn
in dealing with software patents: Not fighting against the patents, but mitigating their
effects. The proposal is ‘[...] (to legislate) that developing, distributing, or running a
program on generally used computing hardware does not constitute patent infringement’ (cf.
Stallman, Richard M.: Let’s Limit the Effect of Software Patents, Since We Can’t Eliminate
Them; in: Wired, n.st. January (2012) ⟨URL: http://www.wired.com/opinion/2012/
11/richard-stallman-software-patents/⟩ – reference download: 2013-02-18, ISSN n.st.,
wp)

204) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp.
205) cf. Jaeger a. Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien

Software, 2011, p. 234.
206) cf. id., ibid.

49

http://www.gnu.org/philosophy/fighting-software-patents.html
http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/
http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/

3 Open Source: About Some Side Effects

could try to register patents with the intention of undermining the open source
principles.207

Howsoever, regardless whether one tries to fight against software patents or not,
software patents have become a reality. To abide by the law requires managing
the constraints of patents properly. Open source licenses know and respect this
necessity. Moreover, at least some of them try to manage the effect of software
patents by specific patent clauses208 or by several sentences distributed in the
license text.209 But why does the OSLiC have to deal with this topic, if the OSLiC
does not want to participate in general discussions?

Opposite to the other conditions of the open source licenses, their patent clauses
or propositions in general do not directly refer to a specific set of actions which
have to be executed for acting in accordance with the licenses. Open source patent
clauses normally do not join in the game ‘paying by doing.’ So, actually, it does
not seem to be necessary to mention the patent clauses here.

Unfortunately, although the patent clauses do not directly say ‘do this or that in
these or those circumstances,’ some of them nevertheless have side effects which
imply that the distributors of open source software already have something done
if they actually distribute a piece of open source software. This implicit effect
makes it necessary to deal with the patent clauses even in an only pragmatic
OSLiC.

Patent clauses in open source licenses can have two different directions of impact.
They use two methods to protect the users of the open source software—and
sometimes these methods are combined:

• First, an open source license can assure that all contributors to and dis-
tributors of a piece of open source software grant to all users/recipients
not only the right to use the open source software itself, but automatically
and implicitly also the right to use all those patents belonging to the con-
tributors/distributors which as patents are necessary to use the software
legally.210 So, let us—a little simplifying and therefore only on the following
few pages—name such licenses the granting licenses.

207) cf. Jaeger a. Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software, 2011, p. 235.

208) pars pro toto cf. Open Source Initiative: APL-2.0, 2004, wp §3.
209) pars pro toto cf. Open Source Initiative: EPL-1.0, 2005, wp wp.
210) There might arise a legal discussion whether even a distributor who does not contribute

to the software development has to grant the necessary rights of his patent portfolio. The
OSLiC does not want to participate in this discussion. We take a simple and pragmatic
position: to be sure that you are acting according to an open source license with such a
patent clause you should simply assume that you have to do so. If this default position is not
reasonable for you it might be a good idea to consult legal experts which—perhaps—may
find another way for you to use the software legally.

50

3 Open Source: About Some Side Effects

• Second, an open source license can try to automatically terminate the right
to use, to modify, and to distribute the software if its user initiates litigations
against any of the contributors/distributors with respect to an infringement
of patent. That can be seen as a revocation of rights granted earlier. So, let
us name these license the revoking licenses.

Later on, we will summarize the concrete patent clauses of all the licenses discussed
in the OSLiC as a proof for the following classification:

open source licenses

w
it
ho
ut

gra
nting patent clauses

MIT

BSD-X-

Clause

LGPL-

2.1

GPL-

2.0

PHP-

3.X

Post-

greSQL

with
granting patent clauses

gran
ting + revoking

Apache-2.0 EPL-1.X

MPL-X.Y MS-PL

LGPL-3.X GPL-3.0

AGPL-3.0

EUPL-1.X

But regardless of the final textual form a license uses to express its granting or
revoking positions, in any case one has to consider some aspects:

• Overall, one has to keep in mind that of course no licensor, contributor
and/or distributor can release the right to use any patents he does not
own—not even if he tries to release them by an open source patent clause.211

Implictly touched patents of third parties not having contributed to the
development and/or participated in the distribution can never be implicitly

211) The EPL is one of the licenses which insists on this aspect: It the second half of its patent
clause, the EPL underlines that “[. . .] no assurances are provided by any Contributor that
the Program does not infringe the patent or other intellectual property rights of any other
entity.” Moreover, it explicitly adds that “[. . .] if a third party patent license is required to
allow Recipient to distribute the Program, it is Recipient’s responsibility to acquire that
license before distributing the Program” (cf. Open Source Initiative: EPL-1.0, 2005, wp
§2c).

51

3 Open Source: About Some Side Effects

and automatically released on the base of such an (open source) patent
clause: no rights, no right to release.212 Hence: even for those open source
licenses which try to protect the users, finally the users themselves must
nevertheless ensure that they do not violate the patents of third parties
being unwillingly touched by the way the code works or the processes in
which the software is used.213

• In the context of a granting license, one has also to consider that contributing
to and distributing a piece of software implicitly evokes that all patents of
the contributor and/or distributor are ‘given free’ which are necessary to use
the software as whole—including the more or less deeply embedded libraries.
So, if one wants to check whether some of the core patents of one’s patent
portfolio are afflicted by a patent clause (and whether one therefore better
should not use/distribute the corresponding piece of open source software),
one should not forget to check the embedded libraries, too.

• Finally, one has to consider in the context of a granting license that its patent
clause only releases the use of the patents in the meaning of ‘allowed to be
used for enabling the use of the distributed software.’ The patent clause does
not release the patents generally. Thus, the threat of (unwillingly) releasing
patents by open source software is not as large as sometimes feared: the use
of the patent is only granted in combination with the software. On the one
hand, you may not use the open source software without having the right to
use the patent because the use of the patent is inherently necessary for using
the software—regardless, whether the open source software is embedded
into a larger process or not. On the other hand, you are not allowed to use
patents—released by the patent clause of an open source license—without
exactly that open source software which has been licensed under this open
source license, because the patent clause only refers to the use of just that
open source software.

• Summarized, one has to consider that the granting open source licenses
automatically and implicitly force you to grant all the rights which are nec-
essary to use the software legally. Open source contributors and distributors
should know that.214

212) This is an important aspect which is sometimes not considered by programmers. Inside
of DTAG we had a fruitful discussion evoked by Mr. Stephan Altmeyer who—as patent
lawyer—patiently explained this constraint to us.

213) Sometimes, this problem of willingly or unwillingly violated third party patents is seen as a
weakness of open source software. But that is not true. It is a weakness of every software.
Even a commercial licensor (developer) has only the right to license the use of those patents
he really owns or he has ‘bought’ for relicensing. Moreover, even commercial licensors can
willingly or unwillingly violate patents of other persons.

214) Again: It might be debatable whether this is also valid for the distributors which do not
contribute anything to the development. That’s a legal discussion the OSLiC does not wish
to participate in. From the viewpoint of an open source user who only wants to have one

52

3 Open Source: About Some Side Effects

• With respect to the revoking licenses, one has to consider that their patent
clauses contain negative conditions which may be read as interdictions. The
OSLiC will integrate these conditions into specific ‘prohibits’-sections of its
to-do lists.

• Finally one should mention that in some cases, the form of the revocation
used by the revoking license refers to the use of the software, in other cases
to the use of the patents. But nevertheless, one can reason that—from
the pragmatic viewpoint of a benevolent open source software user—this
second case of patent revocation also implicitly terminates the right to use
the software: If the use of a patent is necessary to use a piece of software
legally, one is not allowed to use the software without having the right to
use the patent, too; and if the use of the patent is not necessary for using
the software, then the patent is not covered by the patent clause. So, in
any case, this kind of patent clauses seems to terminate the right to use,
distribute or modify the software. Hence, single users as well as companies
or organizations should also respect such patent clauses if they want to be
sure to use open source software compliantly.

The OSLiC wants to support its readers not only to act according to the licenses
in general, but also according to its patent clause. Thus, we now briefly cite and
summarize the meaning of particular patent clauses:

3.1.1 AGPL statements concerning patents

(prelimiary text)

The AGPL-3.0 is a license derived from the GPL-3.0: apart from the preamble
and the paragraphs §11 and §13, they contain nearly the same text.215 In §13,
the AGPL explictly refers to the focus on a “remote network interaction” which
shall also be able to trigger the delivery of the corresponding source code; and in
§11, the AGPL establishes its specific patent clause cf. Open Source Initiative:
The AGPL-3.0 License (OSI), 2007, §11 and §13.

Like the GPL-3.0, the AGPL-3.0 tries to protect all licensees against patent claims.
This kind of protection is then established by three steps:

First, the AGPL-3.0 assures that “each contributor grants a non exclusive, world-
wide, royalty free patent license under the contributor’s essential patent claims, to

reliable and secure way to use open source software compliantly, one should perhaps assume
that there is no difference.

215) compare Open Source Initiative: GNU Affero General Public License, Version 3 (AGPL-3.0);
2007 [n.y. of the html page itself] ⟨URL: http://opensource.org/licenses/AGPL-3.0⟩ –
reference download: 2013-04-05, and Open Source Initiative: The GPL-3.0 License (OSI),
2007, in both §1 . . . §11

53

http://opensource.org/licenses/AGPL-3.0

3 Open Source: About Some Side Effects

make, use, sell offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.”216 Furthermore, the patent license defines
that this patent license granted by the contributor is automatically extended to
all downstream recipients who later on receive any version of the work even if
they indirectly receive them by third parties and even if they receive a covered
work or work based on the program.217

Second, the AGPL enforces not only the grant of patent licenses by the “con-
tributors,” the license even requires the same from licensees who distributes the
program unchanged: “If, pursuant to or in connection with a single transaction
or arrangement, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the covered
work authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to all
recipients of the covered work and works based on it.”218

Finally, the AGPL-3.0 introduces an revoking clause by stating that a licensee
“[. . .] may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling,
offering for sale, or importing the Program or any portion of it”219 and that this
licensee “automatically” loses the rights granted by the AGPL-3.0 “including any
patent licenses” if he tries to propagate or modify a covered work against the
regulations of the AGPL-3.0.220

According to that, the AGPL-3.0 is like the GPL-3.0 a granting and a revoking
license: At first, one is granted the right to use all patents of all contributors
which are necessary to use the software legally. But if one installs any litigation
regarding an infringement of patents, then the rights granted to him are revoked.

3.1.2 Apache-2.0 statements concerning patents

Titled by the headline “Grant of Patent License”, the Apache License 2.0 contains a
specific patent clause being comprised of two very long and condensed sentences.221

Outside of this patent clause, the word patent is only used once again—for requiring
that one “[. . .] must retain, in the (sources) [. . .] all [. . .] patent [. . .] notices
[. . .]”222

216) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp §11.
217) cf. id., ibid.
218) cf. id., ibid.
219) cf. id., l.c., wp §10.
220) cf. id., l.c., wp §8.
221) cf. Open Source Initiative: APL-2.0, 2004, wp §3.
222) cf. id., l.c., wp §4.3.

54

3 Open Source: About Some Side Effects

The one core message of the Apache-2.0 patent clause is that “[. . .] each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable [. . .] patent license to make, have made, use, offer to sell,
sell, import, and otherwise transfer the Work [. . .]”223

The second core message of the Apache-2.0 patent clause is the statement that
“if You institute patent litigation against any entity [. . .] alleging that the Work
[. . .] constitutes [. . .] patent infringement, then any patent licenses granted to
You [. . .] shall terminate [. . .]”224

The third message of the Apache-2.0 patent clause is the statement, that the “[. . .]
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted”.225

Thus, the Apache-2.0 is—as we use to say in this chapter—a granting and a
revoking license: At first you are granted to use all patents of all contributors
which are necessary to use the software legally. But if you—with respect to the
software—install any litigation concerning the infringement of patents, then the
rights granted to you are revoked.

3.1.3 CDDL statements concerning patents

The patent clauses of the CDDL are similiar in spirit to the Apache License: The
license grants rights to each contributors patents that are neccessarily infringed
by distributing or using the software. The license also revokes all rights granted
to someone who files a patent litigation with respect to the software against any
contributor. The CDDL differs from other licenses in that the litigant does not
lose his rights automatically and immediately but gets a grace period of 60 days.
If he withdraws his claims during this period, the license granted to him will not
be terminated.

The actual wording used in the CDDL is complicated by the fact that the
CDDL distinguished between the “Initial Developer” and other “Contributors.”
A “Contributor” receives a version of the software to which he then adds some
“Modifications” thus creating the “Contributor Version.” For all practical purposes
we can treat the “Initial Developer” as another contributor who happens to not
receive any software and whose “Contributor Version” (officially called “Original
Software”) equals his “Modifications.”

223) cf. Open Source Initiative: APL-2.0, 2004, wp §3. The “Contributor,” “Work,” and
“You” are defined in §1: Contributor refers to the original licensor and to all others whose
contributions have been incorporated into the Work. The Work denotes the result of the
development process regardless of its form. You denotes the licensees.

224) cf. id., ibid.
225) cf. id., ibid.

55

3 Open Source: About Some Side Effects

The patent licenses are granted in the clause (b) of the sections titled “The Initial
Developer Grant”226 and “Contributor Grant.”227 Each contributor grants the
licensee “a world-wide, royalty-free, non-exclusive license under Patent Claims
infringed by the making, using, or selling of Modifications made by that Contribu-
tor either alone and/or in combination with its Contributor Version [. . .], to make,
use, sell, offer for sale, have made, and/or otherwise dispose of: (1) Modifications
made by that Contributor [. . .]; and (2) the combination of Modifications made
by that Contributor with its Contributor Version [. . .]” This limits the patent
license to patents infringed by code present in the contributor version. And clause
(d) limits the grant even further to exclude “infringements caused by[. . .]third
party modifications of Contributor Version”228 or Covered Software in the absence
of Modifications made by that Contributor.229 This ensures that no contributor
is required to tolerate an infringement of his patents caused by code modified
after he made his contribution and, in particular, it is not possible to remove the
contributors modifications completely without also removing all other causes of
infringement of the patent claims because the patent license does not carry over
to such a use of the software.

The section titled “TERMINATION” contains the usual defense against patent
infringement claims by declaring that any such claim against a “Participant230

[. . .] alleging that the Participant Software [. . .] directly or indirectly infringes any
patent, then any and all rights granted directly or indirectly to You231 [. . .] under
Sections 2.1 and/or 2.2 of this License shall, upon 60 days notice from Participant
terminate prospectively and automatically at the expiration of such 60 day notice
period, unless [. . .] You withdraw Your claim [. . .] against such Participant either
unilaterally or pursuant to a written agreement with Participant.”

Thus, not only has the Participant to actively initiate the termination of the
licenses, the licensee also has 60 days to either settle the case by an agreement
with the Participant or to withdraw his claims.

3.1.4 EPL statements concerning patents

The Eclipse Public License treats the patents necessary to use the program in
the same section and under the same headline “Grant of Rights” like all the
other rights: First, the EPL clearly states that “[. . .] each Contributor [. . .]
grants (the recipient) a non-exclusive, worldwide, royalty-free patent license under
Licensed Patents to make, use, sell, offer to sell, import and otherwise transfer

226) cf. Open Source Initiative: The CDDL-1.0, 2004, wp §2.1(b).
227) cf. id., l.c., wp §2.2(b).
228) cf. id., l.c., wp §2.2(d).
229) cf. id., ibid.
230) The “Contributor” or “Initial Developer” against whom the claim is made
231) The party making the patent infringement claim

56

3 Open Source: About Some Side Effects

the Contribution of such Contributor, if any, in source code and object code
form.”232 Then the EPL delimits the extend of this act of granting: Neither
hardware patents of the contributors are covered by this releasing patent clause,
nor patents that concern aspects out of the area of the initially intended software
combination.233 Finally, the EPL hints to the general fact that 3rd party patents
not belonging to the contributors can never be implicity be released by such a
patent clause. Moreover, it gives the example that “[. . .] if a third party patent
license is required to allow Recipient to distribute the Program, it is Recipient’s
responsibility to acquire that license before distributing the Program.”234

Like other open source licenses, the EPL announces at its end that “if (a) Recipient
institutes patent litigation against any entity [. . .] alleging that the Program [. . .]
infringes such Recipient’s patent(s), then such (granted) Recipient’s rights [. . .]
shall terminate [. . .]”235

Thus, the EPL, too, is a granting and a revoking license: At first you are granted
the use of all patents of all contributors which are necessary to use the software
legally. But if you—with respect to the software—install any litigation concerning
an infringement of patents, then the rights granted to you are revoked.

3.1.5 EUPL statements concerning patents

The European Union Public License contains a very brief patent clause. It only
states, that “the Licensor grants to the Licensee royalty-free, non exclusive usage
rights to any patents held by the Licensor, to the extent necessary to make use of
the rights granted on the Work under this Licence.”236 Furthermore the EUPL
does not contain any patent specific revoking clause, but only an abstract clause
requiring that all “[. . .] the rights granted hereunder will terminate automatically
upon any breach by the Licensee of the terms of the Licence”237. Thus, the EUPL
is—as we are using to say in this chapter—a granting license but not a revoking
license.

3.1.6 GPL statements concerning patents

Although the GPL versions 2.0 and 3.0 are aiming for the same results, they differ
heavily with respect to textual and arguing structure. Therefore, it should be
helpful to treat these two licenses separately.

232) cf. Open Source Initiative: EPL-1.0, 2005, wp §2.b.
233) cf. id., ibid.
234) cf. id., l.c., wp §2.c.
235) cf. id., l.c., wp §7.
236) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp end of §2.
237) cf. id., l.c., wp §12.

57

3 Open Source: About Some Side Effects

3.1.6.1 GPL-2.0

The GPL-2.0 does not contain any specific patent clause by which it would grant
(and revoke) the rights to use those patents belonging to the contributors and
being necessary to use the software in accordance with the legal patent system.

Instead of this, the preamble of the GPL-2.0 alleges that “[. . .] any free program is
threatened constantly by software patents” and that the authors of the GPL—for
tackling this threat—“[. . .] had made it clear that any patent must be licensed
for everyone’s free use or not licensed at all”238. Unfortunately, this specification
is only an indirect claim which needs a lot of arguing for establishing a protective
effect against patent disputes. Howsoever, this paragraph of the GPL-2.0 does
not directly grant any rights to the software users to use necessary patents, too.

With respect to the patent problem, the GPL-2.0 also states that a licensee has
to fulfill the conditions of the GPL-2.0 completely, even if an existing patent
infringement—being “imposed” on the GPL licensee—“[. . .] contradicts the
conditions of this license” so, that a waiver of the use of the software is the only
way to fulfill both constraints.239 And finally the GPL-2.0 allows the original
copyright holder to “add an explicit geographical distribution limitation excluding
[. . .] countries” provided that these countries “[. . .] (restict) the distribution
and/or use of the library [. . .] by patents [. . .]”240 Based on these statements,
one cannot infer that the GPL-2.0 grants any patent rights to the software user,
neither directly, nor indirectly.

Thus, the GPL-2.0 is neither a granting nor a revoking license.

3.1.6.2 GPL-3.0

Initially, the GPL-3.0 regrets that “[. . .] every program is threatened constantly
by software patents” what should be seen as the “[. . .] danger that patents applied
to a free program could make it effectively proprietary”. And therefore—as the
GPL-3.0 itself summarizes its patent rules—“[. . .] the GPL assures that patents
cannot be used to render the program non-free.”241. This kind of protection is then
established by three steps. First, the GPL-3.0 stipulates that “each contributor
grants [. . . the licensees] a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version.”242 Second, the GPL-3.0 defines that this patent license granted by the

238) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp Preamble.
239) cf. id., l.c., wp §11.
240) cf. id., l.c., wp §12.
241) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp Preamble.
242) cf. id., l.c., wp §11.

58

3 Open Source: About Some Side Effects

contributor “[. . .] is automatically extended to all recipients” who later on receive
any version of the work, even if they indirectly receive them by third parties and
even if they receive a “covered work” or “works based on it.”243 Moreover, the
GPL-3.0 also specifies that those distributors of a “covered work” who have the
right to use a patent necessary for the use of the distributed software but who
are not allowed to relicense this patent to third parties must solve this problem
by making the source code available nevertheless, by “depriving” themselves or
by “extending the patent license to downstream recipients.”244 And finally, the
GPL-3.0 also introduces a revoking clause by stating that a licensee “[. . .] may
not initiate litigation [. . .] alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it”245

and that this licensee “automatically” loses the rights granted by the GPL-3.0
“including any patent licenses” if he tries to propagate or modify a covered work
against the rules of the GPL-3.0.246

Thus, GPL-3.0 is a granting and a revoking license: At first, one is granted the
right to use all patents of all contributors which are necessary to use the software
legally. But if you—with respect to the software—install any litigation concerning
an infringement of patents, then the rights granted to you are revoked.

3.1.7 LGPL statements concerning patents

As already mentioned above, the LGPL versions 2.1 and 3.0 differ heavily with
respect to textual and arguing structure. Therefore, they should be treated
separately.

3.1.7.1 LGPL-2.1

Like the GPL-2.0, the LGPL-2.1 does not contain any specific patent clause by
which it would grant (and revoke) the rights to use those patents belonging to
the contributors and being necessary to use the software in accordance with the
legal patent system.

Instead of this, the preamble of the LGPL-2.1 says that “[. . .] software patents
pose a constant threat to the existence of any free program” and that the authors
of the LGPL—for tackling this threat—“[. . .] insist that any patent license
obtained for a version of the library must be consistent with the full freedom of
use specified in this license.”247 Unfortunately, this specification is again only an

243) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §11.
244) cf. id., ibid.
245) cf. id., l.c., wp §10.
246) cf. id., l.c., wp §8.
247) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp Preamble.

59

3 Open Source: About Some Side Effects

indirect claim which needs a lot of arguing to establish a protective effect against
patent disputes. Howsoever, this paragraph of the LGPL-2.1 does not directly
grant any rights to the software users to use necessary patents.

With respect to the patent problem, the LGPL-2.1 also states that a licensee has
to fulfill the conditions of the LGPL-2.1 completely, even if an existing patent
infringement—being “imposed” on the LGPL licensee—“[. . .] contradicts the
conditions of this license” so that a waiving of the use of the software is the only
way to fulfill both constraints.248 And finally the LGPL-2.1 allows the original
copyright holder to “add an explicit geographical distribution limitation excluding
[. . .] countries” provided that these countries “[. . .] (restict) the distribution
and/or use of the library [. . .] by patents [. . .]”249 Based on these statements,
one cannot infer that the LGPL grants any patent rights to the software user,
neither directly, nor indirectly.

Thus, the LGPL-2.1 is neither a granting nor revoking license.

3.1.7.2 LGPL-3.0

The LGPL-3.0 is an extension of the GPL-3.0. Before starting with a section
“Additional Definitions”, the LGPL-3.0 states that it “[. . .] incorporates the
terms and conditions of version 3 of the GNU General Public License” and then
“supplements” this GPL-3.0 content by some “additional permissions.”250 The
LGPL-3.0 itself does not contain the word ‘patent,’ but the GPL-3.0 does.251 So,
the LGPL-3.0 inherits its patent clause from the GPL-3.0 which is—as we already
described252—a granting and a revoking license.

3.1.8 MPL statements concerning patents

The MPL distributes its statements concerning the tolerated use of the patents
over three paragraphs: First, it clearly says that “each Contributor [. . .] grants
[. . . the licensee] a world-wide, royalty-free, non-exclusive license [. . .] under Patent
Claims of such Contributor to make, use, sell, offer for sale, have made, import,
and otherwise transfer either its Contributions or its Contributor Version”253

Second, it hihlights some “limitations.”254 And finally, the MPL introduces a
revoking clause which signifies that the rights, granted to the licensee “[. . .] by

248) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §11.
249) cf. id., l.c., wp §12.
250) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp wp.
251) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §11.
252) → OSLiC, p. 58
253) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §2.1, esp. §2.1.b.
254) cf. id., l.c., wp §2.3.

60

3 Open Source: About Some Side Effects

any and all Contributors [. . .] shall terminate” if the licensee “initiates litigation
against any entity by asserting a patent infringement claim [. . .] alleging that a
Contributor Version directly or indirectly infringes any patent [. . .]”255

Thus, the MPL is a granting license and a revoking license.

3.1.9 MS-PL statements concerning patents

First, the MS-PL contains a statement, by which “[. . .] each contributor grants
(the software users) a non-exclusive, worldwide, royalty-free license under its
licensed patents to make, have made, use, sell, offer for sale, import, and/or
otherwise dispose of its contribution in the software or derivative works of the
contribution in the software.”256 Second, the MS-PL says that “if you bring a
patent claim against any contributor[. . .] your patent license from such contributor
to the software ends automatically.”257

Thus, the MS-PL is a granting and a revoking license: At first you are granted to
use all patents of all contributors which are necessary to use the software legally.
But if you install any litigation concerning an infringement of patents with respect
to the software, then the rights granted to you are revoked.

3.2 Excursion: Why linking is a secondary criterium

Distributing statically or dynamically linked software is often discussed as a problem
(and sometimes as a solution) for acting compliantly. In this chapter, we briefly
discuss why this aspect can mostly be ignored and why it does not help to determine
the existence of a derivative work.

In some earlier versions of the OSLiC, its finder subclassified some use cases
with respect to the way an application was ‘composed’ as a larger unit: In the
previous form for gathering the necessary information, the OSLiC user had to
answer whether he was going to combine the received open source software with
other software components by linking them together statically, by linking them
dynamically, or by textually including (parts of) the open source software into
a larger unit. Today, this question has totally been erased. The authors could
convince themselves that it is not necessary to consider this aspect.

Of course, we know that being linked statically or dynamically is often and deeply
discussed by license experts.258 It seems to be an important aspect:

255) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §5.2.
256) cf. Open Source Initiative: MS-PL, 2013, wp §2.B.
257) cf. id., l.c., wp §3.B.
258) Even on the European Legal and Licensing Workshop, 2013 in Amsterdam, there was given

an excellent lecture concerning the nature and concequences of linking elf files.

61

3 Open Source: About Some Side Effects

[TBD: Discussion of the literature]

So, let us start with some undeniable facts: The OSLiC deals with the Apache-
2.0 license,259 the BSD 2-Clause license,260 the BSD 3-Clause license,261 the
MIT license,262 the MS-PL,263 the PostgreSQL,264 and the PHP license265 as
instances of permissive licenses. Additionally, the OSLiC treats the EPL,266 the
EUPL,267 the LGPL,268 and the MPL269 as licenses with weak copyleft. Finally,
the OSLiC thoroughly discusses the GPL270 and the AGPL271 as licenses with
strong copyleft.272

Only three of these licenses mention the word linking (or variants of it): Using
the command grep -i link * | grep -v "<link\|links\|skip-link" in a
shell—executed as an operation on a set of html formatted license files—directly
shows that only the AGPL-3.0, the Apache-2.0, the GPL-2.0, the GPL-3.0, the
LGPL-2.1 and the LGPL-3.0 are using mutations of the word linking. Additionally,
the results of the command grep -i statical * show that only the LGPL-2.1
uses the word ‘statical,’ while using the command grep -i dynamical * only
hints to the AGPL-3.0 and the GPL-3.0. Finally, the command grep -i "shared"

*—executed on the same set of files—shows that the term shared libary is also
only used by these licenses.

This analysis already indicates that being statically or dynamically linked might
not be as important for acting compliantly as it is often suggested. If one reads
the concrete statements, then one can see, that acting compliantly depends only
slightly and only rarely on the kind of being ‘combined’:

Apache-2.0: This version of the Apache license uses the word link only once for
stating that “[. . .] Derivative Works shall not include works that remain
separable from, or merely link [. . .] to the interfaces of, the Work and

259) cf. Open Source Initiative: APL-2.0, 2004, wp.
260) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.
261) cf. Open Source Initiative: The BSD 3-Clause License, 2012, wp.
262) cf. Open Source Initiative: The MIT License, 2012, wp.
263) cf. Open Source Initiative: MS-PL, 2013, wp.
264) cf. Open Source Initiative: PostgreSQL License, 2013, wp.
265) cf. Open Source Initiative: PHP-3.0, 2013, wp.
266) cf. Open Source Initiative: EPL-1.0, 2005, wp.
267) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp.
268) For LGPL-2.1 see cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. For

LGPL-3.0 see cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp.
269) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp.
270) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp For

GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp
271) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.
272) You can find html based instances of these licenses in the OSLiC directory ‘licenses.’ They

have been downloaded from the OSI pages. All of the following statements refer to these
files.

62

3 Open Source: About Some Side Effects

Derivative Works thereof.”273 Thus, the Apache-2.0 does not use the criteria
being linked for determining a derivative work, neither being linked in general,
nor being statically linked, nor being dynamically linked. Hence, for acting
in accordance to the Apache-2.0, this class of attributes can completely be
ignored.

GPL-3.0: The GPL-3.0 uses the word link three times: First, it defines the
“‘Corresponding Source’ for a work in object code form [. . . as] all the source
code needed to generate, install, and [. . .] run the object code and to modify
the work [. . .]”. Additionally the GPL-3.0 also explains in this context
that this definition shall include “[. . .] the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed
to require”274. Second, the GPL-3.0 allows “[. . .] to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting
work.”275 Finally, the GPL-3.0 explains that “the GNU General Public
License [itself] does not permit incorporating your program into proprietary
programs” and that the LGPL might be a better license for those licensors
who have written a “subroutine library [. . .] and may consider it more useful
to permit linking proprietary applications with the library [. . .]”276.

So, also in this text, the features statically linked or dynamically linked are
not used to trigger any license fulfilling actions. The conditions for “Convey-
ing Modified [. . .] Versions” refer to the “work based on the Program”277

which itself denotes a “‘modified version’ of the earlier work”278. Moreover,
the licensee—as modifier, distributor, and subsequent licensor—is required
by the GPL-3.0 “[. . .] to license the entire work [which has been developed
on the base of a GPL-3.0 component], as a whole, under this License to
anyone who comes into possession of a copy”279. The GPL-3.0 does not limit
this claim—especially not by referring to a mode of being linked. Hence,
also with respect to the GPL-3.0, one can completely ignore these features
of the software, its use and its distribution for determining how to use the
software compliantly.

AGPL-3.0: Concerning the use and the meaning of the words dynamically and
linking, the AGPL-3.0 exactly follows the structure of the GPL-3.0: first the
terms arise in the context of defining the “Corresponding Source”;280 then

273) cf. Open Source Initiative: APL-2.0, 2004, wp. §0.
274) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §0.
275) cf. id., l.c., wp. §13.
276) cf. id., l.c., wp. last parapgraph.
277) cf. id., l.c., wp. §5.
278) cf. id., l.c., wp. §0.
279) cf. id., l.c., wp. §5.
280) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §0.

63

3 Open Source: About Some Side Effects

the word link helps to say that AGPL and GPL are compatible licenses;281

and finally the word link is used to hint to the LGPL.282 So, again, one can
ignore the feature of being statically or dynamically linked if one wants to
determine how to use the software compliantly.

GPL-2.0: In the GPL-2.0, the word link only arises in the context of hinting to the
LGPL.283 Moreover, the words statical and dynamical are not used in this
text—not at all and in no sense: the copy left feature of the GPL depends
‘only’ on a specification which refers to a “work based on the Program [. . .]
that in whole or in part contains or is derived from the Program or any part
thereof [. . .]”284 Thus, even in this old version of the GPL, the criteria of
being linked—in which way ever—does not trigger any task for using the
software compliantly.

LGPL-3.0: In this license, variants of the word link are used to define the concept
of a “Combined Work” which shall be the name for a “[. . .] work produced
by combining or linking an Application with the Library.”285 In the end the
LGPL-3.0 allows to “[. . .] convey a Combined Work under terms of your
choice [. . .]”, provided that one distributes also all material (including the
object files of the overarching on-top developments) necessary for enabling
the receiver to relink the whole product with a later version of the library
or that one presupposes the use of a “suitable shared library mechanism”
so that the receiver can update the library simply by replacing the binary
library file286. For fulfilling these conditions it is sufficient to require that
a distributor shall either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically linked
application together with a written offer, valid for at least three years, to
give the user all object-files of the on-top development and the library, so
that he can relink the application on its own behalf.

LGPL-2.1: Even if the LGPL-2.1 argues more sophistically than all the other
licenses, in its preamble this license clearly states what it wants to evoke:
“If you link other code with the library, you must provide complete object
files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. [. . .]”287 For that purpose,
the LGPL-2.1 defines at the beginning that if “a program is linked with a
library, whether statically or using a shared library, [then] the combination
of the two is legally speaking a combined work, a derivative of the original

281) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.
282) cf. id., l.c., wp. §5.
283) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. last paragraph.
284) cf. id., l.c., wp. §2.
285) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp. §0.
286) cf. id., l.c., wp. §4.
287) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. preamble.

64

3 Open Source: About Some Side Effects

library”:288 On the one hand a “work that uses the Libary”—which is only
“[. . .] designed to work with the Library by being compiled or linked with
it [. . .]”—“[. . .] in isolation, is not a derivative work of the library [. . .]”.
On the other hand, it is no question for the LGPL-2.1, that “linking a
‘work that uses the Library’ with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library).”289

But then—“as an exeption”—the LGPL-2.1 allows to “[. . .] combine or
link a ‘work that uses the Library’ with the Library to produce a work
containing portions of the Library, and distribute that work under terms of
your choice”. The right to do this is granted provided that the distributor
either presupposes the use of a “suitable shared library mechanism” or that
he distributes also the complete material (including the object files of the
overarching on-top developments) which is necessary to enable the receiver
to relink the whole product with a later incoming newer version of the
library290. Again, for fulfilling all these conditions it is sufficient to require
that a distributor shall either distribute the on-top development and the
library in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three years,
to give the user all object-files of the on-top development and the library, so
that he can relink the application on its own behalf.

Thus, with respect to this analysis, we can conclude that—in general—there
is no need to investigate whether one wants to distribute software in the form
of statically or dynamically linked binaries for deriving the necessary tasks to
distribute this software compliantly. Instead of this, we can directly incorporate
those doings into the task lists of the LGPL what has been discovered as sufficient
doings. Moreover, it is also sufficient to insert this statement only in the task list
of the LGPL. There is no need to generalize this discussion. So, we could simplify
our form offered to gather the information to find the adequate license fulfilling
task list.

3.3 Excursion: What is a ’Derivative Work’ - the basic idea of
open source

This chapter briefly discusses aspects of being a derivated pieces of software which
have to be known for using open source software compliantly. As usually, the
OSLiC only tries to find one safe interpretation. The authors know that there
exist many other ways to consider this topic. So, if you feel, that the viewpoint of
the OSLiC does not fit the specific circumstances of your particular case, do not

288) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. preamble.
289) cf. id., l.c., wp. §5.
290) cf. id., l.c., wp. §6, §6b and §6c together with §6c.

65

3 Open Source: About Some Side Effects

hesitate to ask your own lawyer. But if you agree with the OSLiC, be aware that
you dealing with this topic from the viewpoint of a benevolent user.

Let us outline the argumentation:

The meaning ‘derivative work’ must be known! Many open source licenses
use the term ‘derivative work,’291either directly or indirectly in form of the
word ‘modification.’292[Write a table as survey] And nearly all licenses that
are using the term ‘derivative work’ etc., are linking tasks that must be
executed to comply with the corresponding license, to the precondition
that something is a derivative work. [table survey] Hence, for acting in
accordance with such a license, it has to be known what a derivate
work is.

Unfortunately the meaning is not clearly fixed. There exist different readings
of the term ‘derivative work.’ [specify the differences and cite the sources]
Hence, it is not as clear what a derivative work is as one could
wish

So, let us argue from the viewpoint of a benevolent developer: Open
source licenses are written for software developers, mostly to preserve their
freedom to develop software. And sometimes these licenses are also written
by software developers—or at least with their assistance. So, one should be
able to answer the question under which circumstances a piece of software
is a ‘derivative work’ of another piece of software based on two principles:

• Let us argue from the viewpoint of a benevolent neutral software
developer without hidden interests or a hidden agenda.

• In case of doubts let us preferably assume that the two pieces interrelate
as source and derivative work—so that the OSLiC rather recommends
to perform the required tasks.

We generalize a specific viewpoint of the LGPL. It uses three terms:

“library” is defined as “a collection of software functions and/or data prepared
so as to be conveniently linked with application programs.”293

“work based on the library” is defined as “either the library or any derivative
work.”294

“work that uses the library” is defined as something which initially “[. . .] is
not a derivative work of the library [. . .]” but can become a derivative work
by being combined / linked to the library it uses.295

291) cite the sources
292) cite the sources
293) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §0.
294) cf. id., ibid.
295) cf. id., l.c., wp §5.

66

3 Open Source: About Some Side Effects

Following these specifications, one has to conclude that derivative works of the
library can be drieved in two different ways: First, the library itself can be
enhanced without changing the character of being a library. Then, of course, the
resulting library is a derivative work of the initial library. Second, an overaching
program can use the library by calling functions, methods, or data offered by the
library. In this case, the overarching program functionally depends on the library
and is a derivative work (as soon as it is linked to the library).

This viewpoint can be generalized: snippets, modules, plugins can be enhanced
and used by overarching programs or even by more complex libraries. Based
on this viewpoint—which should finally be formulated as the viewpoint of a
benevolent impartial developer—the OSLiC uses the following rules by which the
OSLiC decides to take something as derivative Work:

Copy-Case Copying a piece of code from a source file and pasting it into a target
file makes the target file a derivatve work of the source file.296

Modify-Case Inserting any new content or deleting any existing content of a
source file makes the resulting target file a derivate work of the source file.

Call-Case Inserting the call of function which is defined inside of and delivered
by a sourcefile into a target file makes that target file depending on the
source file and therefore a derivative work of the delivering source file.

And here are some applications of these rules:

• Enlarging an existing source file by an external text creates a
derivative work! Why? Because you are going to reuse the external code
for simplifying our life. [see ’Copy Case’]

• Reducing a source file creates a derivative work! Why? Because you
are going to prepare the given file(s) for a better reuse. [see ’Modify-Case’]

• Replacing something in a source file creates a derivative work!
Why? Because you are going to reuse parts of the existing code for simplifying
your life. [see ’Modify Case’]

• Integrating a foreign snippet into an existing source code creates
a derivative work! Why? Because you are going to simplify your life by
reusing both, the foreign snippet and the original file. [see ’Copy Case’ and
’Modify-Case’]

• Refactoring a given work by extracting a function / method into
an autonomous file creates a derivative work in two respects! Why?
Because, first, all modified / generated files depend on the original file and,

296) Be careful: this case must still be distinguished from the case of an automatic inclusion
(header files, script libraries) during the compilation / execution: Inclusion of header files
alone should not create a derivative work.

67

3 Open Source: About Some Side Effects

second, because those function calls in the files introduce a dependecy on the
file defining the function itself. [see ’Modify-Case’ and ’Call-Case]

• Calling a function - served by a defining module - lets the calling
file become a derivative work of the serving module! Why? Because
you are going to simplify your life by reusing an already prepared work (often
offered by other developers). [see ’Call-Case’]

• By calling elements - served by a defining library - the calling file
becomes a derivative work of the serving library! Why? Because you
are going to simplify your life by reusing an already prepared work (often
offered by other developers). [see ’Call-Case’]297

And now some additional ’ideas’ which might invite to be discussed:

• Does a plugin depend on its framework? No. Why? Because it
is like a module: it offers a function (normally without using a function,
offered by the framework itself).

• Does a framework depend on its plugin? Let us try to answer:
Sometimes yes, sometimes no. Why? If the framwork crashes when it
is missing its plugin, then it clearly depends on the plugin. No doubt. It is
simply not autonomous. But if it does not crash, then it perfectly does for
which it has been designed: it is offering a place which might be filled by the
plugin, but not necessarily. This kind of a framework is like an application
listing to a port for getting data which it shall process and which are served
by another application.

• Does a program using inter process communication depend on its
IO-partners? Definitely not! Why? Because, otherwise, we need not
discuss all these cases, every thing would depend on everything—in each
running system.

[. . . TBD . . .]

3.4 Excursion: Reverse Engineering and Open Source

Beyond any doubt, the LGPL mentions “reverse engineering” literally298 for
indicating that reverse engineering in any respect must be allowed to use and

297) In this context, you may sometimes read that one has to differentiate the defining file (for
example the C-code) and the declaring file (for example the C-Header). But in our view, it
is not so important to make such a difference: The using file, which includes the declaring
header file depends on the defining source code file (’Call-Case’). So, one can ignore the
formal dependance on the declaring header file (’Copy-Case’).

298) For the LGPL-v2 cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6;
for the LGPL-v3 cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §4

68

3 Open Source: About Some Side Effects

distribute LGPL software compliantly:

“[. . .] you may [. . .] distribute a work (containing portions of the
Library) under terms of your choice, provided that the terms permit
[. . .] reverse engineering [. . .]” 299

There are three strategies for dealing with such provisions: one can try to fully
honor its meaning, one can mitigate its meaning, or one can avoid to discuss this
requirement altogether:

A first group of well known open source experts take the sentence of the LGPL-v2
as a strict rule which requires that one has to allow reverse engineering of the
whole software product if one embeds any LGPL licensed component into that
product300.

A second group of well known and knowledgeable open source experts signify that
the LGPL-v2 indeed literally contains a strict rule, but that this rule actually is
not meant as it sounds: For example, two of these experts explain that “these
requirements on the licensed combination require that the license chosen not
prohibit the customer’s modification and reverse engineering for debugging these

299) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §6. The LGPL-v2 uses
the capitalized word “Library” for denoting a library which “[. . .] has been distributed
under (the) terms” of the LGPL-v2. (cf. id., l.c., wp, §0). Inside of our LGPL chapter(s) we
follow this interpretation.

300) For example, a very trustworthy German expert states that the LGPL-2.1 generally requires
that a distributor of a program which accesses a LGPL-2.1 licensed library, must grant his
customer also the right to modify the accessing program and hence also the right to execute
reverse engineering. Literally the German text says:

“Ziffer 6 LGPLv2.1 knüpft die Erlaubnis, das zugreifende Programm unter be-
liebigen Lizenzbestimmungen verbreiten zu drüfen, an eine Reihe von Verpflich-
tungen, die in der Praxis oft übersehen werden: Zunächst muss dem Kunden,
dem die Software geliefert wird, die Veränderung des zugreifenden Programms
gestattet werden und zu diesem Zweck auch ein Reverse Engineering zur Fehler-
behebung. Dies dürfte alle Formen des Debugging und das Dekompilieren des
zugreifenden Programms umfassen.” (cf. Jaeger a. Metzger : Open Source
Software. Rechtliche Rahmenbedingungen der Freien Software, 2011, pp. 81;
emphasis KR).

At first glance, also “copyleft.org” – the “[...] collaborative project to create and disseminate
useful information, tutorial material, and new policy ideas regarding all forms of copyleft
licensing” (cf. copyleft.org : What is copyleft.org; n.l, 2014 ⟨URL: http://copyleft.org/⟩ –
reference download: 2014-12-15, wp.) – could be taken as another witness for such an attitude
of strict reading: Some of its contributors elucidate in a chapter dealing with “special topics
in compliance” that “the license of the whole work must [sic!] permit ‘reverse engineering
for debugging such modifications’ to the library” and that one therefore “ should take care
that the EULA used for the Application does not contradict this permission”(cf. Kuhn,
Bradley M. et al.: Copyleft and the GNU General Public License: A Comprehensive Tutorial
and Guide; n.l, 2014 ⟨URL: http://copyleft.org/guide/comprehensive-gpl-guide.
pdf⟩ – reference download: 2014-12-15, p. 86

69

http://copyleft.org/
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf

3 Open Source: About Some Side Effects

modifications in the work as a whole”. But then they directly add the limitation,
that “in practice, enforcement history suggests, it means that the license terms
chosen may not prohibit modification and reverse engineering for debugging of
modification in the LGPL’d code included in the combination”301.

Finally, a third group of experts prefers not to discuss the problem of reverse engi-
neering, although this technique is literally mentioned in the license and although
they want explain how to use GPL/LGPL licensed software compliantly302.

This situation must bother companies and people who want to use open source
software compliantly and who therefore are looking for guidance. Particularly
it disturbs those who want to protect their business relevant software. At the
end, they might consider that this sentence is not consistently understood by the
open source community itself. And – as far as we know – at least some of these
companies preventively prohibit their developers to embed LGPL licensed compo-
nents into programs which contain business relevant techniques. Unfortunately,
this consequence does not only obstruct the access to a large set of well written
free software, but it is scarcely possible to obey such an interdiction consequently:
The glibc, which enables the programs to talk with the kernel of the GNU/Linux
system303, is licensed under the LGPL304. And hence, this library is indirectly

301) cf. Moglen, Even a. Mishi Choudhary : Software Freedom Law Center Guide to GPL
Compliance, 2nd Edition; 2014 ⟨URL: https://www.softwarefreedom.org/resources/
2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html⟩ – reference download: 2014-12-15,
wp., chapter LGPLv2.1, section 6. Such a mitigation can also be found in the tutorial
of copyleft.org: After they have summarized the LGPL-v2 sentence as a strict rule, they
directly continue, that one “[. . .] must refrain from license terms on works based on the
licensed work that prohibit replacement of the licensed components of the larger non-LGPL’d
work, or prohibit decompilation or reverse engineering in order to enhance or fix bugs in the
LGPL’d components” (cf. Kuhn et al.: Copyleft and the GNU General Public License, 2014,
p. 86). This added specification indicates, that one only has to facilitate the modification of
the library and that reverse engineering can be ignored as long as there are other ways to
improve the embedded library.

302) An article of Terry J. Ilardi might be taken as a first witness of this third strategy: he
profoundly explains the essence of the LGPL, he especially discusses §6, and he delivers
applicable rules like “DO NOT statically link to LGPL [. . .] code if you wish to keep your
program proprietary”. But he does not discuss reverse engineering (cf. Ilardi, Terry J.:
Common OSS License Problems; n.l, 2010 ⟨URL: http://www2.aipla.org/html/spring/
2010/papers/Ilardi_Paper.pdf⟩ – reference download: 2014-12-16, pp. 5f). Similarily
argues Rosen (cf. Rosen: Open Source Licensing, 2005, pp. 121ff). And – despite their
comments on reverse engineering in the specific chapter special topics in compliance – the
copyleft.org document can also be taken as an instance of this attitude: Although its authors
recommend to “study chapter 10 carefully” for establishing an adequate “compliance with
LGPLv2.1” (cf. Kuhn et al.: Copyleft and the GNU General Public License, 2014, p. 86),
this chapter 10 – dedicated to the meaning of the “Lesser GPL” – does not deal with reverse
engineering, although it discusses the §6 of the LGPLv2.1 in depth (cf. id., l.c., pp. 56ff, esp.
60f).

303) cf. http://www.gnu.org/software/libc/
304) cf. http://en.wikipedia.org/wiki/GNU C Library

70

https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf

3 Open Source: About Some Side Effects

linked to or combined with any program running on the GNU/Linux system. So,
if the LGPL-v2 indeed required, that reverse engineering of every program must
be allowed, which contains portions of any LGPL Library, then every GNU/Linux
user would be allowed to examine every program running on GNU/Linux by
reverse engineering, simply, because finally every ’GNU/Linux program’ is linked
to or combined with the glibc305. In other words: if the LGPL indeed required the
permission of reverse engineering, then every program executed on GNU/Linux
may be reverse engineered.

But an exhaustive reading of the LGPL-v2 strongly indicates, that there must be
another valid, more ’liquid’ understanding of the LGPL: The preamble explains
the reason for offering another weaker license beside the GPL. It says that “[. . .]
on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard” and that therefore
it could be strategicly necessary to “allow [. . .] non-free programs [. . .] to use
the library” without enforcing that these programs become free software too306.

So, if the LGPL had indeed determined that every program linked to or combined
with any LGPL library may be reverse engineered, then the LGPL would have
an effect contrary to its own intention. It would have introduced something like
’security by obscurity’ : First, the LGPL would allow to protect the internals of
your own work against investigation by allowing to keep the code of the non-
free program using the library a scecret307. But then – in the end – the LGPL
would also allow the user to reverse engineer the received binary and hence would
enable him to nevertheless discover all internals308. Hence, finally the LGPL-v2
would undermine its own raison d’ètre introduced by its inventors: under such
circumstances there probably would have been less hope that any LGPL library
could have become a defacto standard.

We know that the inventors of the GNU licenses and GNU software are very
sophisticated experts. They never would have published such an inconsistent
document. So, this dissent read in(to) the document is a strong indicator for the
fact, that there must be a better way to understand the license. And thus, it is
up to us, the followers, to explicate a more adequate interpretation. Of course,
such an interpretation must be grounded on the written text. No doubt: we, the
scholars, are not allowed to add our own wishes. We must read the license very
strictly. We have to deduce ’understandings’ only by matching the interpretations
explicitly and reasonably back to the license text itself.

305) This conclusion might surprise. But it is inferred with exactly the same arguments as the
conclusion, that without a licence offering a weaker copyleft every program would have been
licensed under the GPL. The copyleft.org document explains this argumentation in great
detail (cf. Kuhn et al.: Copyleft and the GNU General Public License, 2014, pp. 56f).

306) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §preamble.
307) The weak copyleft has been introduced for encouring the widest possible use of the library.
308) It would only cost a little more effort - as security by obscurity indicates.

71

3 Open Source: About Some Side Effects

Encouraged by the indication that a better understanding of the LGPL may
exist and contrary to the other strategies, we are going to prove that there is
a valid way to compliantly distribute any open source based software without
permitting reverse engineering: We want to show that none of the main open
source licenses309 requires reverse engineering if the work using the open source
Library is distributed in form of dynamically linkable files. In particular, we are
going to prove that one even has not to allow reverse engineering of the work
using an LGPL Library, if one distributes that work as dynamically linkable files.
And we want to show that in all other cases one has at least to fear that one
has implicitly allowed the reverse engineering of the work using the open source
Library if one distribute that work. In particular, we want to prove that one
has to fear this implicitly given permission even if one distributes a work using a
library licensed under any permissive license310.

In general, we hope that our analysis, grounded on the license text itself, will
support companies and people to compliantly use open source software more
often and with less hesitation due to the fear that they have to deliver themselves
unclear textual aspects.

But – with respect to the discussion about this text in the OSI and Free Sofwtare
Mailing lists – we have to add a disclaimer here: The license text alone is not all.
In the concrete situation of using free and open source software, it is the intention
of the licensor which has to be respected. Or in the words of Eben Moglen:

A license is, by definition, a unilateral permission to make use of the
property or intangible rights of another. The measure of the permission

309) Just as the OSLiC, also this part focuses only on the most important open source licenses
(cf. https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses wp.):
the Apache license (cf. Open Source Initiative: APL-2.0, 2004, wp.), the BSD licenses (cf.
Open Source Initiative: The BSD 3-Clause License, 2012, wp. and cf. Open Source Initiative:
The BSD 2-Clause License, 2012, wp.)), the MIT license (cf. Open Source Initiative: The
MIT License, 2012, wp.), the MS-PL (cf. Open Source Initiative: MS-PL, 2013, wp.), the
PostgreSXQL (cf. Open Source Initiative: PostgreSQL License, 2013, wp.), the PHP license
(cf. Open Source Initiative: PHP-3.0, 2013, wp.), the EPL (cf. Open Source Initiative:
EPL-1.0, 2005, wp.), the EUPL (cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp.),
the MPL (cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp.), the LGPLs
(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. and cf. Open Source
Initiative: The LGPL-3.0 License (OSI), 2007, wp.), the GPLs (cf. Open Source Initiative:
The GPL-2.0 License (OSI), 1991, wp. and cf. Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp.) and the AGPL (cf. Open Source Initiative: The AGPL-3.0 License (OSI),
2007, wp.)

310) By the way, our analysis should also provide proof that the LGPL is not something like
a ’poisoned’ license containing “an imprenetrable maze of technology babble” which “[. . .]
should not be in a general-purpose software license” (cf. Rosen: Open Source Licensing,
2005, p. 124). The challenge of the today’s descendants is to understand the former inventors
of the GNU licenses and their way to think about computing - including all the hassle the
computing language C might provoke.

72

3 Open Source: About Some Side Effects

is the intention of the party giving it.311

Nevertheless, we believe that each text firstly has its own inherent independent
meaning and message. But – of course, in the specific situation of legally contending
about the practical consequences of a license, one has indeed to consider what
the specfic licensor really had had in his mind, when he released his work. One
has to consider his intention.

So, the pure textual meaning of the license might be overloaded or overwritten by
some external facts, traditions or understandings, not founded on the license text
itself. The problem with this legal fact is, that in a concrete legal case, one has to
prove what the licensor really had in his mind. As long as we do not have direct
insights into the brain of our fellow human beings, this can again only be done by
referring to other orally uttered or written words and texts. Therefore, we indeed
believe, that it is firstly important to know what the text itself says and means.

Hence, let us prove our position ’bottom up’. Let us firstly show that it is true
for the LGPL-v2 – by explicating the license text lingually, then logically, and
finally empirically, before we infer the correct understanding. Then let us show
that it is also true for the LGPL-v3. And in the end let us show that it is true for
all other licenses312.

3.4.1 Reverse Engineering in the LGPL-v2

The LGPL-v2.1 contains one sentence which literally refers to the issues of reverse
engineering :

“[. . .] you may [. . .] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the
terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.”313

Hereinafter, we will sometimes denote these lines by the term LGPL2-RefEng-
Sentence.

311) Eben Moglen, eMail to ftf-legal-bounces@fsfeurope.org, 2015-03-06
312) analysed by the OSLiC: → p. 71.
313) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6.. The first ellipse in

this citation – notated by the string ’[. . .]’ – refers to the phrase “As an exception to the
Sections above,”, the second to the phrase “also”. These words together want to indicate,
that the LGPL offers its §6-way-of-distribution as an exception to the intended default way
of distributing such a Library. So, the nature of the extraordinary way itself is not affected
by this hint. Thus, we feel free to erase this contextual link.

73

3 Open Source: About Some Side Effects

3.4.1.1 Linguistical Clarification

For fulfilling our rule, to read the text strictly and deduce our interpretations
reasonably, let us firstly only highlight the syntactical conjunctions for simplifying
the understanding:

“[. . .] you may [. . .] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.”314

It is evident that the conjunction ’provided that’ is splitting the sentence into
two parts: you are allowed to do something provided that a condition is fulfilled.
Additionally, both parts of the sentence – the one before the conjunction ’provided
that’ and the part after it – are syntactically condensed embedded phrases which
also contain subordinated conjunctions and elliptical constructions315. These
syntactical interconnections must be disbanded:

Let us firstly dissolve the syntactical compression before the conjunction
’provided that’ : It is established by using the two other conjunctions and and or
and introduced by the subordinating phrase you may [. . .]. Unfortunately, from
a formal point of view, one can read the phrase you may (X or Y and Z) as two
different groupings: either as you may ((X or Y) and Z) or as you may (X or (Y
and Z)).

But, fortunately, we know from the semantic point of view that speaking about
“[. . .] combining or linking [. . . something] to produce a work containing portions
of the Library” denotes two different methods which both can join the components
“[. . .] to produce a work containing portions of the Library”. So, let us – only for a
moment316 – simply replace the string “combine or link” by the string “*join”317.
This reduces the syntactical structure of the sentence back to the simple phrase
you may (W and Z) in which W stands for (X or Y).

Now, we can directly state that the phrase you may (W and Z) itself is a condensed
version of the explicit phrase (you may W) and (you may Z).

Finally we have to note, that the phrase before the conjunction ’provided that’
contains also a linguistic ellipsis318: It says that you may *join the components

314) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6, emphasis KR..
315) cf. http://en.wikipedia.org/wiki/Ellipsis %28linguistics%29, wp.
316) Later on we will re-insert th original phrase!
317) When the LGPL and the GPL were initially defined, the C programming language was the

predominant model of software development. Knowing this method eases the understanding
of these licenses. Thus, it is not totally wrong to take this token *join also as a curtsey to
the C programming language.

318) cf. http://en.wikipedia.org/wiki/Ellipsis %28linguistics%29, wp.

74

3 Open Source: About Some Side Effects

“to produce a work containing portions of the Library and distribute that
work under terms of your choice”. With respect to the English grammar, we may
conclude that the second term that work refers back to the previously introduced
specification of a work containing portions of the Library : if a complete phrase
has just been introduced explicitly, then the English language allows to reduce
its next occurence syntactically while its complete meaning is retained. Hence,
conversely, we are allowed to unfold the reduced form to restore the complete
phrase.

So – overall – we may understand the phrase before the conjunction ’provided
that’ as a phrase with the structure (you may W) and (you may Z’):

((you may [. . .] *join a “work that uses the Library” with the Library
to produce a work containing portions of the Library) and (you may
[. . .] distribute that work containing portions of the Library under
terms of your choice)) provided that [. . .]

Theoretically, a reader could reject our first dissolution of the LGPL2-RefEng-
Sentence. But for reasonably denying our interpretation he has to deliver other
resolutions of the lingustic elliptical subphrases or other dissolvations of the
conjunctions. Fortunately, it seems to be evident that such attempts must violate
the English grammar.

Let us secondly dissolve the part after the conjunction ’provided that’ :
With respect to the subordinated conjunction ’and’, the subphrase the terms permit
syntactically refers to both, the modification and the reverse engineering : An
embedded conjunction ’and’ allows to use a more stylish grammatical compaction.
So, it should be clear, that saying

provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications

means

provided that the terms permit (modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications)

and is totally equivalent to the sentence

[. . .] provided that ((the terms permit modification of the work for
the customer’s own use) and (the terms permit reverse engineering
for debugging such modifications)).

We believe that there is no other possibility to understand this part of the LGPL2-
RefEng-Sentence with respect to the rules of the English language. Nevertheless,

75

3 Open Source: About Some Side Effects

this is a next point where our reader may formally disagree with us. If he really
wants to object our dissolution, he must deliver another valid interpreation of
the scope of the conjunction and or he must deliver another resolutions of the
linguistic ellipsis. But we reckon, that one can not reasonably argue for such
alternatives.

Finally, there are other deeply embedded ellipses, which need to be resolved as
well:

1. In the part before the splitting conjunction ’provided that’ we already had
to expand the abridging ’that work’ by its intended explicated version ’that
work containing portions of the Library’. In the part after the splitting
conjunction the first subphrase also contains the term ’the work’. Formally,
this term can either refer to ’the work that uses the library’ as one of
the components which are joined, or it can refer to ’the work containing
portions of the Library’ as the result of joining the components. We decide
to constantly dissolve the elliptic abridgement by the phrase ’the work
containing portions of the Library’.

2. The first clause of the part after the splitting conjunction ’provided that’ talks
about the purpose of “permitting modification of the work” which we just
had to unfold to the phrase ’permitting modification of the work containing
portions of the Library’. The second clause talks about the purpose of
“permitting reverse engineering”: it shall support the “debugging [of] such
modifications”. The pronoun ’such’ indicates that the word ’modifications’
refers back to the just unfolded phrase modification of the work containing
portions of the Library. So, even the second sentence has to be expanded to
that explicit phrase.

3. Finally and only for being complete, we also have to unfold the clause “the
terms” to the form which is predetermined by the first referred instance
“the terms of your choice”

So – overall – we are allowed to rewrite the LGPL2-RevEng-Sentence in the
following form, namely without having changed its meaning319:

((you may

*join a work that uses the Library with the Library

to produce a work containing portions of the Library)

AND

(you may

distribute that work containing portions of the Library

under terms of your choice

))

319) Recollect that ’*join’ still stands for ’combine or link’.

76

3 Open Source: About Some Side Effects

PROVIDED THAT

((the terms of your choice permit

modification of the work containing portions of

the Library for the customer’s own use)

AND

(the terms of your choice permit

reverse engineering for debugging modifications

of the work containing portions of the Library

))

At this point we must recommend all our readers to verify that this ’structurally
explicated presentation’ does exactly mean the same as the initially quoted LGPL2-
RefEng-Sentence. We are now going to discuss some of its logical aspects by some
formal transformations. For accepting these operations and linking the results
back to the original LGPL2-RefEng-Sentence, it is very helpful to know that
one already has accepted the equivalence of this explicated form and the more
condensed original version. For reviewing the equivalence the reader could – for
example – ask himself which of our rewritings are wrong, why they are wrong
and which alternatives can reasonably be offered for solving the syntactical issues
which disposed us to chose our solutions. Again, we ourselves – of course – are
profoundly convinced that both versions are completely equivalent.

3.4.1.2 Logical Clarification

For simplifying our discussion let us now replace the meaningful terminal phrases
of our form by some logical variables:

Γ :- (you may *join a work that uses the Library with the Library to produce a
work containing portions of the Library)

∆ :- (you may distribute that work containing portions of the Library under
terms of your choice)

Φ :- (the terms of your choice permit modification of the work containing portions
of the Library for the customer’s own use)

Σ :- (the terms of your choice permit reverse engineering for debugging modifica-
tions of the work containing portions of the Library)

Θ :- Γ and ∆

Ω :- Φ and Σ

Based on these definitions, we can syntactically reduce the LGPL2-RefEng-
Sentence to the formula (Γ and ∆) provided that (Φ and Σ) or – even shorter – to
(Θ provided that Ω).

77

3 Open Source: About Some Side Effects

Now, we have to clarify the meaning of the conjunction ’provided that’ :

Obviously, provided that means something like under the condition that. So, one
might try to take this conjunction as another more stylish version of the common
if(. . .)then(. . .)-formula, sometimes also identified as a (logical) implication320.
Thus, we have to consider the process of sequencing the linguistic form into a
logical formula: if we indeed take the conjunction provided that as another form
of the logical implication, it is not evident, which part of the linguistic sentence
must become the premise, and which the conclusion: Does (Θ provided that Ω)
mean (if Θ then Ω) or (if Ω then Θ)?

Apparently, provided that wants to establish something like a precondition. So,
one might conclude that (Θ provided that Ω) means (if Ω then Θ) or – more
logically notated – ((Φ ∧ Σ) → (Γ ∧ ∆)). If this interpretation is adequate, it
must of course fulfill the intended purpose of the corresponding LGPL-v2-section,
which wants to regulate the distribution of works containing portions of LGPL
libraries.

For facilitating the understanding of our argumentation, let us first check whether
this logical interpretation of the linguistic conjunction fits the purpose of the LGPL
– by unfolding the slightly reduced version (Σ → ∆) back to the corresponding
verbal form:

if ([. . .] the terms permit reverse engineering for debugging modifi-
cations of the work containing portions of the Library,) then ([. . .]
you may distribute that work containing portions of the Library under
the terms of your choice.)

Now we can better see the problem: An implication as a whole is false only if the
premise is true and the conclusion is false. In all other cases it is true. Especially,
it is true, if the premise is false: If the premise is false, then the truth value of
the conclusion does not matter in any sense. Thus, if we take this implication as
a rule, which shall determine our behaviour, then this implication only supports
us, if we already have decided to permit reverse engineering. In this case the rule
successfully tells us that we are allowed to distribute the work containing portions
of the Library. But from the converse decision that we will not permit reverse
engineering, follows nothing - because a false premise does not influence the truth
value of the conclusion. Especially, the rule does not tell us that we may not
distribute the work containing portions of the Library. So – from the viewpoint
of the formal logic – this translation of the original conjunction ’provided that’
says, that if the terms of your own license do not permit reverse engineering for
debugging modifications of the work containing portions of the Library321, then

320) Actually the logical implication and the computational if-then-construct are not equivalent.
Fortunately, we later on can show, that in the context of this discussion the difference can
be ignored.

321) The premise is false.

78

3 Open Source: About Some Side Effects

you may or may not distribute that work containing portions of the Library
under the terms of your choice322. Hence, we must state that this interpretation
does not fulfill the purpose of the LGPL-V2: if reverse engineering is not allowed,
the distribution of the work containing portions of the Library is not regulated.
We have to conclude, that this sequencing the LGPL2-RefEng-Sentence as a
logical implication is wrong.

But we deduced this consequence from a slighty reduced form of the LGPL2-
RefEng-Sentence. Thus, we still have to ask, whether we have to derive this
conclusion also on the base of the completely unfolded formula ((Φ ∧ Σ) → (Γ
∧ ∆))? The answer is yes: the premise ((Φ ∧ Σ) contains a logical conjunction.
So the truth value of the whole premise depends on the truth value of each of its
terminal statements, particularly on that of the statement Σ: If we decide not to
permit reverse engineering, then the premise as whole is false, regardless we forbid
or allow modifications. Consequently, the premise does not influence the truth
value of the conclusion. So, there is no way, to conclude that we have to allow
or that we do not have to allow reverse engineering. Hence we can transfer our
result, deduced for the slightly reduced formula to the unfolded complete formula:
assuming that (Θ provided that Ω) means (if Ω then Θ) is wrong.

So, let us test the other combination. Let us ask, whether (Θ provided that Ω)
means (if Θ then Ω) or – more logically notated – ((Γ ∧ ∆) → (Φ ∧ Σ)). If
we again for a moment focus on the reduced version (∆ → Σ) and dissolve our
replacements, then we get back the rule:

if ([. . .] you may distribute that work containing portions of the
Library under the terms of your choice,) then ([. . .] the terms
permit reverse engineering for debugging modifications of the work
containing portions of the Library.)

Now we can see, that this version perfectly regulates the distribution of works
containing portions of LGPL libraries: If we are allowed to do so or – in other
words: if we are compliantly distributing works containing portions of LGPL
libraries323, then we have to permit reverse engineering324. This follows from
applying Modus Ponens to the implication325. And if we do not permit reverse
engineering326, then we are not allowed to distribute works containing portions of
LGPL libraries327. This follows from applying Modus Tollens to the implication328

322) The truth value of the conlusion is undetermined by the rule.
323) The premise is true.
324) The conclusion must be true, too!
325) A true premise evokes a true conclusion based on the given truth of the implication / rule

itself.
326) The conclusion is false.
327) The premise must be false, too!
328) A false conclusion evokes a false premise based on the given truth of the implication / rule

79

3 Open Source: About Some Side Effects

But – again – we have to consider that we have deduced this consequence from a
slighty reduced version of our LGPL2-RefEng-Sentence. Thus, we still have to
show that our result also holds for the completely unfolded formula ((Γ ∧ ∆) →
(Φ ∧ Σ)): If we want to distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library329, then
our terms must permit the modification and reverse engineering of the distributed
product330. And if we do not allow its modification or reverse engineering331, then
we do not compliantly distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library332

Thus, we may generally state, that the logical explication ((Γ ∧ ∆) → (Φ ∧ Σ))
perfectly regulates the distribution of works containing portions of LGPL libraries.

Based on this clarification, we can reasonably replace the more stylish conjunction
’provided that’ by its more known equivalent ’implication’ 333, which we indicate
by the commonly used character for a logical implication, the sign ’→’:

Θ provided that Ω

≡ Θ → Ω

≡ (Φ ∧ Σ) → (Γ ∧ ∆)

≡ (([Φ] you may

*join a work that uses the Library with the Library

to produce a work containing portions of the Library)

∧
([Σ] you may

distribute that work containing portions of the

Library under terms of your choice

))

→
(([Γ] the terms of your choice permit

modification of the work containing portions of

the Library for the customer’s own use)

itself.
329) Premise is true.
330) Conclusion must become true by Modus Ponens.
331) Conclusion is false.
332) Premise must become false by Modus Tollens.
333) Here we can also see, that the difference between the if-then-command as part of a procedural

computer language and the logical implication does not influence our results: In the context
of a procedural if-then-command the truth of the premise triggers the execution of the
conclusion. In our discussion, this aspect is totally covered by the Modus Ponens derivation
of the logical interpretation. And the Modus Tollens derivation of the logical interpretation
on the other side does not play any role in a procedural if-then-command. So, it was the
right decision to understand the LGPL2-RefEng-Sentence logically and not as procedual
command.

80

3 Open Source: About Some Side Effects

∧
([∆] the terms of your choice permit

reverse engineering for debugging modifications

of the work containing portions of the Library

))

3.4.1.3 Empirical Clarification

We can now simplify this formula once more by considering some empirical facts
and explicating some underlying understandings:

The first sentence Φ explains that the work that uses the Library and the used
Library itself together are joined and thereby transformed into a work containing
portions of the Library. So, formally, one might ask, whether this newly generated
work containing portions of the Library also still uses the Library?

Unfortunately, it is empirically possible, that such a process for combining the two
components could (a) copy all original portions of the library into a something
like a ’dead end section’ of the program where they are never excuted, and could
(b) replace all original portions of the library by functionally equivalent portions
of any other library. Thus, the resulting work containing portions of the Library
would indeed still contain portions of the Library, although it would not use it
any longer. And because of this possibility, we are not allowed to say, that every
work containing portions of a library also uses the library334.

But, fortunately, the normal computational process of combining and linking a
work that uses the Library with the Library to produce a work containing portions
of the Library inherently preserves the utilization of the joined library: It is the
general purpose of a software library to offer functions and/or data (structures)
for really being used by applications. And vice versa, software developers refer
to a specific library because they prefer its service: They use readily prepared
libraries (or classes or anything else) because they want to simplify their own
work while they conserve the quality level of their work. Thus, they chose a
library based on the assertion, that the standard compiling and linking process
guarantees, that indeed the chosen library is used (and not secretly substituted
by a mysterious ’equivalent’). With respect to this praxis of programming we
are allowed to say that a work containing portions of the Library which has been
built by the normal development processes of combining, compiling, and
linking source and object files, indeed also uses the intended library.

Now, we are able to consider an empirical correlation between the first sentence
Φ and the second sentence Σ:

334) . . . even if we think that this is a really silly way to organize the joining process!

81

3 Open Source: About Some Side Effects

It seems to be evident, that we must already have done Φ, in other words: that
we must already have *joined – respectively: combined or linked – a work that
uses the Library with the Library to produce a work containing portions of the
Library, if we are going to compliantly distribute that work containing portions
of the Library under terms of your choice. Or briefly spoken: It seems to be
conclusive that Σ empirically implies Φ335.

But is this conclusion correct? Let us check this statement by assuming the
opposite: If the contrary was true, there had to exist a work containing portions
of the Library which had been gained without having linked or combined the
work and the Library in any sense. But from the inference above we already
know that works containing portions of the Library, which have been produced
by the standard computational processes of combining and linking a work that
uses the Library with the Library, indeed also use the Library. Thus, it would be
self-contradictory to talk about a work containing portions of the Library, which
was produced by the standard combining and linking processes, and similarily to
state, that exactly this work is not combined with the library in any sense. And
from a proof by contradiction we may infer the truth of the logical opposite:

So, with respect to the meaning of being standardly combined or linked with, we
may now say, that

• it is necessarily true that a computional work, which is standardly produced
on the base of a work that uses the Library and the Library and which
therefore literally contains more or less portions of a library, indeed uses the
the Library and is therefore combined with the library.

• Σ336 empirically implies Φ337 (in the standardized world of software devel-
opment), because Φ must ever have been executed when Σ is going to be
realized.

Thus, we can now reduce the LGPL2-RefEng-Sentence to its real core, the LGPL2-
RefEng-Rule:

([Σ] you may

distribute (a) work containing portions of the

Library338 under terms of your choice)

→
(([Γ] the terms of your choice permit

335) but not vice versa.
336) distributing a work that uses the Library and contains portions of a library
337) A work that uses the Library has been *joined with the Library to produce a work containing

portions of the Library
338) which previously has been prepared for being distributed by standardly combining and

linking the work that uses the Library with the Library in a way that this pre-
pared work indeed

also uses the Library

82

3 Open Source: About Some Side Effects

modification of the work containing portions of

the Library for the customer’s own use)

∧
([∆] the terms of your choice permit

reverse engineering for debugging modifications

of the work containing portions of the Library

))

This is indeed the essence of the LGPL2-RefEng-Sentence. It logically explains us
that we have to allow reverse engineering and modification of a work containing
portions of the Library if we distribute it (Modus Ponens) and that we are not
allowed to distribute a work containing portions of the Library, if we do not allow
its modification or reverse engineering (Modus Tollens).

Thus, for applying this rule correctly, we now only must know whether a work
indeed contains portions of the Library or not.

3.4.1.4 Final Conclusion

Unfortunately, there are more than one software developing scenarios, which must
be considered for answering this question in detail. We see three general types of
developing computer software:

1. You can produce software by using script languages. Source files which
contain script language commands are distributed and executed by an
interpreter without priorly being transformed into another ’more’ machine
specific language.

2. You can develop software by using languages which are designed for being
compiled into a machine independent bytecode. Later on, this independent
bytecode is executed by a machine specific virtual machine.

3. You can write traditional software files. Sometimes, these files are remastered
by a preprocessor before the real process starts. The traditional sources
themselves or the output files of the preprocessor are then compiled and
linked as machine specific binary file(s).

You may take ’php’ is an example for the first environment, ’Java’ an example for
the second, and ’C/C++’ an example for the third.

Fortunately, the nature of these environments simplifies the answer to the question
under which conditions the work using the Library contains portions of the Library:

3.4.1.4.1 Distributing works with manually copied portions of the Library
evokes the copyleft effect: Manually copying code from the sources of the

83

3 Open Source: About Some Side Effects

Library into the overarching work that uses the Library, is not the standard way
of combining both components, neither in the world of script programming, nor
in the world of bytecode programming, nor in the world of programming machine
specific code:

Normally, the work which uses the Library is joined to the intended Library by an
include statement, an input statement, an import statement, a package statement,
or anything else. These *join-statements are inserted into the code of the work.
They denote the file(s) which deliver(s) the used functions, methods, classes, or
data. It is an integrated feature of the normal development tools that inserting
such *join-statements does not directly augment the work using the library by
some code of the Library: The development processes are designed to offer an
automatic augmention as part of the standard compilation which is started after
the actual development loop has been terminated.

Nevertheless, developers can circumvent these standard methods for using a
Library. Technically, they can directly copy code from the Library into their
own work. Consequently, these manually copied extensions of the code will be
compiled and/or executed together with the ’own’ code of the work. Thus, it is
clear that in this case the work that uses the Library already contains portions of
the Library, particularly before the normal *join-processes of the environment are
executed.

Hence, if you are going to distribute works that contain literal copies of the Library
source code, then you have to allow reverse engineering, even if they have already
been compiled (but still not linked) on the base of such augmented files339.

339) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens. But nevertheless, one
might reply here, that even the result of manually copying code from the Library to the
work using the Library is covered by the limits of tolerance, introduced by the LGPL-v2-§5.
Formally, this argument seems to be appropriate. And indeed, also we have to consider these
limits of tolerance later on. But in the context of copying code from the Library into the
work manually, a closer look reduces its impact. You have to discriminate three cases:

1. Developers can manually copy / transfer some or at most all elements of the
Library header files into the code of the work which the preprocessor itself
would copy / transfer into that code automatically. But developers will not do that.
Some simple include commands would cause the same effect. And developers want to
save resources, especially their own working time. So, why should they manually do
what they can delegate to the standard development process. Thus, it is reasonable
to assume that developers, who nevertheless copy portions from Library into their
work, do not want to repeat the service of the preprocessor manually, but to transfer
more than only these elements. Hence, it is reasonable to assume, that their work is
covered by the LGPL2-RefEng-Rule.

2. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work
using the Library and they can nevertheless let the work being linked to
the Library. But again developers will not do that, because – again – some simple
include and linking commands would cause the same effect. So it is reasonable to

84

3 Open Source: About Some Side Effects

But, if we manually copy code from the Library to our work using the Library,
we also have to consider that the LGPL-v2 directly regulates this kind of using
the Library: It says, that “you may modify your copy or copies of the Library or
any portion of it [. . .] provided that you also [. . .] cause the whole of the work
to be licensed [. . .] under the terms of this License”340. Thus, there are strong
arguments for the proposition, that the LGPL causes the copyleft effect in case of
literally copying code from the Library into the work using the Library: The code
of the work using the library has to be made accessible, as well.

So, overall, we might say, that ’manually’ copying code from an LGPL-v2 Library
into a work using that Library as a bypass of the standard software combining
processes and distributing the result indeed requires to additionally permit its
reverse engineering – even if this permission is probably not very important for
the recipient, because he probably must have a direct access to the code.

3.4.1.4.2 Distributing scripts does not need reverse engineering: Computer
programs written in a script language are distributed as they have been developed.
They are not transformed into another kind of code341. The interpreter takes the
script file as it is and directly executes it. Thus, there is no special technique of
reverse engineering for understanding these kind of software: you can directly
read it if you know the script language.

So, again, we might conclude, that a script using a script Library perhaps requires
to permit its reverse engineering – but probably this permission is not very
important for the recipient, because he can directly read the code.

3.4.1.4.3 Distributing statically combined bytecode requires the permission
of reverse engineering: In Java – the prototype for languages which are compiled

start from the premise that copying developers in fact do more than this. Thus, it is
reasonable to assume that their work is covered by the LGPL2-RefEng-Rule.

3. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work
using the Library without linking it to the Library. This is a reasonable step
of work, because it spares the developers to link their work to the Library. But – by
definition – such an augmented work contains more elements of the Library than
LGPL-v2-§5 tolerates. Thus it is – again – reasonable to assume, that such a work is
covered by the LGPL2-RefEng-Rule.

Hence – overall and from a practical point of view – we can indeed say that manually copying
code from the Library into the work using the Library requires to allow reverse engineering.

340) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §2, escpcially §2c.
341) Java script is often offered as compressed code. Roughly spoken, this means that at first

all white space signs have been replaced by blanks and then all rows of blanks have been
reduced to at most one single blank. So, even then, the code itself is directly readable and
comprehensible – even if only for very sophisticated experts.

85

3 Open Source: About Some Side Effects

to machine independent portable bytecode – each class is compiled as a separate
class file. These class files have to be stored somewhere in the classpath. Aside
from that, classes can also be collected and distributed in form of packages which
then can be used like ’traditional’ Libraries. These packages must also be stored
somewhere in the classpath. A single class is made known to the work that wants
to use it by an import statement which contains the class name; a whole Java
library is made usable by integrating a package statement into the code.

The code which follows such import- or package statements, can then use the
definitions offered by the classes. It denotes the elements of the classes by the
(qualified) names of its public or protected member variables or methods. Thus, –
from a strict viewpoint – the code of such a Java work using a Library indeed
contains portions of that library, even if these portions are only identifying names
or data structures containing identifying names. The Java compilation process
which generates the bytecode, preserves these denoting names. It does not replace
the referring names by the referred code of the methods and so on. Only just at
the end, when the java virtual machine itself tries to execute the work using the
Library, it collects all necessary commands of all ’joined’ classes.

So, one might tend to argue that answering the question whether a distributed
java bytecode already contains portions of the used Library depends on the
interpretation whether a denoting identifier of a Library indeed is a portion of the
Library. We will discuss this case together with the corresponding C/C++-Case.

But there is another Java specific aspect, which has to be considered as well. As
already mentioned, in Java you can also join your work containing the denoting
identifiers and the denoted Library by building a new package, which then contains
both, the work using the Library and the used Library. Hence, one can say, that
this package is quasi statically linked: if you distribute such an integrated package,
then you are distributing both components together. Thus, if you distribute a
complete package, in other words: a quasi statically linked work containing the
work using the Library and (all portions of) the Library, then you have to permit
reverse engineering342.

So, preliminarily we conclude that, with respect to Java programming you (a)
have to permit reverse engineering, if you distribute your work using the Library
and the Library itself as a (statically linked) integrated package343 and that (b)
in all other cases your obligation to permit reverse engineering depends on the
interpretation whether the identifiers declared by a Library are indeed portions of
the Library.

Fortunately, we can reasonably decide the issue of case (b) soon.

342) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens
343) This follows from the LGPL2-RevEng-Rule by Modus Ponens.

86

3 Open Source: About Some Side Effects

3.4.1.4.4 Distributing statically combined binaries require the permission
of reverse engineering: Similar to Java, in C/C++ – the prototype of those
languages, which are compiled as machine specific code – a C/C++ Library is
also explicitly made known to the work that wants to use it, namely by some
include statements. These include statements denote the header files offered by
and distributed with the Library. They contain the declarations of those elements
which the Library wants to publish. Or briefly worded: the Library contains the
definitions in form of code, the header files the corresponding declarations.

The C/C++ code following such include statements can refer to the definitions
offered by the Library by using the declarations anounced by the header files.
So, again, – from a strict viewpoint – the code of such a C/C++ work using the
Library indeed contains portions of the library, even if these portions are only
identifying names or data structures published by the header files.

Beyond that conceptual relation, the C/C++ development process finally compiles
the work using the library as an object file containing machine specific code. Just
as the Java compilation, this process does not replace the referring names by the
referred code of the Library; it still preserves the denoting names. The resulting
file, which has been compiled into machine specific code, but still contains the
denoting identifiers, is also known as ’object code file’.

The C/C++ compilation process is (mostly) managed by a make file, which is
executed by the make command344. This development tool calls the compiler for
each source file, makes known the directories which contain the compiled target
object files, and finally calls the linker. The linker recursively scans the compiled
object files and replaces each embedded identifier by a truly executable jump
command into that set of Library commands which are denoted by the identifier
and which shall be executed as part of the work using the Library. So, only at
the end, the linker collects all necessary commands of all ’joined’ object files and
Libraries and produces the really executable work.

But – notwithstanding the above – the linker can either be called as integrated step
of the development process itself, or the linker can be called separatedly, especially
on another machine. In the first case, the development process generates a
statically linked executable which already contains all necessary portions of all used
Libraries. In the second case, the development process generates a dynamically
linkable program by collecting the (set of) still unlinked object code file(s) as a
distributable package. Thus, if you distribute a statically linked executable, it
definitely contains ’portions’ of the library; if you distribute a dynamically linkable
program you have to decide whether the embedded identifying names of a Library
have indeed to be interpreted as portions of the Library.

344) Sometimes there additionally exists a complete meta environment which generates such
make files. The GNU build system for example offers a complex set of configure scripts and
make file templates (cf. http://en.wikipedia.org/wiki/GNU build system, wp.).

87

3 Open Source: About Some Side Effects

Unfortunately, we still have to consider a little complication, based on the nature of
the a C/C++ development process: contrary to the Java development environment,
a C/C++ development process inherently uses a preprocessor engine. This engine
takes the header files delivered by the Library, verifies the syntactically correct
use of the Library and can indeed replace some tokens of the work using the
Library by commands and/or lines from the Library. This technique is known
as inline functions or macros. They have been invented for those cases where
expanding the stack of commands during the compilation by a real function call
is more expensive than writing the embedded commands of the function more
than one time into the whole code. Hence, in the C/C++ development process
the compiled object files can indeed contain more than only the referring names
which denote portions of the Library: beside the denoting identifiers, they can
also already contain real, functionally relevant portions of the Library.

Thus, – again and similar to Java compilation – we may conclude, that with
respect to C/C++ programming you (a) have to permit reverse engineering, if you
distribute your work using the Library together with the Library as a statically
linked program345 and that (b) in all other cases your obligation to permit reverse
engineering depends on the interpretation whether the used identifiers or dissolved
inline functions and macros, which have been declared by the Library and which
therefore have automatically and standard conformably been embedded into an
object file, are indeed portions of the Library.

Obviously, it is time to answer this crucial question:

3.4.1.4.5 Distributing dynamically combinable bytecode and linkable object
code does not require the permission of reverse engineering: Of course, there
is only one instance that can answer the question whether identifiers and dissolved
inline-functions or macros, which are – according to the development standard –
embedded into a work using the Library, indeed are portions of the Library. This
instance is the LGPL-v2 itself. And – fortunately – this license supports us in a
very clear way to answer this question, even if not by its §6 which deals with the
reverse engineering, but by its §5:

The LGPL simply specifies that “linking a ‘work that uses the Library’ with the
Library creates an executable that is a derivative of the Library (because it contains
portions of the Library) [. . .]” and that “the executable is therefore covered by
this License”346. Additionally, it talks about compiled, but still unlinked “object
files”, which therefore are not executables. Such an unexecutable “object file”
– for example that of the “work using the Library” –, which “[. . .] uses only
numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” shall practically not be

345) This follows from the LGPL2-RevEng-Rule by Modus Ponens.
346) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §5.

88

3 Open Source: About Some Side Effects

covered by the license of the Library, because “[. . .] the use of the object file is
unrestricted regardless of whether it is legally a derivative work”347 - as long as it
does not exceed the given limits.

Obviously, the answer of the LGPL to our question is this: (a) yes, such object files
containing names and snippets offered by the used Library, could contain portions
of the Library. But it is not necessary to clarify the details, because (b) – up to
a specific limit of sizes – these kind of ’little’ portions being embedded into the
object file by the standard compilation processes do not evoke any requirements:
they especially do not evoke the obligation to allow reverse engineering. In other
words: these little portions of a Library which are embedded by the standard
development process and which do not contain more than the specified size of
code may be regarded as another type of portions compared to the normal, real
portions which indeed evoke the obligation to allow reverse engineering. From the
viewpoint of the LGPL, they are pseudo portions of the Library, because they do
not restrict the containg object file in any respect.

So, from the LGPL-RevEng-Rule we can now indirectly conclude, that distributing
dynamically linkable or combinable bytecode or object code files which contain
“only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” being delivered by a Library
does not require to allow reverse engineering348.

Unfortunately, there might be a practical objection which seems to disturb our
simple result: For applying this rule correctly, we apparently have to assure that
a compiled work that uses the Library but is still not *joined to it, indeed has
only been expanded by “small macros or small inline functions (ten lines or less in
length)”. Thus, seemingly, we have to study all header files of all used Libraries
in detail, if we want to compliantly distribute a work using a Library without
permitting reverse engineering. This could be a lot of work – up to a bulk which
practically can not be managed.

Fortunately, there is a simple solution for this challenge, a rule of thumb, based
on the principle “trust the upstream”349:

The Library developers of course publish the header files or the public members
and functions of the classes in exactly that form they want these elements to be

347) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §5.
348) From the decision not to allow reverse engineering follows by Modus Tollens applied to the

LGPL2-RevEng-Rule, that the distribution of the work using the Library must not contain
real portions of the Library. From LGPL-v2-§5 and the limit of the standard proccesses
follows that here the work using the Library does not contain normal, real portions. So, we
know, that this case is not covered by the LGPL2-RevEng-Rule and thus we are allowed to
distribute a work using the Library without allowing its reverse engineering.

349) On the ELLW 2013, we were told about this principle for the first time. We do not know,
whether Armijn Hemel invented it. But we can respectfully affirm that he has persuasively
explained the spirit and purpose of the principle “trust the upstream”.

89

3 Open Source: About Some Side Effects

used. And they want their Library to be used as an LGPL library, otherwise
they would have chosen another License. So, they wish that improvements of the
Libraries shall be made accessible as well, but that the works using the Library
shall not necessarily be published in form of source code350. Thus, as long as we
use a Library exactly in that form, the original authors have published, as long as
we download the Library from the official repository, and as long as we do not
modify the intended interfaces defined and published by the original header and
class files, we may justifiably assume that we are using the Libraries just as their
copyright owners want them to be used. And thus, – in other words: as long as
we trust the upstream – we might assume that the header and class files of our
Libraries fit the restrictions of the LGPL-v2.

3.4.1.4.6 LGPL-v2 compliance with or without permitting reverse engineering:
Now, we have reached our target. Our last clarification can directly be applied to
the both open cases: to the case of distributing Java bytecode as well, as to the
case of distribution C/C++ object code. We now know, that the LGPL-v2 wishes,
that not all portions of a Library covered by a work using the Library, trigger
the permission of reverse engineering. And we now know that the limits – given
by the LGPL-v2-§5 – up to which such pseudo portions indeed do not trigger
the obligation to permit reverse engineering, are respected, if we use ’upstream
approved’ C/C++ and Java libraries in standard development environments. Thus,
we indeed finally may conclude, that the LGPL-RevEng-Sentence

“[. . .] you may [. . .] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.”351

means ’nothing else’ than

• With respect to a LGPL-v2 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discrete (set of) dynamically linkable or combinable file(s),
if you [C] use only the standard compilation methods which preserve the
upstream approved interfaces352, and if you [D] distribute the produced
unlinked object code or bytecode files before they are linked as an executable.

350) The meaning of the weak copyleft.
351) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6, emphasis KR..
352) and which therefore do not to exceed the LGPL-v2 limits!

90

3 Open Source: About Some Side Effects

• In all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library – especially, . . .

– if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself353.

– if you distribute a work containing manually copied portions of the
Library.

3.4.1.5 Final Securing

So far, we have done a lot of work: At first, we unfolded and dissolved some
stylisch condensed formulations of the original LGPL2-RevEng-Sentence by their
linguistically explicit version. At second, we explicated the logical structure of the
sentence. At third, we empirically carved out the real meaning of the sentence.
And finally we mapped the triggering part of that rule to some verifiable facts.
Indeed, a lot of work for understanding only one sentence correctly354. So, it is a
good securing to verify that the derived result fits the spirit and the goals of the
LGPL-v2 perfectly.

For that purpose, let us fist discuss a little (semi-) official article – written by
David Turner and published by the FSF355 – which deals with the compliant use
of LGPL licensed Java libraries. Turner refers to the “FSF’s position” which - as
he says - “[. . .] has remained constant throughout”:

“[. . .] the LGPL works as intended with all known programming
languages, including Java. Applications which link to LGPL libraries
need not be released under the LGPL. Applications need only follow
the requirements in section 6 of the LGPL: allow new versions of the

353) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications.

354) Here, some readers might ask why the original authors have encapsulated their clear ideas
in such a sophisticate sentence. Here are two answers: First, this question is practically
irrelevant: The authors of the LGPL-v2 did, what they have done. And many developers
have already licensed their works under the terms of the LGPL-v2. Thus, we simply have to
live with the results – just until the last software being published under the terms of the
LGPL-v2 is relicensed by a better version. Probably this won’t happen during our life time.
Secondly, we appreciate the foresight of the LGPL-v2 authors. They wrote a license which
have successfully worked for more than twenty years. They chosed a formulation which had
also to cover ’uninvented’ techniques. So, it is not so surprizing, that we – today – have to
do a lot of work to understand all details the original authors want to be understood.

355) cf. Turner, David : The LGPL and Java; 2004 ⟨URL: http://www.gnu.org/licenses/
lgpl-java.en.html⟩ – reference download: 2015-02-09, wp..

91

http://www.gnu.org/licenses/lgpl-java.en.html
http://www.gnu.org/licenses/lgpl-java.en.html

3 Open Source: About Some Side Effects

library to be linked with the application; and allow reverse engineering
to debug this.”356

Then he describes, that Java libraries are “[. . .] distributed as a separate JAR
(Java Archive) file” and that applications “[. . .] use Java’s ‘import’ functionality
to access classes from these libraries”. Moreover, he also explains, that the process
of compilation “creates” and integrates “links” into the compiled application
which let become the application a “derivative work” of the library. Finally he
states, that not only the LGPL permits to distribute such derivative works, but
that “[. . .] it is easy to comply with the LGPL” if one indeed wants to “[. . .]
distribute a Java application that imports LGPL libraries”: “Your application’s
license needs to allow users to modify the library, and reverse engineer your code
to debug these modifications.”357

So, we might state, that even this semi-official article argues very similarly to us.
There is only one little phrase in this text which differs a little: Summarizing the
“section 6 of the LGPL” by the statement “[. . .] allow new versions of the library
to be linked with the application; and allow reverse engineering to debug this” does
not consider that the first sentence of the section 6 of the LGPL contains a complex
condition. The LGPL2-RefEng-Sentence means – as we could prove – that one
may distribute (a) work containing portions of the Library only if one’s
license permit reverse engineering for debugging modifications358. But – as we
could also show – for determining wether an application really contains portions
of the Library, one has additionally to consider the limits defined by section
5 of the LGPL359: the application’s license needs to allow to reverse engineer
the application only if it contains more elements of the Library than §5 of the
LGPL-v2 has specified as limit.

That our analysis fits the spirit of the LGPL, can also be shown by considering
the LGPL directly:

The LGPL-v2 clearly describes its goals. It wants to enable the community to
let an LGPL Library “[. . .] become a de-facto standard”. And the LGPL knows,
that “to achieve this [goal], non-free programs must be allowed to use the library”,
because the “[. . .] permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software”. But
the LGPL also asserts in this context, that “although the Lesser General Public
License is Less protective of the users’ freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to
run that program using a modified version of the Library”360.

356) cf. Turner : The LGPL and Java, 2004, wp.
357) cf. id., l.c., wp..
358) → p. 82
359) → p. 88
360) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., preamble, emphasis KR.

92

3 Open Source: About Some Side Effects

So – as a last check of our derivation – we can analyze, whether our derived result
violates this goal. If it does, then we probably made a tremendous fault; if not,
then we are allowed to trust in the consistence our analysis:

If you receive a work using the Library in form of a discrete (set of) dynamically
linkable or combinable file(s) and if – hence – your provider assumed that the
files he delivers will be linked on your target machine which – therefore – has
to provide a linker and the the necessary dynamically linkable Libraries, than
you systematically have the freedom to replace the dynamically linked Libraries
by their updated versions361. And as long as the newer versions of the Libraries
preserve the defined and declared interfaces, you can do that successfully. That’s,
what the LGPL-v2 wants to ensure.

In all other cases, you must have the permission of reverse engineering or you
have a direct access to the source code. So, you can use the corresponding tools
and techniques to replace the embedded version of the Library by a newer version;
especially if you have received a statically linked package. Hence, also the second
part of our interpretation respects the spirit of the LGPL-v2.

So, finally we can say, everything is fine: The LGPL2-RevEng-Rule – together with
the meaning of being a portion of a Library – does not only verifiably exeplicate
the meaning of the LGPL2-RevEng-Sentence, but also fits the spirit and the
purpose of the LGPL-v2 as it has been announced by its preamble.

3.4.2 Reverse Engineering in the LGPL-v3

Based on our experiences how to successfully carve out the meaning of license
text, we can shorten the way to understand the one LGPL3-RevEng-Sentence
referring to reverse engineering :

“You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions of
the Library contained in the Combined Work and reverse engineering
for debugging such modifications, if you also do each of the following
[. . .]”362

Reusing our method of disambiguation, we first can exemplify the meaning of the
LGPL3-RevEng-Sentence by the following text:

361) In GNU/Linux – for example – you must (only) copy the dynamically linkable new version
of the Library into the lib/-directory and replace the existing link by a version pointing to
the newer version. Sometimes you should additionally verify the ld.so.conf files and call
ldconfig tool.

362) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §4. The ellipsis at the
end of the sentence denotes a set of tasks which we do not listen here for saving resources,
but which have to be considered as an integrated part of this sentence.

93

3 Open Source: About Some Side Effects

([Θ :]
(You compliantly distribute a Combined Work

under terms of your choice

((that together effectively, do not restrict modification of

the portions of the Library contained in the Combined Work)

AND

(that together effectively, do not restrict reverse

engineering for debugging modifications of the portions

of the Library contained in the Combined Work)

))

IF

[Ω :]
(you also do each of the following [. . .])

)

But now, a simply executed logical serialization let us running into a problem:

If we serialized (Θ IF Ω) as (Ω → Θ), then from not respecting Θ would follow
by Modus Tollens, that we are not allowed to realize Ω – in other words: that we
may not do even one of the single tasks covered by the ellipsis – which is a silly
result.

If we serialized (Θ IF Ω) as (Θ → Ω) then from doing Θ would successfully follow
by Modus Ponens that we also have to do Ω. And from not respecting Ω would
successfully follow by Modus Tollens, that we must not do Θ. But unfortunately,
we can respect this second interdiction also by distributing a Combined Work
under terms that restrict modifications and/or reverse engineering (instead of not
restricting these techniques) – which, again, is a silly result.

Obviously, a simple serialization based on a intutively unclear reading fails. In fact,
the LGPL3-RevEng-Sentence must have a more sophisticated underlying structure.
It must be logically serialized in a form, that integrates the requirements, not to
restrict modifications and reverse enigneering, as really triggable conditions. Thus,
the meaning of the sentence can logically be explicated as the LGPL3-RevEng-
Rule:

([Σ :]
(You compliantly distribute a Combined Work

under terms of your choice

)

→
([Γ :]

(the terms of your choice together effectively do

not restrict modification of the portions of the

94

3 Open Source: About Some Side Effects

Library contained in the Combined Work)

∧ [∆ :]
(the terms of your choice together effectively, do

not restrict reverse engineering for debugging

modifications of the portions of the Library

contained in the Combined Work)

∧ [Ω :]
(you also do each of the following [. . .])

))

This LGPL3-RevEng-Rule indeed successfully regulates how to compliantly dis-
tribute a Combined Work by telling us,

• that we have to respect Γ, ∆ and all single parts of Ω, if we distribute a
Combined Work compliantly363.

• that we do not distribute a Combined Work compliantly, if we do not respect
one of the requirements Γ, ∆ or one of the single parts of Ω364.

Now, we can directly see, that the LGPLv3 does not enforce us, not to obstruct
reverse engineering in all respects! The required reverse engineering is limited
to the purpose of supporting the debugging of modifications and focused to the
Combined Work containing portions of the Library. In other words: our terms may
obstruct other purposes of reverse engineering or may restrict reverse engineering
of other forms of our work which which can not be specified as Combined Work
or do not contain portions of the Library. Thus, the first crucial question is, what
the LGPL-v3 means if it talks about a “Combined Work”. The second question
is, what the LGPL-v3 specifies as a portion of the Library.

Again, fortunately, the LGPL-v3 answers clearly: “A ‘Combined Work’ is a work
produced by combining or linking an Application with the Library”365. From
our LGPL-v2 analysis we know the ways how works that uses a Library can
technically be linked or combined with the Library:

• Copying code from the Library into the work using the Library366 causes
that the application respectively the work using the Library indeed contains
portions of the Library367.

363) follows by Modus Ponens. Thus, in this case especially our terms “[. . .] together effectively
[must] not restrict reverse engineering for debugging modifications of the portions of
the Library contained in the Combined Work”.

364) follows by Modus Tollens. Thus, especially we are not distributing a Combined Work
compliantly, if our terms “[. . .] together effectively do restrict reverse engineering for
debugging modifications of the portions of the Library contained in the Combined Work”.

365) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §0.
366) The LGPL-v3 designates the work using the Library as “Application” and defines that it

“[. . .] makes use of an interface provided by the Library [. . .]” (cf. id., ibid.).
367) → p. 83

95

3 Open Source: About Some Side Effects

• Combining script language based applications and Libraries may evoke that
the resulting application contains portions of the Library. But the details
can be neglected with respect to the reverse engineering, because script
code is distributed as it has been developed and can therefore directly be
understood368.

• Combining java classes and libraries as integrated quasi statically linked
packages causes, that the resulting package already contains all functionally
necessary code of the Library369.

• Compiling java classes without combining them with the referred Library
classes causes, that the compiled classes at least contain identifiers having
been declared by the Library370.

• Combiling C/C++ files or classes and linking them with the referred Libaries
statically causes, that the resulting executable indeed contains all functional
relevant code of all used Libraries371.

• Combiling C/C++ files or classes without linking them to the referred
Libaries causes, that the resulting object file can dynamically be linked
on another machine and contains identifiers offered by the Library and
sometimes some functional code injected by dissolving some inline functions
or macros372.

So – overall – the situation is this: The LGPL3-RevEng-Rule tells us that we
have to allow reverse engineering of the portions of the Library contained in
the Combined Work. The LGPL3 additionally specifies, that a Combined Work
is simply the result of technically combining the work using the Library (the
application) and the Library. Finally the praxis tells us, that (a) combining both
components statically indeed causes that the resulting Combined Work contains
portions of the Library373, and that (b) we – in case of preparing the both parts as
dynamically combinable components – still have to clarify whether the resulting
work already contains portions of the Library.

Just as the LGPL-v2, the LGPL-v3 supports us to answer this question by its §3
whose linguistic conjunctions we thoroughly have to consider:

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, [if the incorporated
material is not limited to numerical parameters, data structure layouts

368) → p. 85
369) → p. 85
370) → p. 88
371) → p. 87
372) → p. 88
373) So, it is triggering the LGPL3-RevEng-Rule.

96

3 Open Source: About Some Side Effects

and accessors, or small macros, inline functions and templates (ten
or fewer lines in length)], you do both of the following: a) Give
prominent notice with each copy of the object code that the Library is
used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this
license document]374.

The first sentence of this paragraph tells us that he is dedicated to object files
which are compiled and not linked to the used Library, but which nevertheless can
contain portions of the Library. The second sentence regulates the distribution of
such object files and can be logically serialized:

([Λ :]
(You compliantly distribute object code [incorporating

material from the Library] under terms of your choice)

→
[Ξ :]
([ω :]

(the incorporated material is not limited to numerical

parameters, data structure layouts and accessors, or

small macros, inline functions and templates

[ten or fewer lines in length])

→
([α :] (you do [a] . . .])

∧ [β :] (you do [b] . . .])

)))

We see, that this LGPL3-sentence concerning the distribution of object files
contains a main rule ((Λ → Ξ)) and that the conclusion Ξ itself has the form of
an embedded sub rule ((ω → (α ∧ β)).

Firstly, the main rule enforces us to respect the sub rule if we want to distribute
the object code compliantly375. Secondly, the main rule tells us that we do not
distribute the object code compliantly if we do not respect the sub rule 376.

We have two ways to respect the sub rule, and one way not to respect it:

• If the object code contains more and/or larger elements of the Library than
the limit specifies, then we do respect the sub rule, if we do α and β377.

374) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §3; emphasis and
additional braces KR..

375) follows by Modus Ponens to (Λ → Ξ).
376) follows by Modus Ponens to (Λ → Ξ).
377) follows by Modus Ponens to (ω → (α ∧ β)).

97

3 Open Source: About Some Side Effects

• If the object code contains elements of the Library at most up to specified
limits, then we do respect the sub rule without having to do some
additionally tasks378

• But if the object code contains more and/or larger elements of the Library
than the limit specifies and if we do not do α or β, then we do not respect
the sub rule379.

Thus, – at the end and based on the additional object code specification and the
known empirical background knowledge concerning the software programming –
the LGPL3-RevEng-Rule delivers the same result as the LGPL2-RevEng-Rule380:

• With respect to a LGPL-v3 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discrete (set of) dynamically linkable or combinable file(s),
if you [C] use only the standard compilation methods which preserve the
upstream approved interfaces381, and if you [D] distribute the produced
unlinked object code or bytecode files before they are linked as an executable.

• In all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library – especially, . . .

– if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself382.

– if you distribute a work containing manually copied portions of the
Library.

3.4.3 Reverse Engineering in the other Open Source Licenses

The rest of our way is simple: First, we can ascertain, that none of the other open
source licenses we consider383, contain the phrase ’reverse engineering’. Moreover,

378) follows by definition of an implication: if the premise of this sub rule is false, the sub rule is
as whole is true and hence respected.

379) follows from definition of an implication: if the premise is true and the conclusion is false,
the the implication as whole is false, as well.

380) → 90
381) and which therefore do not to exceed the LGPL-v3 limits
382) This holds also if you distribute a script language based program or package, notwithstanding

the fact, that one does not need the permission of reverse engineering to understand script
language based applications

383) → p. 71

98

3 Open Source: About Some Side Effects

they even do not contain one of the single words384. So, we may infer, that these
most important other open source licenses could at most indirectly require the
permission of reverse engineering. Second, we know already that distributing
script code let the allowance to reverse engineer, become irrelevant: script code
can directly be read and understood, if one knows the script language385. Third,
from the definition of strong copleft we may derive, that distributing software
licensed under a strong copyleft license let the permission of reverse engineering
become unimportant, because the source code of the work using the libraries
licensed under a copleft license, must also be made accessible386.

So – overally – we may conclude, that we have only to consider those cases, where
a piece of software is distributed in form of binaries or bytecode, which uses
libraries licensed under permissive open source licenses or under weak copyleft
licenses.

From the definition of being a permissive license or a weak copyleft license we
know already that the licenses of the open source components do not directly
influence the permission or interdiction to use the overarching work which uses
the open source software components387.

So, if we distribute such a work in form of dynamically linkable, but still not
linked binaries or bytecode files, then there is no way to reasonably derive that the
work using the components, may be reverse engineered: The permissive or weak
copyleft open source licenses mainly concern the open source components, not the
work using the components. On the one side, these licenses indeed require that
we add the license texts and the copyright lines of all the open source components
our work wants to use, to the distributed package containing our work. And the
lisenses prohibit to modify the licensing assertions being integrated into the open
source components our work wants to use388. But – on the other side and in
accordance to the permissive or weak-copyleft licenses – the freedom to use, to
study, to modify, or to distribute the software, which is established by these open
source licenses, concerns only the open source components themselves, not the
work using the open source components. So, as long as these components still
are not linked to or combined with the using work in accordance to the standard

384) One can verify this negative statement by (a) loading down all licenses from the OSI
homepage (http://opensource.org/licenses/alphabetical) and by (b) executing the command
grep -i "engineering" * respectively grep -i "reverse" * in the directory into which
the license files have been stored: grep will find the words reverse and engineering only in
the texts of the LGPLs.

385) → p. 85
386) cf. Stallman: What is Copyleft?, 1996, wp.
387) cf. Reincke, Karsten, Greg Sharpe, a. contributors: Open Source License Compendium.

How to Achieve Open Source License Compliance; 2015 ⟨URL: http://www.oslic.org/
releases/oslic.pdf⟩ – reference download: 2015-01-20, pp. 20ff..

388) These requirements are part of all the open source licenses we consider here. For details cf.
id., l.c., pp. chapter 6.

99

http://www.oslic.org/releases/oslic.pdf
http://www.oslic.org/releases/oslic.pdf

3 Open Source: About Some Side Effects

compilation and computation methods, they can indeed be studied or modified
without the need to study or modify the work which uses these components389.

On the other side, if we compliantly distribute the work using the components,
as a statically linked binary or bytecode file – which therefore already contains
all the necessary components391 and can directly be executed –, then we are also
obliged to add all the open source license texts and all the copyright lines to
our package, and we are not allowed to modify one of the licensing assertions
integrated into the original open source components392. Thus, one might conclude,
that the freedom to use and to modify the open source components themselves,
survive if we distribute software statically linked to or combined with the open
source components. So, the receiver of the statically linked work probably is
allowed to modify the embedded open source components - even if he had to
edit the binary or bytecode files. Methods to develop binary files reversely, are
known as reverse engineering. Hence, if we distribute a statically linked work
using open source licensed components, we have at least to fear that our receivers
indirectly have also got the permission to reverse engineer our complete product.
And we have to fear so even if the statically linked libraries are licensed under
any permissive or weak copleft license.

So, again, we can summarize the result in the following form:

• With respect to a Library licensed under any permissive or weak copyleft
license, you are not required to allow reverse engineering, if you [A] develop
your work using the Library, on the base of a standard version of the Library
containing the interfaces as the original developers have designed it, if you
[B] compile your work using this Library, as a discrete (set of) dynamically
linkable or combinable file(s), if you [C] use only the standard compilation

389) The only way to infer that the licenses of the components operates also on the using work, is
to argue that the using work must at least contain elements (identifiers etc.) of the interfaces
declared (but not defined) by the libraries and that therefore at least these elements may be
investigated or modified. This challenge is explicitly addressed by the LGPL390. Fortunately,
it is a general feature of software libraries that they must and shall be used in accordance to
the interfaces, the developers of the libraries have designed to make their libraries practically
usable. So, if the licenses – in contrary to the LGPLs – do not explicitly address the issue of
implicitly included portions of the library in case of unlinked binaries or bytecode files which
have been compiled in accordance to the standard methods and which therefore use open
source software by reffering to their standard interfaces, then one has to infer from the nature
of computation, that the developers have implictly allowed without any requirements such
an integration of declared, but not defined interface elements, because they have designed
the interface as they did and because they have licensed their work as they did. If they
had not wished to use these elements without any requirements, hey had designed another
interface. And if they had wished to incorporate any copyleft effect or permission of reverse
engineering, then they would have selected another license. But again: this conclusion holds
only for the standard methods to use a software library.

391) instead of only the declared interface elements!
392) cf. Reincke, Sharpe, a. other contributors: OSLiC, 2015, pp. chapter 6..

100

3 Open Source: About Some Side Effects

methods which preserve the upstream approved interfaces, and if you [D]
distribute the produced unlinked object code or bytecode files before they are
linked as an executable.

• In all other cases of distributing a work using such a Library, you have at
least to fear that you are implictly allowing reverse engineering of the work
using this Library – especially, . . .

– if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself393.

– if you distribute a work containing manually copied portions of the
Library.

3.4.4 Reverse Engineering in Open Source Licenses: Summary

So, finally we can compile all our results into one single result:

• With respect to any open source Library394, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discrete (set of) dynamically linkable or combinable file(s),
if you [C] use only the standard compilation methods which preserve the
upstream approved interfaces395, and if you [D] distribute the produced
unlinked object code or bytecode files before they are linked as an executable.

• In all other cases of distributing your work using such a Library, you are
probably required to allow reverse engineering of your work. By all means,
you have at least to fear that you are implictly allowing reverse engineering
of your work using such a Library – especially, . . .

– if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself396.

– if you distribute a work containing manually copied portions of the
Library.

393) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

394) → p. 71
395) and which therefore do not to exceed limits, prescribed by the owners of the Library
396) This holds also if you distribute a script language based program or package, notwithstanding

the fact, that one does not need the permission of reverse engineering to understand script
language based applications

101

3 Open Source: About Some Side Effects

And, so, we can reformulate our result as a slightly modified “rule of thumbs”
originally offered by an open source expert who analyzed the problem of protecting
your own work from an other viewport:

• “DO NOT statically link [or combine] [open source] code if you wish to
keep your program proprietary [and if you want to protect it against reverse
engineering]”397.

• “DO dynamically link to [any open source code, not only to] LGPL code”398.

q.e.d

3.5 Excursion: The problem of license compatibility [tbd]

Here we discuss the often neglected or only superficially treated problem of combining
differently licensed software. We will hint to the Exclusion-List of the Free software
foundation; we will hint to the Eclipse / GPL-plugin problem; we will mention the
recent discussion whether the kernel requires to license the complete Android as
GPL; and finally we will discuss the just now published, short analysis of Jaeger
and Metzger presenting a combining matrix which seems to fall into their lap. We
will argue that the question can simply be answered: Only if you embed two libraries
which both are licensed under an on-top-development protecting license and if both
these licenses require the licensing of the derivated work by different licenses then
you have a problem. In all other cases which we will describe, there is no problem.

. . .

3.6 Excursion: open source software and money [tbd]

Here we will shortly discuss ways in which money and Open Source is no problem.

. . .

397) cf. Ilardi : Common OSS License Problems, 2010, pp. 6; bracketed text KR..
398) cf. id., ibid.

102

4 Open Source Use Cases: Concept and Taxonomy

This chapter establishes our concept of open source use cases as a classification
system for to-do lists. The conditions of a specific license, in the context of a
particular open source use case, shall be satisfiable by following the corresponding
to-do list. Additionally this chapter introduces a taxonomy for these open source
use cases. Later on, this taxonomy will organize the Open Source Use Case Finder.

After all these introductory remarks, we can summarize our idea. We know that
the right to use open source software depends on the tasks required by the open
source licenses. As opposed to commercial licenses, you can not buy the right to
use a piece of open source software by paying money. It is embedded into the
Open Source Definition that the right to use the software may not be sold. The
OSD states first that an open source license may “[. . .] not restrict any party from
selling or giving away the software as a component of (any) aggregate software
distribution”, and adds second in the same context that an open source license
“[. . .] shall not require a royalty or other fee for such sale”399.

However, it would be wrong to conclude that you are automatically allowed to
use open source software without any service in return: generally you have to
do something to gain the right to use the software. In other words: open source
software is covered by the idea of ’paying by doing’. Accordingly, open source
licenses describe specific circumstances under which the user must execute some
tasks in order to be compliant with the licenses. So, if we want to offer to-do lists
for fulfilling license conditions, we must consider these tasks and circumstances.

In practice, such circumstances are not linear and simple. They contain combina-
tions of (sometimes context sensitive) conditions which can be grouped into classes
of tokens. Such a class of tokens might denote a feature of the software itself—such
as being an application or a library. Or it can refer to the circumstances of using
the software, such as ’using the software only for yourself’ or ’distributing the
software also to third parties’.

At the end, we want to determine a set of specific OSUCs—the open source
use cases. And we want to deliver for each of these OSUCs and for each of the
considered open source licenses one list of actions which fulfills the license in that
context400.

Such an open source use case shall be considered as a set of tokens describing

399) cf. Open Source Initiative: The Open Source Definition, 2012, wp §1.
400) Fortunately, sometimes one task list fulfills the conditions of more than one use case—a

welcome reduction of complexity

103

4 Open Source Use Cases: Concept and Taxonomy

the circumstances of a specific usage. Hence, to begin, we must specify the
relevant classes of tokens, before we can determine the valid combinations of these
tokens—our open source use cases. Finally, based on the tokens, we generate a
taxonomy in the form of a tree. This tree will become the base of the Open Source
Use Case Finder which will be offered in the next chapter, and which leads you
to your specific OSUC by evaluating just a few questions and answers.

There are only a handful of tokens which are relevant to the circumstances of
open source software licenses:

• The type of the open source software: On the one hand, we regard code
snippets, modules, libraries and plugins, and on the other hand, autonomous
applications, programs and servers. We will take the word ’snimolis’ for the
first set, and ’proapses’ for the second. This is necessary, as we are not only
talking about libraries and applications in the everyday sense, but rather in
the broadest sense401. More specifically, we will ask you, whether the open
source software you want to use, is an includable code snippet, a linkable
module or library, or a loadable plugin, or whether it is an autonomous
application or server which can be executed or processed. In the first case,
the answer should be ’it is a snimoli’, in the second ’it is a proapse’.

• The state of the open source software: It might be used exactly as
one has received it. Or it can be modified, before being used. More
specifically, we will ask you, whether you want to leave the open source
software as you have received it, or whether you want to modify it before
using and/or distributing it to 3rd parties. In the first case, the answer
should be ’unmodified’, in the second ’modified’.

• The usage context of the open source software: On the one hand you
might use the received open source software as a readily prepared application.
On the other hand you might embed the received open source into a larger
application as one of its components. More specifically, we will ask you,
whether you are using the open source software as an autonomous piece
of software, or whether you are using it as an embedded part of a larger,
more complex piece of software. In the first case, the answer should be
’independent’, in the second ’embedded’.

• The recipient of the open source software: Sometimes you might wish
to use the received open source software only for yourself. In other cases
you might intend to hand over the software (also) to other people. More

401) Of course, our newly introduced concepts of ’snimoli’ and ’proapse’ are not absolutely one
of the most elegant words. So, initially we tried to talk about ’applications’ and ’libraries’,
although in our context these words should denote more, than they traditionally do. But we
couldn’t minimize the irritations of our interlocutors. Too often we had to remind them that
we were not talking about applications and libraries in the strict sense of the words. Finally
we decided to find our own words—and to stay open for better proposals ;-)

104

4 Open Source Use Cases: Concept and Taxonomy

specifically, we will ask you, whether you are going to use the open source
software only for yourself, or whether you plan to (re)distribute it (also)
to third parties. In the first case, the answer should be ’4yourself’, in the
second ’2others’.

• The form of the distributed files: Many licenses also draw a distinction
between distributing the software as sources and distributing the files as
binaries. In this case, we will ask you, whether you want to distribute the
software in the form of binaries or as source code. In the first case, the
answer should be ’binaries’, in the second ’sources’

• The kind of the ioAccess of the executed program: At least one license
draws a distinction between an open source based work offering only local
access to its io data and an open source based work distributing its io data
via internet. In the first case, the answer should be ’onlyLocally’, in the
second ’viaInternet’

From a more programmatic point-of-view, we can summarize these tokens as
follows:

• type::snimoli or type::proapse

• state::unmodified or state::modified

• context::independent or context::embedded

• recipient::4yourself or recipient::2others

• form::binaries or form::sources

• ioAccess::onlyLocally or ioAccess::viaInternet

We have already defined the open source use case as the combination of these
tokens. If we simply combine all these tokens of all these classes with all the
tokens of the other classes402, we get 2 · 2 · 2 · 2 · 2 · 2 = 62 sets of tokens—or 62
open source use cases. Fortunately, some of the generated sets are invalid from an
empirical or logical view, and some of these sets are context sensitive:

1. If you already have specified that the used open source software is a proapse—
an autonomous program, an application, or a server—then your answer
implies that the software is used independently and is not embedded with
other components into a larger unit. But if you have specified that the used
open source software is a snimoli—a snippet of code, a module, a plugin,

402) in the sense of the cross product TYPE × STATE × CONTEXT × RECIPIENT × FORM
× IOACCESS. In some earlier versions of the OSLiC, we also asked whether you are going
to combine or to embed the open source software with other software components by linking
them statically or dynamically, or by textually including (parts of) the open source software
into your larger product. Meanwhile, we clearly discovered that it is unnecessary to increase
the complexity by the results of this question. For Details → OSLiC p. 61

105

4 Open Source Use Cases: Concept and Taxonomy

or a library—then it can indeed be used as an embedded component of a
constructed larger application or server, or it can be used independently in
case you ’only’ re-distribute it to 3rd. parties.

2. If you already have specified that the used open source software is a snimoli—
a snippet of code, a module, a plugin, or a library—and that this snimoli
shall be used only by yourself (not distributed to other 3rd. parties) then
your answer must also imply that this snimoli is used in combination, as an
embedded part of a larger unit. A library can not be used autonomously,
without using it as a component of another application. In this case, it
would simply sit on the disk and would do nothing more than occupying
space.

3. To enquire the form of the distributed files is only relevant if you have
decided to distribute the software to other recipients 2others.

4. With respect to the one license using the type of ioAccess as a discriminator,
it is only relevant to enquire the type of the ioAccess if you either locally
execute a modified open source program 4yourself or if you locally execute
a program 4yourself, which uses an embedded open source component,
regardless whether it has been modified or not.

Does this sound complex? We thought so, too. We spent much time explaining
these constraints to ourselves, and only when we had transposed all the combina-
tions and rules into a tree, the situation became clearer. The following diagram
summarizes the main results of our investigation403::

403) Each of the invalid use cases (= sets of tokens) [for details s. p. 105] is marked by an �
and leads to an empty set (= ∅). We are using the word ’invalid’ a little ambigiuosly: A
combination of values is invalid, if it is empirically impossible, to combine the features or if
it is irrelavant to subclassify a concept by the added features. Particularly:

• A proapse can not be embedded into another software unit, also containing a main-
function.

• Using a software library only for yourself and independently (not in combination with
larger software unit), is like having an unused heap of bytes on your disc.

• To discriminate between sources and binaries is only valid in case of distributing
software.

• To discriminate between an executed program with an only locally based io access
and that with an internet based io access is only relevant, if you are using the software
for yourself what implies to execute it.

.

106

4 Open Source Use Cases: Concept and Taxonomy

form?

sources

binaries

type?

proapse

snimoli

state?

unmodified

modified

context?

independent

embedded

recipient?

4yourself

2others

ioAccess?

viaInternet

onlyLocal

#

OSUC-01
{proapse, independent,
4yourself, unmodified}

OSUC-02S
{proapse, independent,
2others, unmodified, sources}

OSUC-02B
{proapse, independent,
2others, unmodified, binaries}

OSUC-03L
{proapse, independent,
4yourself, modified, onlyLocal}

OSUC-03N
{proapse, independent,
4yourself, modified, viaInternet}

OSUC-04S
{proapse, independent,
2others, modified, sources}

OSUC-04B
{proapse, independent,
2others, modified, binaries}

OSUC-05S

{snimoli, independent,
2others, unmodified,
sources}

OSUC-05B

{snimoli, independent,
2others, unmodified,
binaries}

OSUC-06L

{snimoli, embedded,
4yourself, unmodified,
onlyLocal}

OSUC-06N

{snimoli, embedded,
4yourself, unmodified,
viaInternet}

OSUC-07S

{snimoli, embedded,
2others, unmodified,
sources}

OSUC-07B

{snimoli, embedded,
2others, unmodified,
binaries}

OSUC-08S

{snimoli, independent,
2others, modified,
sources}

OSUC-08B

{snimoli, independent,
2others, modified,
binaries}

OSUC-09L

{snimoli, embedded,
4yourself, modified,
onlyLocal}

OSUC-09N

{snimoli, embedded,
4yourself, modified,
viaInternet}

OSUC-010S

{snimoli, embedded,
2others, modified,
sources}

OSUC-010B

{snimoli, embedded,
2others, modified,
binaries}

{proapse, 4yourself,
independent, unmodified}

{proapse, 2others,
independent, unmodified}

{proapse, 4yourself,
independent, modified}

{proapse, 2others,
independent, modified}

{proapse, 4yourself, embedded,
{unmodified, modified}} �

{proapse, 2others, embedded,
{unmodified, modified}} �

{snimoli, 4yourself, independent,
{unmodified, modified}} �

{snimoli, 2others,
independent, unmodified}

{snimoli, 4yourself,
embedded, unmodified}

{snimoli, 2others,
embedded, unmodified}

{snimoli, 4yourself,
embedded, modified}

{snimoli, 2others,
independent, modified}

{snimoli, 2others,
embedded, modified}

{2others, sources}

{2others, binaries}

{proapse, 4yourself,
modified, viaInternet}

{proapse, 4yourself,
modified, onlyLocal}

{proapse, 4yourself, unmodified,
{viaInternet, onlyLocal} } �

{snimoli, 4yourself,
embedded, viaInternet}

{snimoli, 4yourself,
embedded, onlyLocal}

{snimoli, 4yourself, independent,
{viaInternet, onlyLocal} } �

107

5 Open Source Use Cases: Find the License
Fulfilling To-do Lists

This chapter offers the Open Source Use Case Finder: Based on the information
gathered by a form, it allows to traverse a tree whose leaves are linked to the open
source use cases which finally refer to the respective to-do lists.

5.1 A standard form for gathering the relevant information

Which open source software do you want to use?

Under which open source license is it released?

Focus Questions Answers

Type

Is the open source software you want to use a library
in the broadest sense (an includable code snippet,
a linkable module or library, or a loadable plugin),
or is it an autonomous program, application, or
server which can be executed?

□ snimoli
□ proapse

State

Do you want to leave the open source software
unmodified as you have received it, or are you
going to create a modified version of it?

□ unmodified
□ modified

Context

Are you going to use / distribute the open source
software as an independent unit, or do you plan
to integrate it as an embedded component into a
complexer piece of software?

□ independent
□ embedded

Recipient

Are you going to use the open source software only
for yourself, or do you plan to (re)distribute it
(also) to other third parties?

□ 4yourself
□ 2others

Form
Given you want to (re)distribute an open source
based work [2others], do you focus on distributing
the binaries or the sources?

□ binaries
□ sources

IoAccess

Given you are using open source software [4yourself]
by executing a modified os program [modified] or by
creating & executing a program using an os library
[embedded], does this program distribute its IO data
only locally or via internet?

□ onlyLocally
□ viaInternet

108

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

As discussed earlier, there are of course some invalid or irrelevant combinations.404

Here are some extra explanations concerning the classes resp. the focuses:

Type: A piece of (open source) software is a program, an application, or a server,
only if you can start its binary form with your normal program launcher, or
(in case of a text file which still must be interpreted by an interpreter like
php, perl, bash etc.) if you can start an interpreter which takes the file as
one of its arguments and executes the commands.

State: You are modifying a piece of (open source) software if you expand, reduce or
modify at least one of the received software files, and—in case of dealing with
binary object code—if you (re)compile and (re)link the modified software
to a new binary file. But if you only modify some of the configuration files,
you are not modifying the open source software itself.

Context: You are using a piece of open source software as an embedded component
of a larger unit . . .

• if one of your files of the larger unit contains a verbatim or a modified
copy (i.e. a snippet) of the received open source software, or

• if your larger unit contains an include statement referring to a func-
tionally defining file of the received open source software, or

• if your larger unit calls a function defined in the received open source
software, or

• if your development environment contains a compiler or linker directive
referring to the received open source software (binaries) and if your
larger unit can’t be executed without resolving this linker directive.

Recipient: You are using the received open source software only for yourself, if
you as a person do not pass it to other entities like persons, organizations,
companies etc., or if you—as a member of a specific development group—
pass it only to the other members of your development group. But if you
store open source software on any device such as a mobile phone, an USB
stick, etc. or if you attach it to any transport medium like email etc. and if
you then sell, give away, or simply send this device or transport medium to
anyone (other than a direct member of your development group) then you
indeed hand the open source software over to third parties.405

404) type::proapse excludes state::embedded; recipient::4yourself excludes the combination with
state::independent and type::snimoli; any value of class ’mode’ implies state::embedded; form
is only relevant if recipient::2others; ioAccess is only relevant if recipient::4yourself[for details
see page 105]. If you have encountered one of these invalid combinations, please check the
corresponding explanations.

405) Please remember that—at least in Germany—there are opinions that even handing over
software to another legal entity or department of the same company is also a kind of
distribution. It is always safest to take the broadest possible meaning.

109

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

Form: Open source software knows two ways to distribute the software: in the
form of binaries and in the form of sources. Mostly it is up to you to
decide whether you want to distribute only the binaries or whether you
are intentionally going to distribute the sources (too). At a first glance,
the concepts ’sources’ and ’binaries’ seems to be clearly distinguished. On
the one hand, compiled sources should be taken as binaries. On the other
hand, editable pieces of software are denoted by the concept ’sources’. But
sometimes the difference is not as clear as wished: For example, you can
modify even already compiled object files by using an hex-editor. Or it
is very difficult to modify the minimized versions of javascript files even
if they are indeed text files. Therefore, the OSLiC ’reuses’ a famous rule
of thumb: “The source code for a work means the preferred form of the
work for making modifications to it”.406 All other forms are denoted by
the concept of ’binaries’. Based on this specification, you can respect some
special conditions if you want to distribute the sources and/or the binaries.

ioAccess: If you execute an open source program or an own program using an
open source library, then (normally) you do not distribute that software.
Under these circumstances, the most open source licenses do not require
anything for executing the program compliantly - even if it is the base
of a globally used internet service. For closing this ’gap’, the AGPL has
been invented: Like the GPL, the AGPL let the obligation to fulfill the
well known set of GPL tasks be triggered by distributing the software.
But, it let these tasks also be triggered by an established remote network
interaction: whoever interacts with the locally executed program remotely
through a computer network gets all the rights which normally the receiver
of a distribution gets. Nevertheless, the AGPL does not wish to cause an
overhead of tasks: Only locally excuted open source programs which have
been modfied or locally executed own programs using an AGPL licensed
library shall indeed trigger the fulfillment of the requirements. Thus, we
introduced the features ioAccess:onlyLocally and ioAccess:viaInternet : They
are only relevant if you uses a program only for yourself (4yourself) and [
(if that AGPL licensed program has been modified {proapse and modified})
or (if that program uses an embedded AGPL licensed library {snimoli and
embedded})].

5.2 The taxonomic Open Source Use Case Finder

Now, after having gathered the necessary information, determine your open source
use case by traversing the following tree and its corresponding branches:

406) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3.

110

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

OSS

type:

proapse

state:

unmodified
context:

independent

recipient:

4yourself
⇒ OSUC-01: p. 112

recipient:

2others

form:

sources
⇒ OSUC-02S
(see p. 112)

form:

binaries
⇒ OSUC-02B
(see p. 113)

state:

modified
context:

independent

recipient:

4yourself

ioAccess:

onlyLocal
⇒ OSUC-03L
(see p. 114)

ioAccess:

viaInternet
⇒ OSUC-03N
(see p. 115)

recipient:

2others

form:

sources
⇒ OSUC-04S
(see p. 116)

form:

binaries
⇒ OSUC-04B
(see p. 116)

type:

snimoli

state:

unmodified

context:

independent
recipient:

2others

form:

sources
⇒ OSUC-05S
(see p. 117)

form:

binaries
⇒ OSUC-05B
(see p. 118)

context:

embedded

recipient:

4yourself

ioAccess:

onlyLocal
⇒ OSUC-06L
(see p. 119)

ioAccess:

viaInternet
⇒ OSUC-06N
(see p. 120)

recipient:

2others

form:

sources
⇒ OSUC-07S
(see p. 120)

form:

binaries
⇒ OSUC-07B
(see p. 121)

state:

modified

context:

independent
recipient:

2others

form:

sources
⇒ OSUC-08S
(see p. 122)

form:

binaries
⇒ OSUC-08B
(see p. 123)

context:

embedded

recipient:

4yourself

ioAccess:

onlyLocal
⇒ OSUC-09L
(see p. 123)

ioAccess:

viaInternet
⇒ OSUC-09N
(see p. 124)

recipient:

2others

form:

sources
⇒ OSUC-10S
(see p. 125)

form:

binaries
⇒ OSUC-10B
(see p. 126)

111

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

5.3 The open source use cases and its to-do list references

On the following pages, each Open Source Use Case is textually specified one
more time and complemented by a list of page numbers. Each of these pages
covers the license-specific to-do list whose items together offer a processable way
for acting according to the license under the circumstances of the described Open
Source Use Case.

OSUC-01: Only for yourself, you are going to use an unmodified open source
program, application, or server just as you received it. But you do not
combine it with other components in the sense of software development (=
proapse, unmodified, independent, 4yourself). To see the specific, license
fulfilling to-do lists jump to the following pages:

• p. 128 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-02S: Just as you received it, you are going to distribute an unmodified
open source program, application, or server to third parties in the form

112

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

of sources. In this act of distribution, you do not combine this program,
application, or server with other software components in the sense of software
development (= proapse, unmodified, independent, 2others, sources). To see
the specific, license fulfilling to-do lists jump to the following pages:

• p. 129 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 182 for the EPL-1.0 (= Eclipse Public License)

• p. 197 for the EUPL-1.1 (= European Union Public License)

• p. 212 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 255 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 278 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 303 for the PHP-3.0 License

OSUC-02B: Just as you received it, you are going to distribute an unmodified
open source program, application, or server to third parties in the form
of binaries. In this act of distribution, you do not combine this program,
application, or server with other software components in the sense of software
development (= proapse, unmodified, independent, 2others, binaries). To
see the specific, license fulfilling to-do lists jump to the following pages:

• p. 130 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 151 for the Apache-2.0 (= Apache License)

• p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

113

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 183 for the EPL-1.0 (= Eclipse Public License)

• p. 197 for the EUPL-1.1 (= European Union Public License)

• p. 212 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 225 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 256 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 279 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 304 for the PHP-3.0 License

OSUC-03L: You are executing an open source program, application, or server
which you have modified (but not combined with other components in the
sense of software development) and which distributes its input/output only
locally to you (= proapse, modified, independent, 4yourself, onlyLocal). To
see the specific, license fulfilling to-do lists jump to the following pages:

• p. 128 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

114

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-03N: You are executing an open source program, application, or server
which you have modified (but not combined with other components in the
sense of software development) and which distributes its input/output to you
or other users via the internet (= proapse, modified, independent, 4yourself,
viaInternet). To see the specific, license fulfilling to-do lists jump to the
following pages:

• p. 141 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

115

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-04S: You are going to modify an open source program, application, or
server after you received it and before you will distribute it to third parties
in the form of sources. But you do not combine this modified program,
application, or server with other software components in the sense of software
development (= proapse, modified, independent, 2others, sources). To see
the specific, license fulfilling to-do lists jump to the following pages:

• p. 133 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 152 for the Apache-2.0 (= Apache License)

• p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 163 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 184 for the EPL-1.0 (= Eclipse Public License)

• p. 201 for the EUPL-1.1 (= European Union Public License)

• p. 216 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 228 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 248 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 259 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 280 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 304 for the PHP-3.0 License

OSUC-04B: You are going to modify an open source program, application, or
server after you received it and before you will distribute it to third parties
in the form of binaries. But you do not combine this modified program,
application, or server with other software components in the sense of software
development (= proapse, modified, independent, 2others, binaries). To see
the specific, license fulfilling to-do lists jump to the following pages:

116

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 134 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 153 for the Apache-2.0 (= Apache License)

• p. 170 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 164 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 178 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 185 for the EPL-1.0 (= Eclipse Public License)

• p. 202 for the EUPL-1.1 (= European Union Public License)

• p. 217 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 230 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 248 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 260 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 281 for the MPL (= Mozilla Public License)

• p. 293 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 305 for the PHP-3.0 License

OSUC-05S: Just as you received it, you are going to distribute an unmodified
open source library, code snippet, module, or plugin to third parties in
the form of sources. In this act of distribution, you do not combine this
library, code snippet, module, or plugin with other software components
in the sense of software development (= snimoli, unmodified, independent,
2others, sources). To see the specific, license fulfilling to-do lists jump to
the following pages:

• p. 129 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

117

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 182 for the EPL-1.0 (= Eclipse Public License)

• p. 197 for the EUPL-1.1 (= European Union Public License)

• p. 212 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 255 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 278 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 303 for the PHP-3.0 License

OSUC-05B: Just as you received it, you are going to distribute an unmodified
open source library, code snippet, module, or plugin to third parties in
the form of binaries. In this act of distribution, you do not combine this
library, code snippet, module, or plugin with other software components
in the sense of software development (= snimoli, unmodified,independent,
2others, binaries). To see the specific, license fulfilling to-do lists jump to
the following pages:

• p. 130 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 151 for the Apache-2.0 (= Apache License)

• p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 183 for the EPL-1.0 (= Eclipse Public License)

• p. 197 for the EUPL-1.1 (= European Union Public License)

• p. 212 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 225 for the GPL-3.0 (= GNU General Public License Version 3)

118

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 256 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 279 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 304 for the PHP-3.0 License

OSUC-06L: You are executing any application which distributes input/output
only locally to you and which uses an unmodified embedded open source
library, code snippet, module, or plugin (= snimoli, umodified, embedded,
4yourself, onlyLocal). To see the specific, license fulfilling to-do lists jump
to the following pages:

• p. 128 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

119

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 302 for the PHP-3.0 License

OSUC-06N: You are executing any application which distributes its input/output
to you or other users via the internet and which uses an unmodified embedded
open source library, code snippet, module, or plugin (= snimoli, umodified,
embedded, 4yourself, viaInternet). To see the specific, license fulfilling to-do
lists jump to the following pages:

• p. 143 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-07S: Just as you received it and before you will distribute it to third
parties in the form of sources and together with a larger software unit, you
are going to combine and embed an unmodified open source library, code
snippet, module, or plugin into that larger software unit in the sense of
software development (= snimoli, unmodified, embedded, 2others, sources).
To see the specific, license fulfilling to-do lists jump to the following pages:

• p. 131 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

120

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 182 for the EPL-1.0 (= Eclipse Public License)

• p. 199 for the EUPL-1.1 (= European Union Public License)

• p. 213 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 226 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 246 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 257 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 278 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 303 for the PHP-3.0 License

OSUC-07B: Just as you received it and before you will distribute it to third
parties in the form of binaries and together with a larger software unit, you
are going to combine and embed an unmodified open source library, code
snippet, module, or plugin into that larger software unit in the sense of
software development (= snimoli, unmodified, embedded, 2others, binaries).
To see the specific, license fulfilling to-do lists jump to the following pages:

• p. 132 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 151 for the Apache-2.0 (= Apache License)

• p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 177 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 183 for the EPL-1.0 (= Eclipse Public License)

121

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 199 for the EUPL-1.1 (= European Union Public License)

• p. 214 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 227 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 246 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 258 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 273 for the MIT License (= Massachusetts Institute of Technology)

• p. 279 for the MPL (= Mozilla Public License)

• p. 292 for the MS-PL (= Microsoft Public License)

• p. 299 for the PostgreSQL (= Postgres License)

• p. 304 for the PHP-3.0 License

OSUC-08S: Before you will distribute it to third parties in the form of sources,
you are going to modify an open source library, code snippet, module, or
plugin. But you do not combine it with other software components in the
sense of software development (= snimoli, modified, independent, 2others,
sources). To see the specific, license fulfilling to-do lists jump to the following
pages:

• p. 136 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 154 for the Apache-2.0 (= Apache License)

• p. 171 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 164 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 178 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 186 for the EPL-1.0 (= Eclipse Public License)

• p. 203 for the EUPL-1.1 (= European Union Public License)

• p. 218 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 231 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 249 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 262 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

122

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 274 for the MIT License (= Massachusetts Institute of Technology)

• p. 283 for the MPL (= Mozilla Public License)

• p. 294 for the MS-PL (= Microsoft Public License)

• p. 300 for the PostgreSQL (= Postgres License)

• p. 306 for the PHP-3.0 License

OSUC-08B: Before you will distribute it to third parties in the form of binaries,
you are going to modify an open source library, code snippet, module,
or plugin. But you do not combine it with other software components
in the sense of software development (= snimoli, modified, independent,
2others, binaries). To see the specific, license fulfilling to-do lists jump to
the following pages:

• p. 137 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 155 for the Apache-2.0 (= Apache License)

• p. 171 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 165 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 178 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 188 for the EPL-1.0 (= Eclipse Public License)

• p. 204 for the EUPL-1.1 (= European Union Public License)

• p. 220 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 232 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 250 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 263 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 274 for the MIT License (= Massachusetts Institute of Technology)

• p. 284 for the MPL (= Mozilla Public License)

• p. 295 for the MS-PL (= Microsoft Public License)

• p. 300 for the PostgreSQL (= Postgres License)

• p. 307 for the PHP-3.0 License

OSUC-09L: You are executing any application which distributes input/output
only locally to you and which uses an embedded open source library, code

123

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

snippet, module, or plugin – being modified by you (= snimoli, modified,
embedded, 4yourself, onlyLocal). To see the specific, license fulfilling to-do
lists jump to the following pages:

• p. 128 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-09N: You are executing any application which distributes its input/output
to you or other users via the internet and which uses an embedded open
source library, code snippet, module, or plugin – being modified by you (=
snimoli, modified, embedded, 4yourself, viaInternet). To see the specific,
license fulfilling to-do lists jump to the following pages:

• p. 143 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 150 for the Apache-2.0 (= Apache License)

• p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

124

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 176 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 181 for the EPL-1.0 (= Eclipse Public License)

• p. 196 for the EUPL-1.1 (= European Union Public License)

• p. 211 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 272 for the MIT License (= Massachusetts Institute of Technology)

• p. 277 for the MPL (= Mozilla Public License)

• p. 291 for the MS-PL (= Microsoft Public License)

• p. 298 for the PostgreSQL (= Postgres License)

• p. 302 for the PHP-3.0 License

OSUC-10S: Before you will distribute it to third parties in the form of sources,
you are going to modify an open source library, code snippet, module, or
plugin, which you combine with other software components in the sense of
software development (= snimoli, modified, embedded, 2others, sources). To
see the specific, license fulfilling to-do lists jump to the following pages:

• p. 138 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 156 for the Apache-2.0 (= Apache License)

• p. 172 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 166 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 179 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 189 for the EPL-1.0 (= Eclipse Public License)

• p. 205 for the EUPL-1.1 (= European Union Public License)

• p. 221 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 234 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 251 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

125

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

• p. 264 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 274 for the MIT License (= Massachusetts Institute of Technology)

• p. 285 for the MPL (= Mozilla Public License)

• p. 295 for the MS-PL (= Microsoft Public License)

• p. 300 for the PostgreSQL (= Postgres License)

• p. 307 for the PHP-3.0 License

OSUC-10B: Before you will distribute it to third parties in the form of binaries,
you are going to modify an open source library, code snippet, module, or
plugin, which you combine with other software components in the sense of
software development (= snimoli, modified, embedded, 2others, binaries).
To see the specific, license fulfilling to-do lists jump to the following pages:

• p. 140 for the AGPL-3.0 (= GNU Affero General Public License)

• p. 157 for the Apache-2.0 (= Apache License)

• p. 173 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

• p. 167 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

• p. 179 for the CDDL-1.0 (= Common Develop and Distribution
License)

• p. 190 for the EPL-1.0 (= Eclipse Public License)

• p. 207 for the EUPL-1.1 (= European Union Public License)

• p. 222 for the GPL-2.0 (= GNU General Public License Version 2)

• p. 235 for the GPL-3.0 (= GNU General Public License Version 3)

• p. 253 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

• p. 265 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

• p. 274 for the MIT License (= Massachusetts Institute of Technology)

• p. 287 for the MPL (= Mozilla Public License)

• p. 296 for the MS-PL (= Microsoft Public License)

• p. 300 for the PostgreSQL (= Postgres License)

• p. 309 for the PHP-3.0 License

126

6 Open Source License Compliance: To-Do Lists

With respect to the defined open source use cases, this chapter lists what one has
to do for acting in accordance with the specific open source licenses.

6.1 Some general remarks on ’giving’ someone a file

This chapter has to be started with some general points which are relevant for
many of the to-do lists. So that the same points are not repeated too often, we
will start with these general remarks and refer to them throughout the chapter.

• Sometimes when delivering a binary package containing open source software,
the medium doesn’t allow the recipient to view all files contained in that
package. For example, a lot of mobile devices don’t give the user access to
the file system. But open source licenses often require ‘to give’ someone
copies of text files, such as the license text, copyright notes, or specific notice
file. The safe interpretation of ‘giving someone a text’ is that the receiver
must be able to read it407. Thus, on systems which offer a file browser and
a suitable reader, it is sufficient, to put these file onto the files system. On
the other systems, you must present the content of the files through the
UI of your application—for example in a specific copyright screen408. The
OSLiC does not want to refine the taxonomies down to the level of operating
systems, so it is up to the user to keep this in mind when reading the to-do
lists.

• Sometimes a product which uses and distributes open source software tries
to fulfill the requirement ’to give the recipients the license etc.’ by presenting
links to general versions of these licensing files hosted somewhere on the
internet. But be aware: Although it is a good tradition—especially if you
link to the homepages of the projects for being totally transparent— it is
not sufficient to offer only the links. If you are required by the open source
licenses to handover something to your users, you must do it. It is not safe
to delegate the task to anyone hoping that they will offer the files all the
time your product is being distributed409. Even if it would be safe to assume

407) To give someone anything they can’t touch, feel or see is like not giving him the object ;-)
408) Additionally, in the open source community, it is a good tradition, to present these reference

data voluntarily.
409) Moreover, the advantage of doing the job oneself is that one has not to struggle with

uncommunicated implicit modifications of the link targets.

127

6 Open Source License Compliance: To-Do Lists

that the link will remain valid forever, the point is: you have to fulfill the
license, no one else.

6.2 AGPL licensed software

AGPL 3.0
recipient:
4your-
self

recipient:
2others

ioAccess:
only-
Local

ioAccess:
via-

Internet

state:
unmo-
dified

state:
mo-

dified

state:
unmo-
dified

state:
mo-

dified

type:
pro-
apse

type:
sni-
moli

type:
pro-
apse

type:
sni-
moli

type:
proapse

or
snimoli

type:
snimoli

type:
proapse

type:
snimoli

context:
inde-

pendent

context:
em-

bedded

context:
inde-

pendent

context:
em-

bedded

context:
inde-

pendent

context:
inde-

pendent

context:
em-

bedded

form:
source

form:
bi-

nary

form:
source

form:
bi-

nary

form:
source

form:
bi-

nary

form:
source

form:
bi-

nary

form:
source

form:
bi-

nary

AGPL-
C1

using
apps
& libs
only for
your-
self (+
sub

condi-
tions)

AGPL-
CC

execu-
ting a

modified
AGPL
program
with net-
io-Access

AGPL-
CD

execu-
ting any
app with
net-io-
Access
using a
(mod-
ified)
library

AGPL-
C2

distri-
buting
unmo-
dified
soft-

ware as
inde-

pendent
sources

AGPL-
C3

distribu-
ting

unmo-
dified

software
as inde-
pendent
binaries

AGPL-
C4

distribu-
ting an

un-
modified
library
as em-
bedded
sources

AGPL-
C5

distribu-
ting an

un-
modified
library
as em-
bedded
bina-
ries

AGPL-
C6

distri-
buting
a modi-

fied
pro-

gram as
sources

AGPL-
C7

distri-
buting
a modi-

fied
pro-
gram
as bi-
naries

AGPL-
C8

distri-
buting
a modi-

fied
library
as inde-
pendent
sources

AGPL-
C9

distri-
buting
a modi-

fied
library
as inde-
pendent
bina-
ries

AGPL-
CA

distri-
buting
a modi-

fied
library
as em-
bedded
sources

AGPL-
CB

distri-
buting
a modi-

fied
library
as em-
bedded
bina-
ries

6.2.1 AGPL-3.0-C1: Using the software only for yourself under additional
restrictions

means that you received AGPL-3.0 licensed software, that you will use it only
for yourself, and that you do not hand over to any third party in any sense.
Additionally you warrants that no other than you interacts with the executed
software remotely through a computer network.

128

6 Open Source License Compliance: To-Do Lists

covers OSUC-01, OSUC-03L, OSUC-06L, and OSUC-09L410

requires no tasks in order to fulfill the conditions of the GNU Affero General
Public License Version 3 with respect to this use case:

• You are allowed to execute an unmodified AGPL program without
being obliged to do anything, as long as you do not give the program
to third parties. And you are allowed to embed any AGPL licensed
library, snippet or module into your own program and to execute that
program without being obliged to do anything, as long as no other
than you can interact with it remotely through a computer network
and as long as you do not give the library or your program to third
parties.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.2 AGPL-3.0-C2: Passing the unmodified software as independent
sources

means that you received AGPL-3.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S411

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.412

• [mandatory:] Retain all existing copyright notices.

410) For details → OSLiC, pp. 112 – 123
411) For details → OSLiC, pp. 112 – 117
412) For implementing the handover of files correctly → OSLiC, p. 127

129

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.3 AGPL-3.0-C3: Passing the unmodified software as independent
binaries

means that you received AGPL-3.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B413

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.414

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Retain all existing copyright notices.

413) For details → OSLiC, pp. 113 – 118
414) For implementing the handover of files correctly → OSLiC, p. 127

130

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Execute the to-do list of use case AGPL-3.0-C2 for the
source code that you publish.415

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.4 AGPL-3.0-C4: Passing the unmodified library as embedded sources

means that you received an AGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S416

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.417

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is itself
licensed under the AGPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0.

• [mandatory:] Arrange the the sources of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0

415) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

416) For details → OSLiC, pp. 120
417) For implementing the handover of files correctly → OSLiC, p. 127

131

6 Open Source License Compliance: To-Do Lists

licensing statements.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.5 AGPL-3.0-C5: Passing the unmodified library as embedded binaries

means that you received an AGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B418

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.419

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is itself

418) For details → OSLiC, pp. 121
419) For implementing the handover of files correctly → OSLiC, p. 127

132

6 Open Source License Compliance: To-Do Lists

licensed under the AGPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0.

• [mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case AGPL-3.0-C4 for the
source code that you publish.420

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.6 AGPL-3.0-C6: Passing a modified program as source code

means that you received an AGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S421

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.422

420) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

421) For details → OSLiC, pp. 116
422) For implementing the handover of files correctly → OSLiC, p. 127

133

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the AGPL-3.0.423

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.7 AGPL-3.0-C7: Passing a modified program as binary

means that you received an AGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B424

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are

423) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

424) For details → OSLiC, pp. 116

134

6 Open Source License Compliance: To-Do Lists

retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.425

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the AGPL-3.0.426

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case AGPL-3.0-C6 for the
source code that you publish.427

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright

425) For implementing the handover of files correctly → OSLiC, p. 127
426) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0

license.
427) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

135

6 Open Source License Compliance: To-Do Lists

notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.8 AGPL-3.0-C8: Passing a modified library as independent source code

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S428

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.429

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the AGPL-3.0.430

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to

428) For details → OSLiC, pp. 122
429) For implementing the handover of files correctly → OSLiC, p. 127
430) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0

license.

136

6 Open Source License Compliance: To-Do Lists

the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.9 AGPL-3.0-C9: Passing a modified library as independent binary

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B431

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.432

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

431) For details → OSLiC, pp. 123
432) For implementing the handover of files correctly → OSLiC, p. 127

137

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Execute the to-do list of use case AGPL-3.0-C8 for the
source code that you publish.433

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the AGPL-3.0.434

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.10 AGPL-3.0-CA: Passing a modified library as embedded source code

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S435

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

433) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

434) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

435) For details → OSLiC, pp. 125

138

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.436

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is itself
licensed under the AGPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.437

• [mandatory:] Arrange the the sources of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

436) For implementing the handover of files correctly → OSLiC, p. 127
437) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0

license.

139

6 Open Source License Compliance: To-Do Lists

6.2.11 AGPL-3.0-CB: Passing a modified library as embedded binary

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B438

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.439

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case AGPL-3.0-CA for the
source code that you publish.440

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is itself
licensed under the AGPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include

438) For details → OSLiC, pp. 126
439) For implementing the handover of files correctly → OSLiC, p. 127
440) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

140

6 Open Source License Compliance: To-Do Lists

the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.441

• [mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.12 AGPL-3.0-CC: Executing a modified program with network
interaction

means that you received an AGPL-3.0 licensed program, an application, or server,
that you modified it, and that you let this program, application, or server
be executed by a computer in a way, that other people than you can interact
with the executed software remotely through a computer network.

covers OSUC-03N442

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

441) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

442) For details → OSLiC, pp. 115

141

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.443

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the AGPL-3.0.444

• [mandatory:] Make the source code of the executed modified program
publicly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case AGPL-3.0-C6 for the
source code that you publish.445

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

443) For implementing the handover of files correctly → OSLiC, p. 127
444) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0

license.
445) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

142

6 Open Source License Compliance: To-Do Lists

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.13 AGPL-3.0-CD: Executing a (modified) library as embedded
component with network interaction

means that you received an AGPL-3.0 licensed library, snippet, or module,
that you modified it or that you did not modified it, that you embed this
modified or unm odified library, snippet, or module into an own overarching
program, an application, or server, and that you finally let this own program,
application, or server be executed by a computer in a way, that other
people than you can interact with the executed software remotely through
a computer network.

covers OSUC-06N,OSUC-09N446

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If it
is not already part of the software package, add it.447

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the complete source code of the excuted program
embedding the (modified) library publicly available (and, therefore, also
the source code of the (modified) library itself): Push the source code
package into a repository under your control and make it downloadable
via the Internet. Ensure, that this repository is online for at least 3
years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case AGPL-3.0-CA for the
source code that you publish.448

446) For details → OSLiC, pp. 120 – 124
447) For implementing the handover of files correctly → OSLiC, p. 127
448) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

143

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is itself
licensed under the AGPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.449

• [mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.14 Discussions and Explanations

For simplifying the justifications of our AGPL interpretation, we can state, that
the AGPL-3.0 and the GPL-3.0 are very similar: apart from some differences
caused by the varying names and passings remarks450, the most paragraphs of the
two licenses exactly offer the same text451. Only the §13 of the AGPL-3.0 does
not match to the §13 of the GPL-3.0: §13 of the GPL-3.0 permits “[. . .] to link or

449) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

450) Very similar are the preamble and §0. Compare Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp. versus Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.

451) Equal are §1 - 12 and §14 - §17. Compare Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp. versus Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.

144

6 Open Source License Compliance: To-Do Lists

combine any covered work with a work lincesed under version 3 of the GNU Affero
Generasl Public License”452; while §13 of the AGPL-3.0 deals with the “remote
network interaction”453. Therefore, the analysis of the GPL-3.0 lincense454 is also
valid for the AGPL-3.0; it is not necessary to repeat that discussion here.

So, we can focus on the difference. The AGPL-3.0 tries to close a gap of the
GPL-3.0:

Purpose of all GNU licenses is to preserve the freedom to use, to study, to share,
and to modify the GNU programs and libraries455. These licenses want to prevent
that users circumvent the tasks which establish and maintain this freedom: Only
if someone uses the program / library only for himself, he shall not be obliged
to do anything. But if any third party was involved into the use of the GNU
software, this third party should receive all those rights and possibilities to use
the software which all the other users already have got.

In a time, where using the benefits of a program meant executing the software on
ons’s own machine (and hence having received the program at least as a binary),
it was enough to let the obligations of – for example – handing over the license or
the source code be triggered by the act of ’distributing the software’. Nowadays,
in the times of cloud software systems, users can let profit other users from the
free software without conveying the software. In these cases, they execute the
free program on their own machines, but they nevertheless do not use the free
program any longer only for themselves. So, in time of cloud service technologies,
the trigger of executing the license fulfilling tasks must be complemented by a
criterion which indicates that a third party is involved into the context of using
the software. And this criteroin must no longer presuppose that this third party
has received the software itself.

For that purpose, the AGPL-3.0 states, that such an executed AGPL program
must “[. . .] prominently offer all useres interacting with it remotely through a
computer network [. . .] an opportunity to receive the Corresponding Source of
your version by providing access to the Corresponding Source from a network
server at no charge, through some standard or customary means of facilitating
copying of software”456. Obviously, the trigger of distributing the AGPL software
now has been expanded by the feature being able to interact with the AGPL
software remotely through a computer network.

The first consequence of this analysis is, that we can take over all the GPL uses

452) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §13.
453) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.
454) → p. 236
455) cf. Free Software Foundation: What is free software? The Free Software Definition; 2015

[n.y.] ⟨URL: https://www.gnu.org/philosophy/free-sw.en.html⟩ – reference download:
2015-02-20, wp..

456) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.

145

https://www.gnu.org/philosophy/free-sw.en.html

6 Open Source License Compliance: To-Do Lists

cases which deal with distributing the software (2others) and all the corresponding
license fulfilling tasklists of GPL-3-C2457 until GPL-3-CB458 – as we have defined
them in the GPL chapter.

The second consequence is, that we now have to subclassify the open source use
case recipient:4yourself : we have to distinguish the use with internet input-output
access from that with only local input-output acesss.

Additionally, the AGPL limits the requirement to the condition, that the used
program is modified. The license exactly says that “[. . .] if you modify the
Program, your modfied version must prominently offer all useres interacting
with it remotely through a computer network [. . .] an opportunity to receive
the Corresponding Source of your version [. . .]”459. Thus, the third consequence
is, that we have to subclassify the open source use case recipient:4yourself not
only by the features ioAccess:viaInternet and ioAccess:onlyLocal, but also by the
features state:modified and state:unmodified.

Finally, there is another little complication: One can only execute a program. A
library can not be directly executed. So, the question arises, what the user has
to be do if executes an own program which uses an unmodified AGPL licensed
library or module?

On the first glance, the license in §13 says only that he has to publish the sources
too, if executes a modified program. But on further reflection, one has also to
consider the other paragraphs of the AGPL: If one embeds an AGPL licensed
library, snippet or module into an own program, then – due to the Copyleft effect
of the AGPL – this program which uses the library, snippet or module, has to be
licensed under the AGPL too. And finally, every new program has to be regarded
as a modification of the first empty file. In other words: one can only execute an
own program using an unmodified AGPL library compliantly, if one respects the
§13 for the complete software complex being comprised of the library itself and
the pure code of the overarching program.

Based on this analysis, we had only to introduce two new AGPL specific open
source use cases and could recycle the complete set of GPL specific open source
use cases:

• All GPL-3.0 use cases triggered by the distribution of the software recip-
ient:2others are transfered into the AGPL-3.0 finder and the AGPL-3.0
tasklist chapter as they have been defined in the GPL finder and the GPL-3.0
tasklist chapter.

• All combinations of recipient:4yourself and ioAccess:onlyLocally are covered
by the old GPL ’yourself’ use case which says, that one has not do anything

457) → OSLiC, p. 224
458) → OSLiC, p. 235
459) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.

146

6 Open Source License Compliance: To-Do Lists

as long as one uses the software only for oneself. But in the context of
AGPL, this use case has additional conditions: one has not do anything if
one does not distribute the software to other parties in any thing and if one
executes this software on one’s own machines in an environment which does
not allow anyone else than oneself to interact with it remotely through a
computer network.

• If one executes an unmodified AGPL program, which one has received and
which one has not modified, then one also has not do anything.

• If one ’executes’ an unmodified library as an embedded component of
the really executed overarching program, then one has also to license this
overarching program under the AGPL and hence has to fulfill the conditions
of §13.

• If one executes a modified AGPL program, which one has received, has to
fulfill the conditions of §13.

• If one executes an modified library as an embedded component of the really
executed overarching program, then one has also to license this overarching
program under the AGPL and hence has to fulfill the conditions of §13 with
respect to bot parts, to the overarching program and the library.

There is a last point, which should also be discussed here. It concerns the question
of granularity:

The AGPL-3.0 requires that the “[. . .] modified version (of an [executed] program)
must prominently offer all users interacting with it remotely through a computer
network [. . .] an opportunity to receive the Corresponding Source of your version
by providing access to the Corresponding Source from a network server at no charge
[. . .]”460. For respecting this rule, one has to know what the term Corresponding
Source means: how many of the embedded components of the program must be
conveyed together with the overarching program.

Fortunately, the AGPL-3.0 (and the GPL-3.0) defines the used terms: “The
‘Corresponding Source’ for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and
to modify the work, including scripts to control those activities.461” If one took
this statements seriously, one would have to “provide access to” the complete
software stack of the executed AGPL program – just down to the glibc.

But the AGPL does not want to be to greedy. Therefore it limits the scope by
determining, that the Corresponding Source “[. . .] does not include the work’s
System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part

460) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.
461) cf. id., l.c., wp. §1.

147

6 Open Source License Compliance: To-Do Lists

of the work”462. For understanding this rule, one has to know, what the term
System Libraries means. The AGPl says, that “the ‘System Libraries’ of an
executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work
with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.463” Unfortunately,
one has now to analyse, what the AGPL defines as a Major Component : “A
enquoteMajor Component, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it464”.

Based on these specifications, one can give some rule of thumbs concerning the
question down to which level one has to give access to the corresponding source
code of an an executed AGPL program:

• If one lets execute a modified AGPL licensed binary program, then one has
to give access to the code of

– the executed program itself

– every modified embedded component of that program

– every not freely accessible embedded component of that program

– all not freely accessible tools, scripts, data which are necessary to
compile the sources of the program in a freely accessible compilation /
developement environment

But it is not necessary to give access to unmodified standard libraries,
compilers, or tools which can freely be downloaded from their standard
repositories.

• If one lets execute a modified AGPL licensed script, then one has to give
access to the code of

– the executed script itself

– every modified embedded script component included by the main script

– every not freely accessible embedded script component included by the
main script

– all not freely accessible tools, scripts, data which are necessary to to
let that main script be executed by a freely accessible interpreter

462) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §1.
463) cf. id., ibid.
464) cf. id., ibid.

148

6 Open Source License Compliance: To-Do Lists

– the interpreter itself if it is not freely accessible.

But it is not necessary to give access to unmodified standard script libraries,
interpreters, or tools which can freely be downloaded from their standard
repositories

6.3 Apache-2.0 licensed software

Today, the current release of the Apache open source license is version 2.0, older
versions are deprecated.465 Because it focusses primarily on the “redistribution,”466

the following simplified Apache specific open source use case finder467 can be used:

Apache-2.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

Apache-
2.0-C1
using

software
only for
yourself

Apache-
2.0-C2

dis-
tributing

unmodified
software

as sources

Apache-
2.0-C3

dis-
tributing

unmodified
software as
binaries

Apache-
2.0-C4

dis-
tributing
modified
program

as sources

Apache-
2.0-C5

dis-
tributing
modified

program as
binaries

Apache-
2.0-C6

dis-
tributing
modified
library
as inde-
pendent
sources

Apache-
2.0-C7

dis-
tributing
modified
library
as inde-
pendent
binaries

Apache-
2.0-C8

dis-
tributing
modified
library as
embedded
sources

Apache-
2.0-C9

dis-
tributing
modified
library as
embedded
binaries

465) For details → OSLiC, pp. 29
466) cf. Open Source Initiative: APL-2.0, 2004, wp. §4.
467) For details of the general OSUC finder → OSLiC, pp. 104 and ??

149

6 Open Source License Compliance: To-Do Lists

6.3.1 Apache-2.0-C1: Using the software only for yourself

means that you received Apache-2.0 licensed software, that you will use it only
for yourself, and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N468

requires no tasks in order to fulfill the conditions of the Apache License 2.0 with
respect to this use case:

• You are allowed to use any kind of Apache software in any sense and
in any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.2 Apache-2.0-C2: Passing the unmodified software as source code

means that you received Apache-2.0 licensed software which you are now going
to distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S469

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.470

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

468) For details → OSLiC, pp. 112 – 124
469) For details → OSLiC, pp. 112 – 120
470) For implementing the handover of files correctly → OSLiC, p. 127

150

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the notice text file is retained in your
package in the form you have initially received it.471

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.3 Apache-2.0-C3: Passing the unmodified software as binaries

means that you received Apache-2.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B472

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.473

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

• [mandatory:] Ensure that the notice text file is retained in or in-
tegrated into your package in the form you have initially received

471) The Apache license seems purposely to be a bit ambiguous: it uses the term “‘Notice’ text
file”. In its strict sense, the term refers to a file named ‘NOTICE.[txt|pdf|. . .]’. In a weaker
sense, it may denote any (text) file containing (licensing) notices. To be sure to act according
to this requirement you should also read this term in the broader sense if there is no text file
named ‘NOTICE’

472) For details → OSLiC, pp. 113 – 121
473) For implementing the handover of files correctly → OSLiC, p. 127

151

6 Open Source License Compliance: To-Do Lists

it.

• [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear (especially, if you
are distributing an unmodified Apache-2.0 licensed library as embedded
component of your own work which displays its own copyright notice.)

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.4 Apache-2.0-C4: Passing a modified program as source code

means that you received an Apache-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S474

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.475

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

• [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

• [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the program
already displays a copyright dialog, update it in an appropriate manner.

474) For details → OSLiC, pp. 116
475) For implementing the handover of files correctly → OSLiC, p. 127

152

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Inside of the source code, mark all your modifications
thoroughly. Generate a notice text file, if it still does not exist. Add a
description of your modifications into the notice text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.5 Apache-2.0-C5: Passing a modified program as binary

means that you received an Apache-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B476

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.477

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

• [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

476) For details → OSLiC, pp. 116
477) For implementing the handover of files correctly → OSLiC, p. 127

153

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the program
already displays a copyright dialog, update it in an appropriate manner.

• [voluntary:] Even if you do not want to distribute your modified
source code, mark all your modifications thoroughly.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.6 Apache-2.0-C6: Passing a modified library as independent source code

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S478

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.479

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

• [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

478) For details → OSLiC, pp. 122
479) For implementing the handover of files correctly → OSLiC, p. 127

154

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Inside of the source code, mark all your modifications
thoroughly. Generate a notice text file, if it still does not exist. Expand
the notice text file by a description of your modifications.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.7 Apache-2.0-C7: Passing a modified library as independent binary

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B480

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.481

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

• [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

480) For details → OSLiC, pp. 123
481) For implementing the handover of files correctly → OSLiC, p. 127

155

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Even if you do not want to distribute your modified
source code, mark all your modifications thoroughly.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.8 Apache-2.0-C8: Passing a modified library as embedded source code

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S482

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.483

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

• [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

• [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the software
that embeds this library displays its own copyright dialog, insert this
information there.

482) For details → OSLiC, pp. 125
483) For implementing the handover of files correctly → OSLiC, p. 127

156

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Inside of the library source code, mark all your modifi-
cations thoroughly. Generate a notice text file, if it still does not exist.
Expand the notice text file by a description of your modifications.484

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

• [voluntary:] Arrange your source code distribution so that the in-
tegrated Apache license and the notice text file clearly refer only to
the embedded library and do not disturb the licensing of your own
overarching work. It’s a good tradition to keep embedded components
like libraries, modules, snippets, or plugins in a specific directory which
contains also all additional licensing elements.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.9 Apache-2.0-C9: Passing a modified library as embedded binary

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B485

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.486

• [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the

484) The term library also includes snippet, module, and plugin.
485) For details → OSLiC, pp. 126
486) For implementing the handover of files correctly → OSLiC, p. 127

157

6 Open Source License Compliance: To-Do Lists

binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

• [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

• [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the software
that embeds this library displays its own copyright dialog, insert this
information there.

• [voluntary:] Even if you do not want to distribute your modified source
code, mark all your modifications of the embedded libary thoroughly.
487

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

• [voluntary:] Arrange your binary distribution so that the integrated
Apache license and the notice text file clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the libraries, modules, snippet, or plugins
in specific directories which contain also all licensing elements.

prohibits . . .

• to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software
file.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.10 Discussions and Explanations

• On the one hand, the Apache 2.0 license does not permit “[. . .] to use the
trade names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file”488. On the

487) library or snippet, or module, or plugin
488) cf. Open Source Initiative: APL-2.0, 2004, wp. §6.

158

6 Open Source License Compliance: To-Do Lists

other hand, this license alerts that all the patent licenses granted to those
who “[. . .] institute a patent litigation” will terminate automatically489.
Hence, the OSLiC generally (Apache-2.0-C1 - Apache-2.0-C9) interdicts to
promote products or services by these elements and to legally fight against
patents linked to the software.

• The Apache-2.0 also requires to “[. . .] give any other recipients of the
Work or Derivative Works a copy of this License”490. Therefore, all 2others
use cases contain the respective mandatory condition (Apache-2.0-C2 -
Apache-2.0-C9).

• Additionally, the Apache-2.0 requires, that modifications must be marked491.
Thus, in all cases of passing the modified software in the form of source
code the OSLiC requires to mark the modifications and to integrate a hint
into the notice file—while in all the cases of passing the modified software
in the form of binaries it inserts only a voluntary condition (Apache-2.0-C4
- Apache-2.0-C9).

• Furthermore, the Apache-2.0 requires that one must “[. . .] retain, in the
Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work”
So, the OSLIC requires in all contexts (Apache-2.0-C1 - Apache-2.0-C9) that
the licensing elements are retained in the form you have received them492.

• Finally, the Apache-2.0 requires that the received “NOTICE text file” must
be integrated as readable copy to each package distributed in the form of
source code, or—in case of binary distibutions—must be displayed “[. . .]
if and wherever such third-party notices normally appear”493. Thus, the
OSLiC requires mandatorily that all source code distributions must include
the notice text file (Apache-2.0-C2, Apache-2.0-C4, Apache-2.0-C6, Apache-
2.0-C8) and that all distributions of binary applications which normally
show such a copyrigth screen must integrate the content of the notice file
into this screen (Apache-2.0-C5, Apache-2.0-C9). For libraries distributed
in the form of binaries it is assumed that they normally do not contain such
copyright dialogs (Apache-2.0-C7)

489) cf. Open Source Initiative: APL-2.0, 2004, wp. §3.
490) cf. id., l.c., wp. §4.1.
491) cf. id., l.c., wp. §4.2.
492) This might confuse some readers: Yes, even if you distribute a modified version in the form

of binaries you must fulfill this condition. Moreover, you must also hand the license over to
your receipient. But, nevertheless, you are not obliged to publish the modified source code,
too. (→ OSLiC, p. 29)

493) cf. id., l.c., wp. §4.4.

159

6 Open Source License Compliance: To-Do Lists

6.4 BSD licensed software

As an approved open source license, the BSD license exists in two versions494

The latest release is the BSD 2-Clause license,495, the older release is the BSD
3-Clause license.496 The very little differences between the two versions have to
be respected exactly.

All BSD open source licenses focus explicitely on the (re-)distribution open source
use cases, which we have specified by our token 2others. Conditions for the other
use cases specified by the token 4yourself can be derived.497 Additionally the
BSD licenses distinguishes between different forms of distribution, esp. whether
the work is distributed as a (set of) source code file(s) or as a set of binary file(s).
Use the following tree to find the BSD license fulfilling to-do lists.

494) Following the OSI, there is another ‘ancient’ BSD license—containing a fourth clause known
as advertising clause—which “(. . .) officially was rescinded by the Director of the Office of
Technology Licensing of the University of California on July 22nd, 1999”. Because of that
cancellation you can simply act according the cf. Open Source Initiative: The BSD 3-Clause
License, 2012, wp. if you have to fulfill the oldest of the BSD licenses.

495) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.
496) cf. Open Source Initiative: The BSD 3-Clause License, 2012, wp.
497) For details of the open source use case tokens see p. 104. For details of the open source use

cases based on these token see p. ??

160

6 Open Source License Compliance: To-Do Lists

BSD

3-Clause
License

2-Clause
License

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

BSD2-C1
BSD3-C1

using
software
only for
yourself

BSD2-C2
BSD3-C2

dis-
tributing

unmodified
software

as sources

BSD2-C3
BSD3-C3

dis-
tributing

unmodified
software as
binaries

BSD2-C4
BSD3-C4

dis-
tributing
modified
program

as sources

BSD2-C5
BSD3-C5

dis-
tributing
modified

program as
binaries

BSD2-C6
BSD3-C6

dis-
tributing
modified
library
as inde-
pendent
sources

BSD2-C7
BSD3-C7

dis-
tributing
modified
library
as inde-
pendent
binaries

BSD2-C8
BSD3-C8

dis-
tributing
modified
library as
embedded
sources

BSD2-C9
BSD3-C9

dis-
tributing
modified
library as
embedded
binaries

6.4.1 BSD-3-Clause-C1: Using the software only for yourself

means that you received BSD licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N498

requires no tasks in order to fulfill the conditions of the New BSD (3 Clauses)
with respect to this use case:

• You are allowed to use any kind of BSD software in any sense and in
any context without any obligations as long as you do not give the
software to 3rd parties.

498) For details → OSLiC, pp. 112 – 124

161

6 Open Source License Compliance: To-Do Lists

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.499.

6.4.2 BSD-3-Clause-C2: Passing the unmodified software as source code

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers

covers OSUC-02S, OSUC-05S, OSUC-07S500

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.3 BSD-3-Clause-C3: Passing the unmodified software as binary

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers

covers OSUC-02B, OSUC-05B, OSUC-07B501

499) which may be, for example, an internet service based on this BSD software used in your own
data center

500) For details → OSLiC, pp. 112 – 120
501) For details → OSLiC, pp. 113 – 121

162

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.502

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.4 BSD-3-Clause-C4: Passing a modified program as source code

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of source code files or as a source code
package.

covers

covers OSUC-04S503

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

502) For implementing the handover of files correctly → OSLiC, p. 127
503) For details → OSLiC, pp. 116

163

6 Open Source License Compliance: To-Do Lists

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.5 BSD-3-Clause-C5: Passing a modified program as binary

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of binary files or as a binary package.

covers

covers OSUC-04B504

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.505

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.6 BSD-3-Clause-C6: Passing a modified library as independent source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute

504) For details → OSLiC, pp. 116
505) For implementing the handover of files correctly → OSLiC, p. 127

164

6 Open Source License Compliance: To-Do Lists

this modified version to third parties in the form of source code files or as a
source code package, but without embedding it into another larger software
unit.

covers

covers OSUC-08S506

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.7 BSD-3-Clause-C7: Passing a modified library as independent binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package but without embedding it into another larger software unit.

covers

covers OSUC-08B507

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.508

506) For details → OSLiC, pp. 122
507) For details → OSLiC, pp. 123
508) For implementing the handover of files correctly → OSLiC, p. 127

165

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.8 BSD-3-Clause-C8: Passing a modified library as embedded source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of source code files or as a source
code package together with another larger software unit which contains this
code snippet, module, library, or plugin as an embedded component.

covers

covers OSUC-10S509

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

• [voluntary:] Arrange your source code distribution so that the li-
censing elements (particularly, the BSD license text, the copyright
notice of the original author(s), and the BSD disclaimer) clearly refer
only to the embedded library and do not affect the licensing of your
own overarching work. It’s a good tradition to keep the embedded

509) For details → OSLiC, pp. 125

166

6 Open Source License Compliance: To-Do Lists

components like libraries, modules, snippets, or plugins in separate
directories, which also contains all their licensing elements.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.9 BSD-3-Clause-C9: Passing a modified library as embedded binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package together with another larger software unit which contains this code
snippet, module, library, or plugin as an embedded component.

covers

covers OSUC-10B510

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.511

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

• [voluntary:] Arrange your binary distribution so that the licensing
elements (particularly, the BSD license text, the copyright notice of the
original author(s), and the BSD disclaimer) clearly refer only to the
embedded library and do not affect the licensing of your own overarching

510) For details → OSLiC, pp. 126
511) For implementing the handover of files correctly → OSLiC, p. 127

167

6 Open Source License Compliance: To-Do Lists

work. It’s a good tradition to keep the embedded components like
libraries, modules, snippets, or plugins in separate directories, which
also contains all their licensing elements.

prohibits . . .

• to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.10 BSD-2-Clause-C1: Using the software only for yourself

means that you received BSD licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N512

requires no tasks in order to fulfill the conditions of the Simplified BSD (2
Clauses) with respect to this use case:

• You are allowed to use any kind of BSD software in any sense and in
any context without any obligations as long as you do not give the
software to 3rd parties.

prohibits nothing explicitely.

6.4.11 BSD-2-Clause-C2: Passing the unmodified software as source code

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers

covers OSUC-02S, OSUC-05S, OSUC-07S513

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

512) For details → OSLiC, pp. 112 – 124
513) For details → OSLiC, pp. 112 – 120

168

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.12 BSD-2-Clause-C3: Passing the unmodified software as binary

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers

covers OSUC-02B, OSUC-05B, OSUC-07B514

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.515

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.13 BSD-2-Clause-C4: Passing a modified program as source code

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of source code files or as a source code
package.

covers

covers OSUC-04S516

514) For details → OSLiC, pp. 113 – 121
515) For implementing the handover of files correctly → OSLiC, p. 127
516) For details → OSLiC, pp. 116

169

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits nothing explicitely.

6.4.14 BSD-2-Clause-C5: Passing a modified program as binary

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of binary files or as a binary package.

covers

covers OSUC-04B517

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.518

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you

517) For details → OSLiC, pp. 116
518) For implementing the handover of files correctly → OSLiC, p. 127

170

6 Open Source License Compliance: To-Do Lists

are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits nothing explicitely.

6.4.15 BSD-2-Clause-C6: Passing a modified library as independent source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package, but without embedding it into another larger software
unit.

covers

covers OSUC-08S519

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.16 BSD-2-Clause-C7: Passing a modified library as independent binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package but without embedding it into another larger software unit.

covers

covers OSUC-08B520

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form

519) For details → OSLiC, pp. 122
520) For details → OSLiC, pp. 123

171

6 Open Source License Compliance: To-Do Lists

you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.521

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.17 BSD-2-Clause-C8: Passing a modified library as embedded source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of source code files or as a source
code package together with another larger software unit which contains this
code snippet, module, library, or plugin as an embedded component.

covers

covers OSUC-10S522

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

• [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

• [voluntary:] Arrange your source code distribution so that the li-
censing elements (particularly, the BSD license text, the copyright

521) For implementing the handover of files correctly → OSLiC, p. 127
522) For details → OSLiC, pp. 125

172

6 Open Source License Compliance: To-Do Lists

notice of the original author(s), and the BSD disclaimer) clearly refer
only to the embedded library and do not affect the licensing of your
own overarching work. It’s a good tradition to keep the embedded
components like libraries, modules, snippets, or plugins in separate
directories, which also contains all their licensing elements.

prohibits nothing explicitely.

6.4.18 BSD-2-Clause-C9: Passing a modified library as embedded binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package together with another larger software unit which contains this code
snippet, module, library, or plugin as an embedded component.

covers

covers OSUC-10B523

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.524

• [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

• [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

• [voluntary:] Arrange your binary distribution so that the licensing
elements (particularly, the BSD license text, the copyright notice of the
original author(s), and the BSD disclaimer) clearly refer only to the

523) For details → OSLiC, pp. 126
524) For implementing the handover of files correctly → OSLiC, p. 127

173

6 Open Source License Compliance: To-Do Lists

embedded library and do not affect the licensing of your own overarching
work. It’s a good tradition to keep the embedded components like
libraries, modules, snippets, or plugins in separate directories, which
also contains all their licensing elements.

prohibits nothing explicitely.

6.4.19 Discussions and Explanations

The BSD 2-Clause license has a simple structure: In the beginning, it generally
“(permits) redistribution and use in source and binary forms, with or without mod-
ification, [. . .]”, if one fulfills the two rules of the license.525 The first rule concerns
the (re)distribution in the form of source code, the second the (re)distribution of
binary packages. Here are some explanations why we translated the rules into
different sets of executable tasks:

• For the “redistribution of source code”, the license requires that the package
must “ [. . .] retain the above copyright notice, this list of conditions and
the following disclaimer.”526 Hence, you are not allowed to modify any
of the copyright notes which are already embedded in the (source) files.
And from a logical point of view, there must exist an explicit or implicit
assertion that the software is licensed under the BSD 2-Clause license527.
This is often implemented by simply adding a copy of the license into the
package. Hence, you are furthermore not allowed to modify these files or
corresponding text snippets. For our purposes, we translated the bans into
the following executable task:

Ensure that the licensing elements (particularly the BSD license
text, the specific copyright notice of the original author(s), and
the BSD disclaimer) are retained in your package in the form you
have received them.

• For the redistribution in the form of binary files, the license requires, that
the licensing elements must be “[. . .] (reproduced) in the documentation
and/or other materials provided with the distribution.”528 Hence, this is

525) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.
526) cf. id., ibid.
527) The BSD license requires that a re-distributed software package must contain the (package

specific) copyright notice, the (license specific) conditions and the BSD disclaimer.cf. id.,
l.c., wp You might ask, what you should do, if these elements are missing in the package you
received. If so, the package you received had not been licensed adequately. Hence, you do
not know reliably whether you have received it under a BSD license. In other words: If you
have received a BSD licensed software package, it must contain sufficient license fulfilling
elements, or it is not BSD licensed software.

528) cf. id., l.c., wp.

174

6 Open Source License Compliance: To-Do Lists

not required as a necessary condition for the (re)distribution as source code
package. But nevertheless, even for a distribution in the form of source
code, it is often possible to fulfill this rule, too—e.g., if you offer your own
download site for source code packages. In such cases, it is a sign of respect
to mention the licensing not only inside the packages, but also in the text
of your site. Because of that, we added the following voluntary task for all
BSD open source use cases which deal with the redistribution in the form
of source code:

Let the documentation of your distribution or your additional
material also contain the original copyright notice, the BSD con-
ditions, and the BSD disclaimer.

• Naturally, because the reproduction of the licensing elements “in the docu-
mentation and/or other materials provided with the distribution” is explicitly
required for the “redistribution in binary form”,529 we had to rewrite the
facultative task for a distribution in the form of source code as a mandatory
task for all BSD open source use cases which deals with the redistribution
in binary form.

• In case of (re)distributing the program in the form of binary files, it is
sometimes not enough, to pass the licensing elements as one has received
them. If you compile the binary package from the source code, it is not
necessarily true, that the licensing elements are also automatically generated
and embedded into the ‘binary package.’ But nevertheless, you have to add
the copyright notice, the conditions and the disclaimer to this package for
acting according to the BSD license. Therefore we chose the following form
of an executable, license fulfilling task for all binary distributions:

Ensure that your distribution contains the original copyright notice,
the BSD license, and the BSD disclaimer in the form you have
received them. If you build the binary package from the source
code package and if this does not automatically generate and
integrate the licensing files then create the copyright notice, the
BSD conditions, and the BSD disclaimer in the form found to
the in the source code package and insert these files into your
distribution manually.

• Finally, we wished to insert a hint to the general (open source) tradition
to mention the open source software used and their licenses as part of the
‘copyright widget’ of an application. This is not required by the BSD license.
But it is a general, good tradition. Naturally, because of the freedom to use
and modify open source software and to redistribute a modified version of

529) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

175

6 Open Source License Compliance: To-Do Lists

it, you are also allowed to insert such references, even if they are missing.
Therefore we added a third voluntary task to honor this tradition for all
relevant open source use cases.

6.5 CDDL licensed software [tbd]

Also, [. . .]

Thus, for finding the relevant, simply processable task lists, also the following
CDDL specific open source use case structure530 can be used:

CDDL

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

CDDL-1
using

software
only for
yourself

CDDL-2
dis-

tributing
unmodified
software

as sources

CDDL-3
dis-

tributing
unmodified
software as
binaries

CDDL-4
dis-

tributing
modified
program

as sources

CDDL-5
dis-

tributing
modified

program as
binaries

CDDL-6
dis-

tributing
modified
library
as inde-
pendent
sources

CDDL-7
dis-

tributing
modified
library
as inde-
pendent
binaries

CDDL-8
dis-

tributing
modified
library as
embedded
sources

CDDL-9
dis-

tributing
modified
library as
embedded
binaries

6.5.1 CDDL-1: Using the software only for yourself

means that you are going to use a received CDDL licensed software only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03, OSUC-06, and OSUC-09531

530) For details of the general OSUC finder → OSLiC, pp. 104 and ??
531) For details → OSLiC, pp. 112 - ??

176

6 Open Source License Compliance: To-Do Lists

requires . . .

prohibits . . .

6.5.2 CDDL-2: Passing the unmodified software as source code

means that you are going to distribute an unmodified version of the received
CDDL software to 3rd parties - in the form of source code files or as a source
code package. In this case it is not discriminating to distribute a program,
an application, a server, a snippet, a module, a library, or a plugin as an
independent or an embedded unit

covers OSUC-02S, OSUC-05S, OSUC-07S532

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.3 CDDL-3: Passing the unmodified software as binaries

means that you are going to distribute an unmodified version of the received
CDDL software to 3rd parties – in the form of binary files or as a binary
package. In this case it is not discriminating to distribute a program, an
application, a server, a snippet, a module, a library, or a plugin as an
independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B533

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.4 CDDL-4: Passing a modified program as source code

means that you are going to distribute a modified version of the received CDDL
licensed program, application, or server (proapse) to 3rd parties – in the
form of source code files or a source code package.

532) For details → OSLiC, pp. 112 - 120
533) For details → OSLiC, pp. 113 - 121

177

6 Open Source License Compliance: To-Do Lists

covers OSUC-04S534

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.5 CDDL-5: Passing a modified program as binary

means that you are going to distribute a modified version of the received CDDL
licensed program, application, or server (proapse) to 3rd parties – in the
form of binary files or as a binary package.

covers OSUC-04B535

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.6 CDDL-6: Passing a modified library as independent source code

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties –
in the form of source code files or as a source code package, but without
embedding it into another larger software unit.

covers OSUC-08S536

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.7 CDDL-7: Passing a modified library as independent binary

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties –

534) For details → OSLiC, pp. 116
535) For details → OSLiC, pp. 116
536) For details → OSLiC, pp. 122

178

6 Open Source License Compliance: To-Do Lists

in the form of binary files or as a binary package but without embedding it
into another larger software unit.

covers OSUC-08B537

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.8 CDDL-8: Passing a modified library as embedded source code

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties
– in the form of source code files or as a source code package together
with another larger software unit which contains this code snippet, module,
library, or plugin as an embedded component.

covers OSUC-10S538

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

6.5.9 CDDL-9: Passing a modified library as embedded binary

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin to 3rd parties – in the
form of binary files or as a binary package together with another larger
software unit which contains this code snippet, module, library, or plugin as
an embedded component.

covers OSUC-10B539

requires the following tasks in order to fulfill the license conditions:

• . . .

prohibits . . .

• . . .

537) For details → OSLiC, pp. 123
538) For details → OSLiC, pp. 125
539) For details → OSLiC, pp. 126

179

6 Open Source License Compliance: To-Do Lists

6.5.10 Discussions and Explanations

The CDDL offers . . . which contains nearly all requirements540. Only for some

•

6.6 EPL-1.0 licensed software

The Eclipse Public License clearly distinguishes the distribution in the form of
source code from that in the form of binaries: First, it allows to “distribute”
Eclipse licensed programs “in source code and in object code”.541 Then it specifies
under which conditions one may distribute the program as a set of binaries.542 One
of these conditions is—roughly speaking—that the distributor makes the sources
available too.543 More precisely, the EPL-1.0 has to be taken as a license with
weak copyleft (→ OSLiC, p. 31). The other conditions refer to the distribution in
general—no matter what form or state is used.544 So, taken as whole, the EPL-1.0
mainly focusses on the distribution of software. Thus, for finding the relevant,
easy to process task lists, the following EPL-1.0 specific open source use case
structure545 can be used:

540) cf. Open Source Initiative: The CDDL-1.0, 2004, wp. §3.
541) cf. Open Source Initiative: EPL-1.0, 2005, wp §3.
542) cf. id., l.c., wp §3 top area.
543) cf. id., l.c., wp §3 mid area.
544) cf. id., l.c., wp §3 bottom area.
545) For details of the general OSUC finder → OSLiC, pp. 104 and ??

180

6 Open Source License Compliance: To-Do Lists

EPL-1.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

EPL-1.0-
C1 using
software
only for
yourself

EPL-
1.0-C2

dis-
tributing

unmodified
software

as sources

EPL-
1.0-C3

dis-
tributing

unmodified
software as
binaries

EPL-
1.0-C4

dis-
tributing
modified
program

as sources

EPL-
1.0-C5

dis-
tributing
modified

program as
binaries

EPL-
1.0-C6

dis-
tributing
modified
library
as inde-
pendent
sources

EPL-
1.0-C7

dis-
tributing
modified
library
as inde-
pendent
binaries

EPL-
1.0-C8

dis-
tributing
modified
library as
embedded
sources

EPL-
1.0-C9

dis-
tributing
modified
library as
embedded
binaries

6.6.1 EPL-1.0-C1: Using the software only for yourself

means that you received EPL-1.0 licensed software, that you will use it only for
yourself, and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N546

requires no tasks in order to fulfill the conditions of the Eclipse Public License
1.0 with respect to this use case:

• You are allowed to use any kind of EPL-1.0 software in any sense and
in any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

546) For details → OSLiC, pp. 112 – 124

181

6 Open Source License Compliance: To-Do Lists

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.2 EPL-1.0-C2: Passing the unmodified software as source code

means that you received EPL-1.0 licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S547

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

• [mandatory:] Give the recipient a copy of the EPL-1.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.548

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

547) For details → OSLiC, pp. 112 – 120
548) For implementing the handover of files correctly → OSLiC, p. 127

182

6 Open Source License Compliance: To-Do Lists

6.6.3 EPL-1.0-C3: Passing the unmodified software as binaries

means that you received EPL-1.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B549

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

• [mandatory:] Make the source code of the software accessible through
a repository under your own control, even if you did not modify it:
Push the source code package into an internet repository and enable
the download function. Ensure that this respository is available for a
reasonable period of time.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material and explain how the code
can be obtained.

• [mandatory:] Execute the to-do list of use case EPL-1.0-C2 for the
source code that you publish.550

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . . .

549) For details → OSLiC, pp. 113 – 121
550) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

183

6 Open Source License Compliance: To-Do Lists

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.4 EPL-1.0-C4: Passing a modified program as source code

means that you received an EPL-1.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S551

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] Give the recipient a copy of the EPL-1.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.552

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of

551) For details → OSLiC, pp. 116
552) For implementing the handover of files correctly → OSLiC, p. 127

184

6 Open Source License Compliance: To-Do Lists

liability from the EPL-1.0 itself into that file. Update an existing
copyright screen presented by the program so that it shows the same
information.

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.5 EPL-1.0-C5: Passing a modified program as binary

means that you received an EPL-1.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B553

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors

553) For details → OSLiC, pp. 116

185

6 Open Source License Compliance: To-Do Lists

to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file. Update an existing
copyright screen presented by the program so that it shows the same
information.

• [mandatory:] Make the source code of the program accessible through
a repository under your own control: Push the source code package
into an internet repository and enable the download function. Ensure
that this respository is available for a reasonable period of time.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material and explain how the code
can be obtained.

• [mandatory:] Execute the to-do list of use case EPL-1.0-C4 for the
source code that you publish.554

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.6 EPL-1.0-C6: Passing a modified library as independent source code

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S555

requires the following tasks in order to fulfill the license conditions:

554) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

555) For details → OSLiC, pp. 122

186

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] Give the recipient a copy of the EPL-1.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.556

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

556) For implementing the handover of files correctly → OSLiC, p. 127

187

6 Open Source License Compliance: To-Do Lists

6.6.7 EPL-1.0-C7: Passing a modified library as independent binary

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B557

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

• [mandatory:] Make the source code of the modified library accessible
through a repository under your own control: Push the source code
package into an internet repository and enable the download function.
Ensure that this respository is available for a reasonable period of time.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material and explain how the code
can be obtained.

• [mandatory:] Execute the to-do list of use case EPL-1.0-C6 for the
source code that you publish.558

557) For details → OSLiC, pp. 123
558) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

188

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.8 EPL-1.0-C8: Passing a modified library as embedded source code

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S559

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] Give the recipient a copy of the EPL-1.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.560

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code

559) For details → OSLiC, pp. 125
560) For implementing the handover of files correctly → OSLiC, p. 127

189

6 Open Source License Compliance: To-Do Lists

package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of
the software. Then, copy the no-warranty clause and the disclaimer
of liability from the EPL-1.0 itself into that file. Let the copyright
screen of your own overarching program show the same information as
a specification for the embedded component.

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

• [voluntary:] Arrange your source code distribution so that the inte-
grated EPL-1.0 and the licensing files clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the embedded components like libraries,
modules, snippets, or plugins in separate directories which also contains
all additional licensing elements.

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.9 EPL-1.0-C9: Passing a modified library as embedded binary

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B561

requires the following tasks in order to fulfill the license conditions:

561) For details → OSLiC, pp. 126

190

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

• [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

• [mandatory:] If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of
the software. Then, copy the no-warranty clause and the disclaimer
of liability from the EPL-1.0 itself into that file. Let the copyright
screen of your own overarching program show the same information as
a specification for the embedded component.

• [mandatory:] Make the source code of the embedded library accessible
through a repository under your own control: Push the source code
package into an internet repository and enable the download function.
Ensure that this respository is available for a reasonable period of time.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material and explain how the code
can be obtained.

• [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

• [mandatory:] Execute the to-do list of use case EPL-1.0-C8 for the
source code that you publish.562

• [voluntary:] Arrange your binary distribution so that the integrated
EPL-1.0 and the licensing files clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the embedded components like libraries,
modules, snippets, or plugins in separate directories which also contains
all additional licensing elements.

• [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright

562) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

191

6 Open Source License Compliance: To-Do Lists

notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to remove or to alter any copyright notices that were contained in the
software package when you received it.

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.10 Discussions and Explanations

The EPL-1.0 contains a succinct section “Requirements”563 complemented by some
definitions concerning a “Commercial Distribution”564: First, it describes what a
distributor must do for correctly distributing an Eclipse licensed program as a set
of binaries. Then, it explains, what must be done to comply with the license when
distributing the software as source code. Finally, it lists two conditions which
must be fulfilled in any case.565 With respect to this structure, we can discover
the following tasks:

• The EPL-1.0 generally requires that “Contributors may not remove or alter
any copyright notices contained within the Program”566 where the word
‘Contributor’ has to be read as “any person or entity that distributes the
Program”, and the word ‘Program’ denotes the “initial contribution” and
all its modifications.567 Similar to the EUPL and at least in a very strict
reading, the EPL-1.0 does not limit these requirements to the distribution
of the software (2others). But in practice it will be difficult to control the
compliant use of the software in those cases where one uses the software only
for oneself. But opposite to, for example, the EUPL, the EPL-1.0 clearly
contains this interdiction. The OSLiC solves this practical inconsistence
duplicating the message: On the one hand, it rewrites the negative condition
as a mandatory positive assertion for the 2others use cases (EPL-1.0-C2 –
EPL-1.0-C9). This should emphasize the activity to retain the copyright
notes in exact the form one has received them. On the other hand, the
OSLiC inserts the corresponding interdiction into the ‘prohibits’ section of
the 4yourself use cases (EPL-1.0-C1 – EPL-1.0-C9).

563) cf. Open Source Initiative: EPL-1.0, 2005, wp §3.
564) cf. id., l.c., wp §4.
565) cf. id., l.c., wp §3.
566) cf. id., ibid.
567) cf. id., l.c., wp §1.

192

6 Open Source License Compliance: To-Do Lists

• Furthermore, the EPL-1.0 requires that “each Contributor must identify itself
as the originator of its Contributions [. . .] in a manner that reasonably allows
subsequent Recipients to identify the originator of the Contribution”,568 In
this case, ‘Contribution’ has to be read as the “initial code and documention”
together with all subsequent modifications of these parts.569 To fulfill this
condition faithfully, a developer must mark and describe his modifications of
the source code within this source code; and the distributor must describe
these modifications on the more general level of software features in a file
sometimes called CHANGES. At a first glance, the requirement to document
the source code modifications within the source code seems to be restricted to
the use cases which concern the distribution of a modified EPL-1.0 software
in the form of source code. But the EPL-1.0 allows the distribution in the
form of binaries only if the distributor also states where one can obtain the
correspoding code.570 So, distributing the binaries implies the distribution
of the source code. Therefore the OSLiC inserts the two requirements as
mandatory clauses into all the use cases concerning the distribution of a
modified EPL-1.0 software (EPL-1.0-C4 – EPL-1.0-C9).

• For all distributions in the form of source code the EPL-1.0 requires that the
software “[. . .] must be made available under this (Eclipse Public License
1.0) Agreement” and that “[. . .] a copy of this Agreement must be included
with each copy of the Program.”571 Thus, the OSLiC inserts a respective
mandatory clause into the use cases (EPL-1.0-C4, EPL-1.0-C6, EPL-1.0-
C8). But the EPL-1.0 is a license with a weak copyleft572. Therefore, this
conditions does not cover the overarching program which uses the embedded
library (EPL-1.0-C8).

• Additionally, the EPL-1.0 allows to distribute the software in the form
of binaries if the distributor “[. . .] effectively disclaims on behalf of all
Contributors all warranties and conditions [. . .] (and) effectively excludes
on behalf of all Contributors all liability for damages [. . .]” in the broadest
sense.573 This limitation of liability is very important to the EPL-1.0. Thus,
it further specifies and explains this aspect once more in another section
titled “Commercial Distribution”. There, this aspect is no longer focussed
only on a distribution in the form of binaries.574 So the OSLiC inserts a
mandatory clause into all use cases concerning the distribution that the

568) cf. Open Source Initiative: EPL-1.0, 2005, wp §3.
569) cf. id., l.c., wp §1.
570) cf. id., l.c., wp §3.
571) cf. id., ibid.
572) (→ OSLiC, p. 31)
573) cf. id., ibid.
574) cf. id., l.c., wp §4.

193

6 Open Source License Compliance: To-Do Lists

paragraph of “No Warranty”575 and the “Disclaimer of Liability”576 of the
EPL-1.0 must explicitly be present in the documentation of distribution
package and—if technically possible—presented by the copyright screen.

• Aside from that, the EPL-1.0 allows the distribution of the software in
the form of binaries only if the distributor clearly “[. . .] states that the
source code for the program is available from such Contributor (distributor)
[. . .]” and if he additionally “[. . .] informs licensees how to obtain it in a
reasonable manner [. . .]”577 This requirement can only be fulfilled seriously
if the distributor himself offers the source code via a repository. It is not
sufficient to point to any external download repository in the world wide
web. Thus,—for all use cases concerning the distribution in the form of
binaries—the OSLiC follows the respective requirement introduced by the
EPL-1.0 (EPL-1.0-C3, EPL-1.0-C5, EPL-1.0-C7, EPL-1.0-C9).

• Moreover, one has clearly to state that the previous rule implies a real source
code distribution which therefore must follow the rules of distributing the
software. Thus, the OSLiC requires in all cases of a binary distribution to
execute also the task-lists of the respective source code use cases.

• Finally, the EPL-1.0 contains a patent clause stating that “if any recipient
institutes patent litigation against any entity [. . .] alleging that the Program
itself [. . .] infringes such Recipient’s patent(s), then such Recipient’s rights
granted [. . . by the EPL-1.0] shall terminate [. . .]”578. Based on this fact,
the OSLiC generally (EPL-1.0-C1 – EPL-1.0-C9) interdicts to legally fight
against patents linked to the software.

6.7 EUPL-1.1 licensed software

The European Union Public License explicitly distinguishes the distribution of
the source code from that of the binaries: In the chapter “Communication of the
Source Code,” it allows to “provide the Work either in its Source Code form, or as
Executable Code.”579 But if a piece of EUPL-1.1 licensed software is distributed
as binary package, then the license additionally requires that the distributor
either “[. . .] provides a machine-readable copy of the Source Code [. . .]” directly
together with the binaries580 or that he “[. . .] indicates [. . .] a repository where
the Source Code is easily and freely accessible for as long as the Licensor continues

575) cf. Open Source Initiative: EPL-1.0, 2005, wp §5.
576) cf. id., l.c., wp §6.
577) cf. id., l.c., wp §3.
578) cf. id., l.c., wp §7.
579) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §3.
580) cf. id., l.c., wp §5.

194

6 Open Source License Compliance: To-Do Lists

to distribute [. . .] the Work.”581 For respecting this conditions it is irrelevant
whether the software has been modified or not and all the other “obligations of
the licensee” refer to both forms.582

There is a particular aspect which has to be considered for acting in accordance
to the EUPL-1.1: Taken literally, the EUPL is a license with a weak copyleft, no
doubt. But this happens only a result of the fact that the EUPL-1.1 allows the
licensee to relicense the software by following the conditions of the “Compatibility
clause”583 and an license listed in an appendix, which also includes some licenses
with a weak copyleft.584 But, with respect to question how to fulfill the license best,
it is safer to treat the EUPL-1.1 as a license with a strong copyleft. Concerning the
use of an unmodified or a modified library as an embedded component, a license
with a strong copyleft implies that the application which is using the (un)modified
library has also to be licensed under the same conditions as the library itself.
Thus, to find a simple to process task lists, use the following EUPL-1.1 specific
open source use case structure:585

581) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §3.
582) cf. id., l.c., wp §5.
583) cf. id., ibid.
584) (→ OSLiC, p. 33)
585) For details of the general OSUC finder → OSLiC, pp. 104 and ??

195

6 Open Source License Compliance: To-Do Lists

EUPL-1.1

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

or snimoli

type:
snimoli

type:
proapse

type:
snimoli

context:
independent

context:
embedded

context:
independent

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

EUPL-
1.1-C1
using

software
only for
yourself

EUPL-
1.1-C2

dis-
tributing

unmodified
software
as inde-
pendent
sources

EUPL-
1.1-C3

dis-
tributing

unmodified
software
as inde-
pendent
binaries

EUPL-
1.1-C4

dis-
tributing

unmodified
library as
embedded
sources

EUPL-
1.1-C5

dis-
tributing

unmodified
library as
embedded
binaries

EUPL-
1.1-C6

dis-
tributing
modified
program

as
sources

EUPL-
1.1-C7

dis-
tributing
modified
program

as
binaries

EUPL-
1.1-C8

dis-
tributing
modified
library
as inde-
pendent
sources

EUPL-
1.1-C9

dis-
tributing
modified
library
as inde-
pendent
binaries

EUPL-
1.1-CA

dis-
tributing
modified
library as
embedded
sources

EUPL-
1.1-CB

dis-
tributing
modified
library as
embedded
binaries

6.7.1 EUPL-1.1-C1: Using the software only for yourself

means that you received EUPL-1.1 licensed software, that you will use it only
for yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N586

requires no tasks in order to fulfill the conditions of the European Union Public
License 1.1 with respect to this use case:

• You are allowed to use any kind of EUPL-1.1 software in any sense
and in any context without being obliged to do anything as long as
you do not give the software to third parties.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this

586) For details → OSLiC, pp. 112 - 124

196

6 Open Source License Compliance: To-Do Lists

EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.2 EUPL-1.1-C2: Passing the unmodified software as independent
sources

means that you received EUPL-1.1 licensed software which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as unmodified source code package. In this
case it makes no difference if you distribute a program, an application, a
server, a snippet, a module, a library, or a plugin as an independent or as
an embedded unit.

covers OSUC-02S, OSUC-05S587

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.588

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.3 EUPL-1.1-C3: Passing the unmodified software as independent
binaries

means that you received EUPL-1.1 licensed software which you are now going
to distribute to third parties as an independent unit and in the form of

587) For details → OSLiC, pp. 112 - 117
588) For implementing the handover of files correctly → OSLiC, p. 127

197

6 Open Source License Compliance: To-Do Lists

unmodified binary files or as unmodified binary package. In this case it does
not matter if you distribute a program, an application, a server, a snippet,
a module, a library, or a plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B589

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.590

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material.

• [mandatory:] Execute the to-do list of use case EUPL-1.1-C2 for the
source code that you publish.591

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

589) For details → OSLiC, pp. 113 - 118
590) For implementing the handover of files correctly → OSLiC, p. 127
591) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

198

6 Open Source License Compliance: To-Do Lists

6.7.4 EUPL-1.1-C4: Passing the unmodified library as embedded sources

means that you received a EUPL-1.1 licensed snippet, module or library which
you are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified source code files or as unmodified
source code package.

covers OSUC-07S592

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.593

• [mandatory:] License your program, which includes the library, also
under the EUPL-1.1. Arrange the sources of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

• [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.5 EUPL-1.1-C5: Passing the unmodified library as embedded binaries

means that you received a EUPL-1.1 licensed snippet, module or library which
you are now going to distribute to third parties as an embedded component

592) For details → OSLiC, pp. 120
593) For implementing the handover of files correctly → OSLiC, p. 127

199

6 Open Source License Compliance: To-Do Lists

of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B594

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.595

• [mandatory:] Make the source code of the embedded library and
your overarching program accessible via a repository under your own
control (even if you did not modify it): Push the source code package
into a repository, make it downloadable via the internet, and include
an easy to find description in the distribution package, which explains
how and where the code can be received. Ensure, that this repository
is online for as long as you continue to distribute the software.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material.

• [mandatory:] License your program, which includes the library, also
under the EUPL-1.1. Arrange the binaries of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

• [mandatory:] Execute the to-do list of use case EUPL-1.1-C4 for the
source code that you publish.596

• [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

594) For details → OSLiC, pp. 121
595) For implementing the handover of files correctly → OSLiC, p. 127
596) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

200

6 Open Source License Compliance: To-Do Lists

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.6 EUPL-1.1-C6: Passing a modified program as source code

means that you received a EUPL-1.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S597

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.598

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

• [mandatory:] Mark all modifications of source code of the pro-
gram thoroughly within the source code and include the date of the
modification.

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

597) For details → OSLiC, pp. 116
598) For implementing the handover of files correctly → OSLiC, p. 127

201

6 Open Source License Compliance: To-Do Lists

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.7 EUPL-1.1-C7: Passing a modified program as binary

means that you received a EUPL-1.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B599

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.600

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material.

599) For details → OSLiC, pp. 116
600) For implementing the handover of files correctly → OSLiC, p. 127

202

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Execute the to-do list of use case EUPL-1.1-C6 for the
source code that you publish.601

• [voluntary:] Mark all modifications of source code of the program
thoroughly within the source code and include the date of the modifi-
cation.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.8 EUPL-1.1-C8: Passing a modified library as independent source code

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S602

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.603

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

601) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

602) For details → OSLiC, pp. 122
603) For implementing the handover of files correctly → OSLiC, p. 127

203

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Mark all modifications of source code of the library
thoroughly within the source code and include the date of the modifi-
cation.

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.9 EUPL-1.1-C9: Passing a modified library as independent binary

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B604

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.605

604) For details → OSLiC, pp. 123
605) For implementing the handover of files correctly → OSLiC, p. 127

204

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material.

• [mandatory:] Execute the to-do list of use case EUPL-1.1-C8 for the
source code that you publish.606

• [voluntary:] Mark all modifications of source code of the library thor-
oughly within the source code and include the date of the modification.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.10 EUPL-1.1-CA: Passing a modified library as embedded source code

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

606) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

205

6 Open Source License Compliance: To-Do Lists

covers OSUC-10S607

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.608

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

• [mandatory:] License your program, which includes the library, also
under the EUPL-1.1. Arrange the sources of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

• [mandatory:] Mark all modifications of source code of the embedded
library thoroughly within the source code and include the date of the
modification.

• [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

607) For details → OSLiC, pp. 125
608) For implementing the handover of files correctly → OSLiC, p. 127

206

6 Open Source License Compliance: To-Do Lists

6.7.11 EUPL-1.1-CB: Passing a modified library as embedded binary

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B609

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them.If you compile the binary from the
sources, ensure that all the licensing elements are also incorporated
into the package.

• [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.610

• [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

• [mandatory:] Make the source code of the embedded library and
your overarching program accessible via a repository under your own
control (even if you did not modify it): Push the source code package
into a repository, make it downloadable via the internet, and include
an easy to find description in the distribution package, which explains
how and where the code can be received. Ensure, that this repository
is online for as long as you continue to distribute the software.

• [mandatory:] Insert a prominent hint to the download repository into
your distribution or your additional material.

• [mandatory:] Execute the to-do list of use case EUPL-1.1-CA for the
source code that you publish.611

• [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

• [mandatory:] License your program, which includes the library, also
under the EUPL-1.1. Arrange the binaries of the on-top development in

609) For details → OSLiC, pp. 126
610) For implementing the handover of files correctly → OSLiC, p. 127
611) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

207

6 Open Source License Compliance: To-Do Lists

a way that they are also covered by the EUPL-1.1 licensing statements.

• [voluntary:] Mark all modifications of source code of the embedded
library thoroughly within the source code and include the date of the
modification.

• [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits . . .

• to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.12 Discussions and Explanations

• The EUPL-1.1 generally “[. . .] does not grant permission to use the trade
names, trademarks, service marks, or names of the Licensor, except as
required for reasonable and customary use in describing the origin of the
Work and reproducing the content of the copyright notice.”612 Therefore,
the OSLiC genreally interdicts (EUPL-1.1-C1 – EUPL-1.1-CB) to promote
any service or product based on this software by such elements.

• The EUPL-1.1 generally requires that “[. . .] the Licensee shall keep intact
all copyright, patent or trademarks notices and all notices that refer to the
Licence and to the disclaimer of warranties.”613 In a very strict reading, the
EUPL-1.1 does not limit this requirement to the distribution of the software.
But in practise, it will be impossible to control the compliant use of the
software in those cases (4yourself) unless you also start to distribute the
software. Therefore the OSLiC only inserts this requirement as a mandatory
clause only for the 2others use cases (EUPL-1.1-C2 – EUPL-1.1-CB).

• The EUPL-1.1 also requires to “[. . .] include [. . .] a copy of the (EUPL-
1.1) Licence with every (distributed) copy of the Work”.614 Therefore, all
2others use cases contain the respective mandatory condition (EUPL-1.1-C2
– EUPL-1.1-CB).

612) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §5.
613) cf. id., ibid.
614) cf. id., ibid.

208

6 Open Source License Compliance: To-Do Lists

• Additionally, the EUPL-1.1 requires that the “licensee” who distributes a
modified work “[. . .] must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modi-
fication.”615 Thus, the OSLiC integrates the mandatory requirement to
generate (update) a respective notice file into all ‘modification’ use cases
and recommends to mark all modifications in the source code (EUPL-1.1-C6
– EUPL-1.1-CB).

• Furthermore, the EUPL-1.1 requires that any distributor of the software
“[. . .] provide a machine-readable copy of the Source Code [. . .]” by “[. . .]
(indicating) a repository where this Source will be easily and freely available
for as long as the Licensee continues to distribute [. . .] the Work.”616

Therefore the OSLiC inserts a respective requirement into the task list of
all cases concerning a binary distribution (EUPL-1.1-C3, EUPL-1.1-C7,
EUPL-1.1-C9, and EUPL-1.1-CB)

• Finally, the EUPL-1.1 contains a “copyleft clause” stating that if a “[. . .]
Licensee distributes [. . .] copies of the Original Works or Derivative Works
based upon the Original Work, this Distribution [...] will be done under the
terms of this (EUPL-1.1) Licence [. . .]”. In all the use cases which do not
concern the use of an embedded component (EUPL-1.1-C2 – EUPL-1.1-C9)
this copyleft clause is already fulfilled by either distributing the modified
sources themselves or by making them accessible via a repository. In those
cases where the licensee distributes an program that uses an embedded
EUPL-1.1 licensed component (EUPL-1.1-CA – EUPL-1.1-CB), in general,
the code of the embedding program must also be distributed. Thus, with
respect to the use case (EUPL-1.1-CA) this is already fulfilled by definition.
Therefore, the OSLiC only mentions this default view in the case EUPL-
1.1-CB implying a strong copyleft effect.617

6.8 GPL licensed software

Both versions of the GNU General Public License explicitly distinguish the
distribution of the source code from that of the binaries: On the one hand,

615) cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §5.
616) cf. European Community a. European commission Joinup: EUPL-1.1/EN, 2007, wp. §5. To

be precise, the EUPL-1.1 also allows to directly distribute the source code together with the
binary packages (cf. id., l.c., wp. §3). With respect to the OSLiC principle to offer only one
reliable way, the OSLiC simplifies this option: It ‘only’ asks for the repository solution.

617) Formally, the EUPL-1.1 is only a license with weak copyleft. But this is only a result of
allowing to relicense the software (→ OSLiC, p. 33). So, as long as you do not relicense
the embedded library with respect to the list of “compatible licenses according to article 5
EUPL-1.1” (cf. id., l.c., wp §5 and Appendix), you also have to publish the code of your
overarching work.

209

6 Open Source License Compliance: To-Do Lists

the GPL-2.0 mainly talks about copying and distributing the source code,618

but also mentions the specific conditions for “[. . .] (copying) and (distributing)
the Program [. . .] in object code or executable form [. . .]”619 On the other
hand, the GPL-3.0 describes the “Basic Permissions” and the conditions for
“Conveying Verbatim Copies” or for “Conveying Modified Source Versions”620

before it explains the rules for “Conveying Non-Source-Forms”.621

GPL-2.0 and GPL-3.0 mainly talk about copying and distributing the software;
private use is nearly completely unspecified: The GPL-2.0 lists its ‘restrictions’
only with respect to the act of copying and distributing “copies of the program”622

while the GPL-3.0 explicitly specifies that one “[. . .] may make, run and propagate
covered works that (one does) not convey, without conditions so long as (the)
license otherwise remains in force.”623

As licenses with a strong copyleft, they require that any application that contains
a GPL-licensed library must itself be licensed under the same conditions as the
library.

Finally, the GPL-2.0 and the GPL-3.0 aim for the same results and share the
same spirit by requiring nearly the same task to be performed for fulfilling the
license conditions. Therefore it is appropriate to cover both versions in the same
chapter and to offer a common specialized GPL open source use case structure
for quickly finding the appropriate task list.624 However, the task lists themselves
will be kept separate.

In the following diagram, GPL-*-C1 (GPL-*-C2, . . . , GPL-*-CB) is either GPL-
2.0-C1 (and so forth), if you are looking for the GPL-2.0 use case, or GPL-3.0-C1,
. . . for the GPL-3.0 use case.

618) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1, §2.
619) cf. id., l.c., wp §3.
620) cf. id., l.c., wp §2, §4, §5.
621) cf. id., ibid.
622) cf. id., l.c., wp §1, §2, §4 et passim; emphasize by KR.
623) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §2.
624) For details of the general OSUC finder → OSLiC, pp. 104 and ??

210

6 Open Source License Compliance: To-Do Lists

GPL

2.0 3.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

or snimoli

type:
snimoli

type:
proapse

type:
snimoli

context:
independent

context:
embedded

context:
independent

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

GPL-
*-C1
using

software
only for
yourself

GPL-
*-C2
dis-

tributing
unmodified
software
as inde-
pendent
sources

GPL-
*-C3
dis-

tributing
unmodified
software
as inde-
pendent
binaries

GPL-
*-C4
dis-

tributing
unmodified
library as
embedded
sources

GPL-
*-C5
dis-

tributing
unmodified
library as
embedded
binaries

GPL-
*-C6
dis-

tributing
modified
program

as
sources

GPL-
*-C7
dis-

tributing
modified
program

as
binaries

GPL-
*-C8
dis-

tributing
modified
library
as inde-
pendent
sources

GPL-
*-C9
dis-

tributing
modified
library
as inde-
pendent
binaries

GPL-
*-CA
dis-

tributing
modified
library as
embedded
sources

GPL-
*-CB
dis-

tributing
modified
library as
embedded
binaries

6.8.1 GPL-2.0-C1: Using the software only for yourself

means that you received GPL-2.0 licensed software, that you will use it only for
yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N625

requires no tasks in order to fulfill the conditions of the General Public License
Version 2 with respect to this use case:

• You are allowed to use any kind of GPL-2.0software in any sense and
in any context without being obliged to do anything as long as you do
not give the software to third parties.

625) For details → OSLiC, pp. 112 – 124

211

6 Open Source License Compliance: To-Do Lists

prohibits nothing explicitely.

6.8.2 GPL-2.0-C2: Passing the unmodified software as independent sources

means that you received GPL-2.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S626

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.627

• [mandatory:] Retain all existing copyright notices.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.3 GPL-2.0-C3: Passing the unmodified software as independent binaries

means that you received GPL-2.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

626) For details → OSLiC, pp. 112 – 117
627) For implementing the handover of files correctly → OSLiC, p. 127

212

6 Open Source License Compliance: To-Do Lists

covers OSUC-02B, OSUC-05B628

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.629

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case GPL-2.0-C2 for the
source code that you publish.630

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.4 GPL-2.0-C4: Passing the unmodified library as embedded sources

means that you received a GPL-2.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component

628) For details → OSLiC, pp. 113 – 118
629) For implementing the handover of files correctly → OSLiC, p. 127
630) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

213

6 Open Source License Compliance: To-Do Lists

of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S631

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.632

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

• [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.5 GPL-2.0-C5: Passing the unmodified library as embedded binaries

means that you received a GPL-2.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified binary files or as unmodified
binary package.

631) For details → OSLiC, pp. 120
632) For implementing the handover of files correctly → OSLiC, p. 127

214

6 Open Source License Compliance: To-Do Lists

covers OSUC-07B633

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.634

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

• [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case GPL-2.0-C4 for the
source code that you publish.635

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright

633) For details → OSLiC, pp. 121
634) For implementing the handover of files correctly → OSLiC, p. 127
635) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

215

6 Open Source License Compliance: To-Do Lists

notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.6 GPL-2.0-C6: Passing a modified program as source code

means that you received a GPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S636

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.637

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a GPL-2.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-2.0 licensing statements. If you
add new source code files to the program, insert a header containing

636) For details → OSLiC, pp. 116
637) For implementing the handover of files correctly → OSLiC, p. 127

216

6 Open Source License Compliance: To-Do Lists

your copyright line and a licensing statement in the form recommended
by the GPL-2.0.638

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.7 GPL-2.0-C7: Passing a modified program as binary

means that you received a GPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B639

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.640

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

638) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

639) For details → OSLiC, pp. 116
640) For implementing the handover of files correctly → OSLiC, p. 127

217

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a GPL-2.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-2.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the GPL-2.0.641

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-2.0-C6 for the
source code that you publish.642

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.8 GPL-2.0-C8: Passing a modified library as independent source code

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

641) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

642) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

218

6 Open Source License Compliance: To-Do Lists

covers OSUC-08S643

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.644

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-2.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-2.0.645

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

643) For details → OSLiC, pp. 122
644) For implementing the handover of files correctly → OSLiC, p. 127
645) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0

license.

219

6 Open Source License Compliance: To-Do Lists

6.8.9 GPL-2.0-C9: Passing a modified library as independent binary

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B646

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.647

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-2.0-C8 for the
source code that you publish.648

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

646) For details → OSLiC, pp. 123
647) For implementing the handover of files correctly → OSLiC, p. 127
648) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

220

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-2.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-2.0.649

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.10 GPL-2.0-CA: Passing a modified library as embedded source code

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S650

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it

649) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

650) For details → OSLiC, pp. 125

221

6 Open Source License Compliance: To-Do Lists

is not already part of the software package, add it.651

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-2.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-2.0.652

• [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.11 GPL-2.0-CB: Passing a modified library as embedded binary

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B653

651) For implementing the handover of files correctly → OSLiC, p. 127
652) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0

license.
653) For details → OSLiC, pp. 126

222

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.654

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-2.0-CA for the
source code that you publish.655

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-2.0 licensing statements.
If you add new source code files to the embedded library, insert a

654) For implementing the handover of files correctly → OSLiC, p. 127
655) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

223

6 Open Source License Compliance: To-Do Lists

header containing your copyright line and a licensing statement in the
form recommended by the GPL-2.0.656

• [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.12 GPL-3.0-C1: Using the software only for yourself

means that you received GPL-3.0 licensed software, that you will use it only for
yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N657

requires no tasks in order to fulfill the conditions of the General Public License
Version 3 with respect to this use case:

• You are allowed to use any kind of GPL software in any sense and in
any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.13 GPL-3.0-C2: Passing the unmodified software as independent
sources

means that you received GPL-3.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In

656) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

657) For details → OSLiC, pp. 112 – 124

224

6 Open Source License Compliance: To-Do Lists

this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S658

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.659

• [mandatory:] Retain all existing copyright notices.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.14 GPL-3.0-C3: Passing the unmodified software as independent
binaries

means that you received GPL-3.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B660

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

658) For details → OSLiC, pp. 112 – 117
659) For implementing the handover of files correctly → OSLiC, p. 127
660) For details → OSLiC, pp. 113 – 118

225

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.661

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case GPL-3.0-C2 for the
source code that you publish.662

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.15 GPL-3.0-C4: Passing the unmodified library as embedded sources

means that you received a GPL-3.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S663

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

661) For implementing the handover of files correctly → OSLiC, p. 127
662) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.
663) For details → OSLiC, pp. 120

226

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.664

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

• [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.16 GPL-3.0-C5: Passing the unmodified library as embedded binaries

means that you received a GPL-3.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B665

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

664) For implementing the handover of files correctly → OSLiC, p. 127
665) For details → OSLiC, pp. 121

227

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.666

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

• [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case GPL-3.0-C4 for the
source code that you publish.667

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.17 GPL-3.0-C6: Passing a modified program as source code

means that you received a GPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

666) For implementing the handover of files correctly → OSLiC, p. 127
667) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

228

6 Open Source License Compliance: To-Do Lists

covers OSUC-04S668

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.669

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a GPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the GPL-3.0.670

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

668) For details → OSLiC, pp. 116
669) For implementing the handover of files correctly → OSLiC, p. 127
670) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0

license.

229

6 Open Source License Compliance: To-Do Lists

6.8.18 GPL-3.0-C7: Passing a modified program as binary

means that you received a GPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B671

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.672

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a GPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the GPL-3.0.673

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

671) For details → OSLiC, pp. 116
672) For implementing the handover of files correctly → OSLiC, p. 127
673) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0

license.

230

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-3.0-C6 for the
source code that you publish.674

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.19 GPL-3.0-C8: Passing a modified library as independent source code

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S675

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.676

• [mandatory:] Retain all existing copyright notices.

674) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

675) For details → OSLiC, pp. 122
676) For implementing the handover of files correctly → OSLiC, p. 127

231

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-3.0.677

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.20 GPL-3.0-C9: Passing a modified library as independent binary

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B678

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

677) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

678) For details → OSLiC, pp. 123

232

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.679

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-3.0-C8 for the
source code that you publish.680

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-3.0.681

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

679) For implementing the handover of files correctly → OSLiC, p. 127
680) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.
681) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0

license.

233

6 Open Source License Compliance: To-Do Lists

6.8.21 GPL-3.0-CA: Passing a modified library as embedded source code

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S682

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.683

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-3.0.684

• [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

682) For details → OSLiC, pp. 125
683) For implementing the handover of files correctly → OSLiC, p. 127
684) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0

license.

234

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.22 GPL-3.0-CB: Passing a modified library as embedded binary

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B685

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.686

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

685) For details → OSLiC, pp. 126
686) For implementing the handover of files correctly → OSLiC, p. 127

235

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case GPL-3.0-CA for the
source code that you publish.687

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-3.0.688

• [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.23 Discussions and Explanations

The GPL-2.0 allows to “[. . .] copy and (to) distribute verbatim copies of the
Program’s complete source code as you receive it [...] provided that you [a]

687) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

688) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

236

6 Open Source License Compliance: To-Do Lists

conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; [b] keep intact all the notices that refer to
this License and to the absence of any warranty; and [c] distribute a copy of this
License along with the Program.”689 The GPL-2.0 also allows to “[. . .] copy and
distribute [. . .] modifications (of the Program or any portion of it) [. . .] under
the terms of Section 1”690 while it allows to distribute binaries “under the terms
of Sections 1 and 2”.691 But the GPL-2.0 does not require any tasks if you are
using the work only for yourself. Thus, the quoted conditions of “Section 1” are
mandatory for all use cases concerning the distribution of an GPL-2.0 licensed
work (GPL-2.0-C2 – GPL-2.0-CB)

The GPL-3.0 uses a similar structure to establish the same requirements: In §4
it allows to “[. . .] convey verbatim copies of the Program’s source code as you
receive it [. . .] provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice; keep intact all notices stating that
this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give
all recipients a copy of this License along with the Program”. §5 also allows to
“[. . .] convey [. . .] modifications [. . .] under the terms of section 4 [. . .]” and §6
gives permission to “[. . .] convey a covered work in object form under the terms
of sections of 4 and 5”.692 In contrast to the GPL-2.0, the GPL-3.0 explicitly
states that one “[. . .] may make, run and propagate covered works that (one)
(does) not convey [distribute], without conditions so long as (the GPL-3.0) license
otherwise remains in force.”693 Moreover, giving a package to a third party for
getting a modified version back has not to be taken as a case of distribution if the
modification has only been executed on behalf and only for the purpose of the
purchaser and if the modified version is not distributed to any third party.694 If
one collects all these GPL-3.0 statements together, than one may conclude that
the tasks which fulfill the corresponding GPL-2.0 requirements together also fit
the GPL-3.0 conditions.

The GPL-2.0 allows to “[. . .] copy and (to) distribute the Program (or a work based
on it [. . .]) in object code or executable form [. . .] provided that you accompany it
with the complete corresponding machine-readable source code [. . .] on a medium
customarily used for software interchange”.695 As a substitution for this basic
condition, the GPL-2.0 allows to “accompany” the binary distribution package
“[. . .] with a written offer, valid for at least three years, to give any third party,

689) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1.
690) cf. id., l.c., wp §2.
691) cf. id., l.c., wp §4.
692) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §4, §5, §6.
693) cf. id., l.c., wp §2.
694) cf. id., ibid.
695) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3, §3a.

237

6 Open Source License Compliance: To-Do Lists

for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code [. . .] on a
medium customarily used for software interchange”.696 The OSLiC construes
the common technique to download files from the Internet as a distribution on
a medium [being today] customarily used for software interchange. Therefore,
the OSLiC requires for all open source use cases that refer to the distribution
of binaries (GPL-2.0-C3, GPL-2.0-C7, GPL-2.0-C9, GPL-2.0-CB) to make the
corresponding source code of the library itself accessible via an Internet repository
under your own control.

The GPL-3.0 also explicitly requires to make the source code accessible in case
of distributing binaries. But opposite to the GPL-2.0, the GPL-3.0 explicitly
offers the option of giving “[. . .] access to copy the Corresponding Source from
a network server at no charge” as a means to fulfill the conditions.697 So again,
the tasks which ensure to act in accordance to the GPL-2.0 license in case of
distributing binaries, also fulfill the conditions of the GPL-3.0.

The weakness that in this case “third parties [which have received the binaries]
are not compelled to copy the source code [. . .]” is a concession made by the GPL-
2.0.698 But the necessity to offer the source code via a repository controlled by
yourself may generally not be circumvented: The GPL-2.0 allows to redistribute
a link to an external source code repository only in case of “noncommercial
distributions”.699

Both, the GPL-2.0 and the GPL-3.0 allow you to “[. . .] modify your copy or
copies of the Program or any portion of it [. . .] and (to) copy and distribute such
modifications [. . .]” only under very similar restrictions and conditions:700

• First, modified files must be marked as modifications and the date of the
modification.701 These conditions must be respected by all open source use
cases concerning the distribution of the modified work [GPL-2.0-C6/GPL-
3.0C6 – GPL-2.0-C9/GPL-3.0-C9], because even if one primarily intends
to distribute binaries, one has also to deliver the source code. The OSLiC
captures this requirement in the mandatory condition to mark each modified
file and the voluntary condition to update / generate a general changelog.

• Second, both versions of the GPL require that all copies of the modified
software which are using an interactive interface or a method to display
messages must “[. . .] print or display an announcement including an ap-

696) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3b.
697) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §6 and §6b.
698) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3, at the end.
699) cf. id., l.c., wp §3c.
700) cf. id., l.c., wp §2.
701) For GPL-2.0 see cf. id., l.c., wp. §2.

For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5.

238

6 Open Source License Compliance: To-Do Lists

propriate copyright notice and a notice that there is no warranty [. . .] and
that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License.”702 The OSLiC rewrites this
condition in the form that the work shall let its copyright dialog clearly
reproduce the content of the existing copyright notices, the software name, a
link to its homepage, the respective disclaimer of warranty, and a link to the
GPL-2.0-file (or GPL-3.0-file, resp.), which has to be delivered together with
the software. These conditions have to be respected if one redistributes the
received and then modified programs (GPL-2.0-C6, GPL-2.0-C7, GPL-3.0-
C6, GPL-3.0-C7) or if one distributes one’s own programs which are using
(modified) libraries as embedded components (GPL-2.0-CA, GPL-2.0-CB,
GPL-3.0-CA, GPL-3.0-CB). For those open source use cases that concern the
redistribution of received and modified libraries, etc., the OSLiC does not
mention these requirements because libraries, plugins, or snippets normally
do not have their own copyright dialogs.

• Third, the GPL requires to “ [. . .] cause any work (being distributed or
published), that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this (GPL.)”703 This requirement does not depend of the
form in which the software is distributed. The OSLiC adopts this statement
in the following way:

– For all open source use cases which concern the distribution (GPL-2.0-
C2 . . . GPL-2.0-CB, GPL-3.0-C2 . . . GPL-3.0-CB), the OSLiC rewrites
this condition as the mandatory requirement to retain all existing
licensing elements.

– For all use cases which deal with the distribution of a modified version
of the software (GPL-2.0-C6 . . . GPL-2.0-CB, GPL-3.0-C6 . . . GPL-3.0-
CB), the OSliC adds the requirement to organize the modifications
in a way that they are covered by the respective GPL-2.0 or GPL-3.0
licensing statements.

– For the use case which deal with the distribution of an embedded
library (GPL-2.0-C4, GPL-2.0-C5, GPL-2.0-CA, GPL-2.0-CB, GPL-
3.0-C4, GPL-3.0-C5, GPL-3.0-CA, GPL-3.0-CB) the OSLiC requires
also to license the on-top development under the terms of the respective
GPL-2.0 or GPL-3.0 license.

• Finally, as parts of those task lists which concern the distribution in the form
of binaries, the OSLiC reminds the reader also to execute the corresponding

702) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §2c.
For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5d.

703) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §2b.
For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5c.

239

6 Open Source License Compliance: To-Do Lists

source code use cases because distributing the binaries without making the
corresponding sources accessible is not allowed by the GPL.

And a last issue should be addressed here. It concerns the problem of granularity.

The GPL-3.0 allows “[. . .] to convey a covered work in object code form [. . .]
provided that [one] also conveys the [. . .] Corresponding Source [. . .]”704. For
understanding the scope of the sources one has to convey, one must known, what
the term Corresponding Source means. Fortunately, the GPL-3.0 assists its readers
to understand this term in the right way:

• “The ‘Corresponding Source’ for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities.705” Thus, if one took this statements seriously, one would have
to “provide access to” the complete software stack of the executed AGPL
program, just down to the glibc. But the GPL does not want to be to
greedy. Therefore it limits the scope:

• To limit the sope, the GPL states, that the Corresponding Source “[. . .]
does not include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing
those activities but which are not part of the work”706. Unfortunately, one
now has to analyze, what the term System Libraries means, if one wants to
understand this rule correctly.

• Therefore, the GPl says also, that “the ‘System Libraries’ of an executable
work include anything, other than the work as a whole, that (a) is included
in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for
which an implementation is available to the public in source code form.707”.
And for understing this sentence adequately, one has to know, what a Major
Component is.

• So, finally, the GPL defines as “enquoteMajor Component [. . . as] a major
essential component (kernel, window system, and so on) of the specific
operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it708”.

Based on these specifications, one can give some rule of thumbs concerning the
question down to which level one has to give access to the corresponding source

704) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §6.
705) cf. id., l.c., wp. §1.
706) cf. id., ibid.
707) cf. id., ibid.
708) cf. id., ibid.

240

6 Open Source License Compliance: To-Do Lists

code of an conveyed GPL binary program:

• If one conveys a GPL licensed binary program, then one has also to deliver
the code of

– the dlivered program itself

– every modified embedded component of that program

– every not freely accessible embedded component of that program

– all not freely accessible tools, scripts, data which are necessary to
compile the sources of the program in a freely accessible compilation /
developement environment

But it is not necessary to deliver the code of unmodified standard libraries,
compilers, or tools which can freely be downloaded from their standard
repository.

• If one conveys a GPL licensed script, then one has also to deliver the code
of

– every modified embedded script component included by the main script

– every not freely accessible embedded script component included by the
main script

– all not freely accessible tools, scripts, data which are necessary to to
let that main script be executed by a freely accessible interpreter

– the interpreter itself if it is not freely accessible.

But it is not necessary to give access to unmodified standard script libraries,
interpreters, or tools which can freely be downloaded from their standard
repository.

6.9 LGPL licensed software

Both versions of the GNU Lesser General Public License explicitly distinguish
the distribution of the source code from that of the binaries: On the one hand,
the LGPL-2.1 mainly talks about copying and distributing the source code.709

But it also directly mentions the specific conditions for “[. . .] (copying) and
(distributing) the Library [. . .] in object code or executable form [. . .]”710 On the
other hand, the LGPL-3.0 and the GPL-3.0—which have to be considered together
because the GPL-3.0 is included into the LGPL-3.0711— treat the distribution of

709) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §1, §2, §5, §6.
710) cf. id., l.c., wp §4.
711) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp just before §0.

241

6 Open Source License Compliance: To-Do Lists

source code and the distribution of object code as different aspects of the same
phenomenon712 Additionally, LGPL-2.1 and LGPL-3.0 mainly talk about copying
and distributing the software; the private use is almost complete unspecified.713

Finally, the LGPL-2.1 and the LGPL-3.0 aim for the same results and share the
same spirit by requiring nearly the same license fulfilling tasks. Therefore it seems
appropriate to cover both versions in one chapter714 and to offer the same LGPL
specific open source use case structure715 for finding the corresponding task lists:

712) The GPL-3.0 contains a specific section named “Conveying Non-Source Forms” which
describes the conditions to “[. . .] convey a covered work in object code form [. . .]” (cf. Open
Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §6), while the LGPL-3.0 explicitly
deals with the “object code incorporating material from (the) library header files” (cf. Open
Source Initiative: The LGPL-3.0 License (OSI), 2007, wp. §3).

713) The LGPL-2.1 lists its ‘restrictions’ only with respect to the act of copying and distributing
“copies of the library” (cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp.
§1, §2, §4 et passim) while the GPL-3.0 explicitly specifies that one “[. . .] may make, run
and propagate covered works that (one does) not convey, without conditions so long as (the)
license otherwise remains in force” (cf. Open Source Initiative: The GPL-3.0 License (OSI),
2007, wp. §2).

714) The exception concerns the distribution of a modified program, application, or server under
the terms of the LGPL

715) For details of the general OSUC finder → OSLiC, pp. 104 and ??

242

6 Open Source License Compliance: To-Do Lists

LGPL

2.1 3.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

or snimoli

type:
snimoli

type:
proapse

type:
snimoli

context:
independent

context:
embedded

context:
independent

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

form:
source

form:
binary

LGPL-
*-C1
using

software
only for
yourself

LGPL-
*-C2
dis-

tributing
unmodified
software
as inde-
pendent
sources

LGPL-
*-C3
dis-

tributing
unmodified
software
as inde-
pendent
binaries

LGPL-
*-C4
dis-

tributing
unmodified
library as
embedded
sources

LGPL-
*-C5
dis-

tributing
unmodified
library as
embedded
binaries

LGPL-
*-C6
dis-

tributing
modified
program

as
sources

LGPL-
*-C7
dis-

tributing
modified
program

as
binaries

LGPL-
*-C8
dis-

tributing
modified
library
as inde-
pendent
sources

LGPL-
*-C9
dis-

tributing
modified
library
as inde-
pendent
binaries

LGPL-
*-CA
dis-

tributing
modified
library as
embedded
sources

LGPL-
*-CB
dis-

tributing
modified
library as
embedded
binaries

6.9.1 LGPL-2.1-C1: Using the software only for yourself

means that you received LGPL-2.1 licensed software, that you will use it only
for yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N716

requires no tasks in order to fulfill the conditions of the GNU Lesser General
Public License 2.1 with respect to this use case:

• You are allowed to use any kind of LGPL-2.1 licensed software in any
sense and in any context without being obliged to do anything as long
as you do not give the software to third parties.

716) For details → OSLiC, pp. 112 – 124

243

6 Open Source License Compliance: To-Do Lists

prohibits nothing explicitely.

6.9.2 LGPL-2.1-C2: Passing the unmodified software as independent source
code

means that you received LGPL-2.1 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S717

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.718

• [mandatory:] Retain all existing copyright notices.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

prohibits nothing explicitely.

6.9.3 LGPL-2.1-C3: Passing the unmodified software as independent
binaries

means that you received LGPL-2.1 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of

717) For details → OSLiC, pp. 112 – 117
718) For implementing the handover of files correctly → OSLiC, p. 127

244

6 Open Source License Compliance: To-Do Lists

unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B719

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.720

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [voluntary:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case LGPL-2.1-C2 for the
source code that you publish.721

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

prohibits nothing explicitely.

719) For details → OSLiC, pp. 113 – 118
720) For implementing the handover of files correctly → OSLiC, p. 127
721) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

245

6 Open Source License Compliance: To-Do Lists

6.9.4 LGPL-2.1-C4: Passing the unmodified library as embedded source
code

means that you received an LGPL-2.1 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S722

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.723

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits nothing explicitely.

6.9.5 LGPL-2.1-C5: Passing the unmodified library as embedded binaries

means that you received an LGPL-2.1 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B724

722) For details → OSLiC, pp. 120
723) For implementing the handover of files correctly → OSLiC, p. 127
724) For details → OSLiC, pp. 121

246

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.725

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three
years, to give the user all object-files of the on-top development and
the library, so that he can relink the application himself.

• [mandatory:] Execute the to-do list of use case LGPL-2.1-C4 for the
source code that you publish.726

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits nothing explicitely.

725) For implementing the handover of files correctly → OSLiC, p. 127
726) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

247

6 Open Source License Compliance: To-Do Lists

6.9.6 LGPL-2.1-C6: Passing a modified program as source code

means that you received an LGPL-2.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S727

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Change all the notices in all files that refer to the
LGPL-2.1, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License.

prohibits . . .

• to modify the received work in a way that the resulting “modified
work” is no longer a software library (but a program). You are not
allowed to distribute a modified program under the terms of
LGPL-2.1.728

6.9.7 LGPL-2.1-C7: Passing a modified program as binary

means that you received an LGPL-2.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B729

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Change all the notices in all files that refer to the
LGPL-2.1, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License.

prohibits . . .

• to modify the received work in a way that the resulting “modified
work” is no longer a software library (but a program). You are not
allowed to distribute a modified program under the terms of
LGPL-2.1.730

727) For details → OSLiC, pp. 116
728) The LGPL-2.1 explictly requires that “the modified work must itself be a software library”

(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §2a). For details →
OSLiC, p. 269

729) For details → OSLiC, pp. 116
730) The LGPL-2.1 explictly requires that “the modified work must itself be a software library”

248

6 Open Source License Compliance: To-Do Lists

6.9.8 LGPL-2.1-C8: Passing a modified library as independent source code

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S731

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.732

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-2.1 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the LGPL-2.1.733

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright

(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §2a). For details →
OSLiC, p. 269

731) For details → OSLiC, pp. 122
732) For implementing the handover of files correctly → OSLiC, p. 127
733) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1

license.

249

6 Open Source License Compliance: To-Do Lists

notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to modify the library in a way that it is no longer a library

6.9.9 LGPL-2.1-C9: Passing a modified library as independent binary

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B734

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.735

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

734) For details → OSLiC, pp. 123
735) For implementing the handover of files correctly → OSLiC, p. 127

250

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Execute the to-do list of use case LGPL-2.1-C8 for the
source code that you publish.736

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-2.1 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the LGPL-2.1.737

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to modify the library in a way that it is no longer a library.

6.9.10 LGPL-2.1-CA: Passing a modified library as embedded source code

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S738

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

736) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

737) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1
license.

738) For details → OSLiC, pp. 125

251

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.739

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing LGPL-2.1 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the LGPL-2.1.740

• [mandatory:] Maintain the structural independence of the library.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-2.1 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-2.1.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to modify the library in a way that it is no longer a library.

739) For implementing the handover of files correctly → OSLiC, p. 127
740) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1

license.

252

6 Open Source License Compliance: To-Do Lists

6.9.11 LGPL-2.1-CB: Passing a modified library as embedded binary

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B741

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

• [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.742

• [mandatory:] Make the source code of the embedded library publicly
available: Push the source code package into a repository under your
control and make it downloadable via the Internet. Ensure, that this
repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case LGPL-2.1-CA for the
source code that you publish.743

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing LGPL-2.1 licensing statements.

741) For details → OSLiC, pp. 126
742) For implementing the handover of files correctly → OSLiC, p. 127
743) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

253

6 Open Source License Compliance: To-Do Lists

If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the LGPL-2.1.744

• [mandatory:] Maintain the structural independence of the library.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-2.1 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-2.1.

• [mandatory:] Either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three
years, to give the user all object-files of the on-top development and
the library, so that he can relink the application himself.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to modify the library in a way that it is no longer a library.

6.9.12 LGPL-3.0-C1: Using the software only for yourself

means that you received LGPL-3.0 licensed software, that you will use it only
for yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N745

requires no tasks in order to fulfill the conditions of the GNU Lesser General
Public License 3.0 with respect to this use case:

744) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1
license.

745) For details → OSLiC, pp. 112 – 124

254

6 Open Source License Compliance: To-Do Lists

• You are allowed to use any kind of LGPL-3.0 licensed software in any
sense and in any context without being obliged to do anything as long
as you do not give the software to third parties.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.13 LGPL-3.0-C2: Passing the unmodified software as independent
source code

means that you received LGPL-3.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S746

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.747

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

746) For details → OSLiC, pp. 112 – 117
747) For implementing the handover of files correctly → OSLiC, p. 127

255

6 Open Source License Compliance: To-Do Lists

6.9.14 LGPL-3.0-C3: Passing the unmodified software as independent
binaries

means that you received LGPL-3.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B748

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.749

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Execute the to-do list of use case LGPL-3.0-C2 for the
source code that you publish.750

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

748) For details → OSLiC, pp. 113 – 118
749) For implementing the handover of files correctly → OSLiC, p. 127
750) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

256

6 Open Source License Compliance: To-Do Lists

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.15 LGPL-3.0-C4: Passing the unmodified library as embedded source
code

means that you received an LGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S751

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.752

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-3.0 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-3.0.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

751) For details → OSLiC, pp. 120
752) For implementing the handover of files correctly → OSLiC, p. 127

257

6 Open Source License Compliance: To-Do Lists

6.9.16 LGPL-3.0-C5: Passing the unmodified library as embedded binaries

means that you received an LGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B753

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.754

• [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-3.0 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-3.0.

• [mandatory:] Either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three
years, to give the user all object-files of the on-top development and
the library, so that he can relink the application himself.

• [mandatory:] Execute the to-do list of use case LGPL-3.0-C4 for the
source code that you publish.755

753) For details → OSLiC, pp. 121
754) For implementing the handover of files correctly → OSLiC, p. 127
755) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

258

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.17 LGPL-3.0-C6: Passing a modified program as source code

means that you received an LGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S756

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.757

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a LGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the LGPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

756) For details → OSLiC, pp. 116
757) For implementing the handover of files correctly → OSLiC, p. 127

259

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing LGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the LGPL-3.0.758

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.18 LGPL-3.0-C7: Passing a modified program as binary

means that you received an LGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B759

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.760

• [mandatory:] Retain all existing copyright notices.

758) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0
license.

759) For details → OSLiC, pp. 116
760) For implementing the handover of files correctly → OSLiC, p. 127

260

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Let the copyright dialog of the program clearly say that
it is a LGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the LGPL-3.0. If
these conditions are not already met, add the missing elements.

• [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing LGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the LGPL-3.0.761

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case LGPL-3.0-C4 for the
source code that you publish.762

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

761) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0
license.

762) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

261

6 Open Source License Compliance: To-Do Lists

6.9.19 LGPL-3.0-C8: Passing a modified library as independent source code

means that you received an LGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S763

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.764

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the LGPL-3.0.765

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

763) For details → OSLiC, pp. 122
764) For implementing the handover of files correctly → OSLiC, p. 127
765) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0

license.

262

6 Open Source License Compliance: To-Do Lists

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.20 LGPL-3.0-C9: Passing a modified library as independent binary

means that you received an LGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B766

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.767

• [mandatory:] Retain all existing copyright notices.

• [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case LGPL-3.0-C8 for the
source code that you publish.768

• [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

766) For details → OSLiC, pp. 123
767) For implementing the handover of files correctly → OSLiC, p. 127
768) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

263

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the LGPL-3.0.769

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.21 LGPL-3.0-CA: Passing a modified library as embedded source code

means that you received an LGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S770

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.771

769) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0
license.

770) For details → OSLiC, pp. 125
771) For implementing the handover of files correctly → OSLiC, p. 127

264

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-3.0 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing LGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the LGPL-3.0.772

• [mandatory:] Maintain the structural independence of the library.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.22 LGPL-3.0-CB: Passing a modified library as embedded binary

means that you received an LGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B773

requires the following tasks in order to fulfill the license conditions:

772) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0
license.

773) For details → OSLiC, pp. 126

265

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

• [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

• [mandatory:] Give the recipient a copy of the LGPL-3.0 license. If it
is not already part of the software package, add it.774

• [mandatory:] Make the source code of the embedded library publicly
available: Push the source code package into a repository under your
control and make it downloadable via the Internet. Ensure, that this
repository is online for at least 3 years after you ceased distributing
the software package.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case LGPL-3.0-CA for the
source code that you publish.775

• [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-3.0 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-3.0.

• [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

• [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing LGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the LGPL-3.0.776

• [mandatory:] Maintain the structural independence of the library.

• [mandatory:] Either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three

774) For implementing the handover of files correctly → OSLiC, p. 127
775) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.
776) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-3.0

license.

266

6 Open Source License Compliance: To-Do Lists

years, to give the user all object-files of the on-top development and
the library, so that he can relink the application himself.

• [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-3.0.

• [voluntary:] Retain all existing copyright notices.

prohibits . . .

• to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.9.23 Discussions and Explanations

• The LGPL-2.1 allows to “[. . .] copy and (to) distribute verbatim copies of
the Library’s complete source code as you receive it [...] provided that you
[a] conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; [b] keep intact all the notices
that refer to this License and to the absence of any warranty; and [c]
distribute a copy of this License along with the Library.”777 Additionally,
the LGPL-2.1 allows the distribution of the modified source code “under
the terms of Section 1”778 and the distribution of binaries “under the terms
of Sections 1 and 2”.779 But the LGPL does not require any tasks if you are
using the work only for yourself. Thus, the quoted conditions of “Section
1” are mandatory for all use cases concerning the distribution of an LGPL
licensed work (LGPL-2.1-C2 – LGPL-2.1-CB). 780

• Although the LGPL-2.1 does not explicitly require to retain the copyright
notices in the form you have received them, it is nevertheless a very good
idea not to modify these elements (LGPL-2.1-C2 - LGPL-2.1-CB). The
LGPL-3.0, on the other hand, inherits the clauses that require all notices to
be kept intact from the GPL-3.0 (LGPL-3.0-C2 – LGPL-3.0-CB).781

777) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §1.
778) cf. id., l.c., wp §2.
779) cf. id., l.c., wp §4.
780) The GPL-3.0, which is included into the LGPL-3.0, uses a similar structure to establish

the same requirements (→ OSLiC, p. 237). Based on this fact, one may conclude that the
tasks which fulfill the corresponding LGPL-2.1 requirements together also fit the GPL-3.0
conditions and hence those of the LGPL-3.0.

781) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §4.

267

6 Open Source License Compliance: To-Do Lists

• The LGPL-2.1 allows to “[. . .] copy and (to) distribute the Library (or a
portion or derivative of it [. . .]) in object code or executable form [. . .]
provided that you accompany it with the complete corresponding machine-
readable source code [. . .] on a medium customarily used for software
interchange.” And the license further states that, if one makes the object
code accessible without distributing it directly, then the same ‘download’
method for the source code fulfills this condition.782 So, no doubt: Taken
literally, the LGPL requires you to distribute the source code and the object
code together and by the same method: either both on (for example) DVD
or both offered for download; but not the one on DVD and the other by
a download from a repository. But the first specification also says, that
the “complete corresponding machine readable source code” has to be
distributed “on a medium customarily used for software interchange.”783

The OSLiC considers the possibility to download files from the Internet as a
distribution on a medium [today] customarily used for software interchange.
Therefore, the OSLiC requires for all open source use cases that refer to the
distribution of binaries (LGPL-2.1-C3, LGPL-2.1-C5, LGPL-2.1-C7, LGPL-
2.1-C9, and LGPL-2.1-CA) to make the source code of the corresponding
library accessible via an Internet repository.

In contrast to the LGPL-2.1, the GPL-3.0, which is included in the LGPL-
3.0, explictily offers the option to distribute the sources via an Internet
server (→ OSLiC, p. 238). So, one may again conclude that the tasks
that fulfill the corresponding LGPL-2.1 requirements together also fit the
GPL-3.0 and the LGPL-3.0 conditions.

• The LGPL allows to “[. . .] modify your copy or copies of the Library or
any portion of it [. . .] and (to) copy and distribute such modifications [. . .]”
only under some restrictions and condtions:784

– First, modified files must be marked as modifications and this must in-
clude the date of the modification.785 This condition must be respected
by all open source use cases concerning the distribution of the modified
work [LGPL-*-C6 - LGPL-*-CB], because even if one primarily intends
to distribute binaries, one has also to deliver the source code. The
OSLiC ‘replaces’ this requirement by the mandatory condition to mark
each modified file and by the voluntary condition to update or create
a general changelog file.

782) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §4.
783) cf. id., ibid.
784) cf. id., l.c., wp §2.
785) For LGPL-2.1 see cf. id., l.c., wp. §2.

For GPL-3.0, which is included in the LGPL-3.0, see cf. Open Source Initiative: The GPL-3.0
License (OSI), 2007, wp. §5.

268

6 Open Source License Compliance: To-Do Lists

– Second, the license requires that the modified version does not depend
on external data structures without “[. . .] (making) a good faith effort
to ensure that, in the event an application does not supply such (a)
function or table, the facility still operates, and performs whatever
part of its purpose remains meaningful.”786 The OSLiC rewrites this
condition as the obligation to maintain the structural independence of
the library in case of using the modified library as embedded component
[LGPL-*-CA - LGPL-*-CB].

– Third, the LGPL-2.1 definitely requires, that “the modified work
must itself be a software library.”787 This conditions can directly be
incorprated as an interdiction into all use cases which refer to the
modification of a library [LGPL-2.1-C8 - LGPL-2.1-CB]. But it is
difficult to respect this condition if one wants to modify a program
which one has received under the terms of the LGPL-2.1. In principal,
one can write an application and license it under the LGPL-2.1. But,
as a consequence, that impedes the modification of this work because
the result must be a library.

The LGPL-3.0 does not contain any such requirement. Hence, the
OSLiC allows the distribution of modified programs (LGPL-*-C6,
LGPL-*-C7) only if they are licensed under the terms of LGPL-3.0.
For programs licensed under LGPL-2.1, the only option is to relicense
the software under the terms of the regular GPL-2.0 (or, at your
discretion, GPL-3.0). This is explicitely allowed by the LGPL-2.1:
“You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library.”788

• Additionally, the LGPL-2.1 allows the licensee to distribute a program789

developed on-top of the library (what the LGPL-2.1 calls a “work that uses
the libary”790) “as an exception to the Sections above” in “combination”
with the library “under terms of your choice,”791, provided that the licensee
fulfills additional conditions:

First, it must clearly be stated that the on-top development depends on the
(modified) library. Second, the LGPL must be added into the distributed
package.792 In the LGPL-3.0, this condition is similarily integrated: On
the one hand, the “combined work” is defined as “a work produced by

786) For LGPL-2.1 see cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §2d.
For LGPL-3.0 see cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp. §2a.

787) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §2.
788) cf. id., l.c., wp §3.
789) or another library
790) cf. id., l.c., wp §5, §6.
791) cf. id., l.c., wp §6.
792) cf. id., ibid.

269

6 Open Source License Compliance: To-Do Lists

combining or linking an Application with the Library”.793 On the other
hand, the LGPL-3.0 states that one “[. . .] may convey a Combined Work
under terms of (his own) choice” provided that one [a] clearly says that
the on-top development uses the LGPL licensed library, [b] distributes the
LGPL-3.0 and the GPL-3.0 license as part of the package, [c] includes
all these (licensing) information in an existing copyright dialog, if any,
[d] requires an appropriate shared library mechanism, and [e] offers the
respective installion information.794 These requirements can directly be
inserted as conditions into the respective use cases for both LGPL versions
(LGPL-*-CA, LGPL-*-CB).

• The most difficult requirements of the LGPL-2.1 concern the distribution in
the form of binaries. In a very strict reading, the LGPL does not require to
link the on-top development and the libary only dynamically. At first, the
LGPL mentions, that the “[..] work (that uses the Library), in isolation, is
not a derivative work of the Library [. . .]”. But if it is linked to the library
the resulting executable program becomes “a derivative of the Library” and
that it is therefore “[. . .] covered by this License (LGPL-2.1)”. But the
LGPL-2.1 directly continues this statement with the hint, that “Section
6 states terms for distribution of such executables.”795 Finally, section 6
directly starts with the statement: “As an exception to the Sections above,
you may also combine or link a ‘work that uses the Library’ with the Library
to produce a work containing portions of the Library, and distribute that
work under terms of your choice”.796

This is important to know, because until this section 6 one can not directly
read or indirectly infer that the LGPL-2.1 distinguished the act of dynami-
cally linking a program and a library from that of statically linking these
parts. The LGPL only wants to ensure that the binaries of the library itself
can be replaced by a newer version. And that is required by section 6.797

From a practical point of view, this can only be guaranteed, if the binaries
of the on-top development and the library are linked using a “suitable
shared library mechanism”798 or if one also gets all compiled, but not linked
object-files of the on-top development and the library, either directly, or
via using a “a written offer, valid for at least three years, to give the same
user the (respective) materials”.799 In the first case, the user can replace
the received version of the library and can let the application be relinked

793) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp §0.
794) cf. id., l.c., wp §4.
795) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §5.
796) cf. id., l.c., wp §6.
797) cf. id., ibid.
798) cf. id., ibid.
799) cf. id., ibid.

270

6 Open Source License Compliance: To-Do Lists

automatically. In the second case, he has to do it manually. It is important
to know that both these ways exist if one wants or must distribute statically
linked works. The LGPL-2.1 does not forbid to distribute statically linked
applications. But it requires to enable the receiver to relink the work.

The LGPL-3.0 has reduced these complex conditions in a special way: First,
it does not use the words ‘statically linked’ or ‘dynamically’ linked at all.
Second it defines the combined work ‘only’ as the result of “combining
or linking an Application with the Library”.800 But then it requires for
the distribution of the combined works that one has either to “convey the
Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable for, and under terms
that permit, the user to recombine or relink the Application with a modified
version of the Linked Version to produce a modified Combined Work [. . .]”
or that one must presuppose that the receiver uses “[. . .] suitable shared
library mechanism for linking with the Library [. . .] that [. . .] operate
properly with a modified version of the Library [. . .]”801 Finally, the LGPL-
3.0 adds that in the first case the these materials which enables the relinking
must be distributed “[. . .] in the manner specified by section 6 of the GNU
GPL[-3.0] for conveying Corresponding Source.”802 And this section 6 of
the GPL-3.0 allows the well known method to “convey the object code [. . .]
accompanied by a written offer [. . .] to give anyone [. . .] access to copy the
Corresponding Source from a network server at no charge”.803

Therefore, the OSLiC can condense these conditions into the requirement,
either to distribute dynamically linkable parts, or to distribute statically
linked applications “(accompanied) [. . .] with a written offer, valid for at
least three years, to give the same user the [complete] materials,”804 so that
he can relink the application. It is clear, that this condition only applies to
the use cases LGPL-*-C5 and LGPL-*-CB.

6.10 MIT licensed software

The MIT license is known as one of the most permissive licenses. Thus, the MIT
specific finder can be simplified:

800) cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp §0.
801) cf. id., l.c., wp §4.
802) cf. id., ibid.
803) cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §6.
804) cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §6.

271

6 Open Source License Compliance: To-Do Lists

MIT

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

type:
snimoli

context:
independent

context:
embedded

MIT-C1
using

software
only for
yourself

MIT-C2
dis-

tributing
unmodified
package

MIT-C3
dis-

tributing
modified
program

MIT-C4
dis-

tributing
modified
library
as inde-
pendent
package

MIT-C5
dis-

tributing
modified
library as
embedded
package

6.10.1 MIT-C1: Using the software only for yourself

means that you received MIT licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N805

requires no tasks in order to fulfill the conditions of the MIT License with respect
to this use case:

• You are allowed to use any kind of MIT licensed software in any
sense and in any context without any obligations if you do not give
the software to third parties and if you do not modify the existing
copyright notices and the existing permission notice.

prohibits nothing explicitely.

805) For details → OSLiC, pp. 112 - 124

272

6 Open Source License Compliance: To-Do Lists

6.10.2 MIT-C2: Passing the unmodified software

means that you received MIT licensed software which you are now going to
distribute to third parties in the form of unmodified binaries or as unmodifed
source code files. In this case it makes no difference if you distribute a
program, an application, a server, a snippet, a module, a library, or a plugin
as an independent package.

covers OSUC-02S, OSUC-02B, OSUC-05S, OSUC-05B, OSUC-07S, OSUC-07B806

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially the MIT
license text containing the specific copyright notices of the original
author(s), the permission notices and the MIT disclaimer) are retained
in your package in the form you have received them.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage.

prohibits nothing explicitely.

6.10.3 MIT-C3: Passing a modified program

means that you received an MIT licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form binaries or as source code files.

covers OSUC-04S, OSUC-04B807

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially the MIT
license text containing the specific copyright notices of the original
author(s), the permission notices and the MIT disclaimer) are retained
in your package in the form you have received them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage.

• [voluntary:] You can augment an existing copyright notice presented
by the program with information about your own work or modifications.

806) For details → OSLiC, pp. 112 - 121
807) For details → OSLiC, pp. 116

273

6 Open Source License Compliance: To-Do Lists

• [voluntary:] It is a good practice of the open source community to let
the copyright notice that is shown by the running program also state
that the program uses a component licensed under the MIT license.
And it is a good tradition to insert links to the homepage or download
page of this component.

prohibits nothing explicitely.

6.10.4 MIT-C4: Passing a modified library independently

means that you received an MIT licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute
this modified version to third parties in the the form of binaries or as source
code files, but without embedding it into another larger software unit.

covers OSUC-08S, OSUC-08B808

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially the MIT
license text containing the specific copyright notices of the original
author(s), the permission notices and the MIT disclaimer) are retained
in your package in the form you have received them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage.

prohibits nothing explicitely.

6.10.5 MIT-C5: Passing a modified library as embedded component

means that you received an MIT licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binaries or as source code
files together with another larger software unit which contains this code
snippet, module, library, or plugin as an embedded component, regardless
whether you distribute it in the form of binaries or as source code files.

covers OSUC-10S, OSUC-10B809

requires the following tasks in order to fulfill the license conditions:

808) For details → OSLiC, pp. 122
809) For details → OSLiC, pp. 125

274

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Ensure that the licensing elements (especially the MIT
license text containing the specific copyright notices of the original
author(s), the permission notices and the MIT disclaimer) are retained
in your package in the form you have received them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It is a good practice of the open source community to let
the copyright notice that is shown by the running program also state
that the program uses a component licensed under the MIT license.
And it is a good tradition to insert links to the homepage or download
page of this component.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage.

• [voluntary:] Arrange your distribution so that the original licensing
elements (especially the MIT license text containing the specific copy-
right notices of the original author(s), the permission notices and the
MIT disclaimer) clearly refer only to the embedded library and do
not disturb the licensing of your own overarching work. It’s a good
tradition to keep the libraries, modules, snippet, or plugins in separate
directories, which contain also all licensing elements.

prohibits nothing explicitely.

6.10.6 Discussions and Explanations

The MIT-License is known as one of the most permissive licenses. It is a very
short license containing (0) a copyright notice, (1) a paragraph saying that you
are allowed to do almost anything you want, followed (2) by the condition that
you have to “include” the existing copyright notes and the permission notes “[. . .]
in all copies or substantial portions of the software”, and (3) closed by the well
known disclaimer.810 But the license doesn’t talk about the difference of source
code and object code. So, you have to find the right way by yourself. Here are
our readings:

• If you do not modify the received MIT licensed application, neither for
your own purposes, nor for handing over the program to 3rd parties, you
can conclude that all copyright notices and permission notices are already
correct.

810) cf. Open Source Initiative: The MIT License, 2012, wp.

275

6 Open Source License Compliance: To-Do Lists

• Nevertheless, we added the hint not to modify these licensing elements in
the context of the use case used by yourself. This is implied by the MIT
license itself. It requires explicitly that “the above copyright notice and this
permission notice shall be included in all copies or substantial portions of
the Software”811–thus also into those copies you make for your own purposes
on your own machines.

• If you modify the MIT licensed application, regardless for which purpose,
you are simply not allowed to erase or modify existing copyright notes
and permission notices. You may add your own modifications under new
conditions, but the old notices must survive.

• We request that you also keep the MIT disclaimer. This is not explicitely
required by the license. The permission notices, which is required to be
preserved, most likely refers to the text between the copyright notice and
the disclaimer and, hence, does not include the latter. But another possible,
although less likely interpretation is that the whole text of the license is
what permission notice refers to.

6.11 MPL-2.0 licensed software

The Mozilla Public License clearly distinguishes the distribution of source code
from the distribution of binaries: First, it allows the “Distribution of Source
Form”.812 Then, it specifies the conditions for a “Distribution of Executable
Form”.813 Additionally, the MPL-2.0 contrasts the “distribution of Covered
Software” with the “distribution of a Larger Work”.814 So, taken as whole, the
MPL-2.0 mainly focusses on the distribution of software. Thus, for finding the
relevant executable task lists, the following MPL-2.0 specific open source use case
structure815 can be used:

811) cf. Open Source Initiative: The MIT License, 2012, wp -.
812) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.1.
813) cf. id., l.c., wp §3.2.
814) cf. id., l.c., wp §3.3.
815) For details of the general OSUC finder → OSLiC, pp. 104 and ??

276

6 Open Source License Compliance: To-Do Lists

MPL-2.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

MPL-2.0-
C1 using
software
only for
yourself

MPL-
2.0-C2

dis-
tributing

unmodified
software

as sources

MPL-
2.0-C3

dis-
tributing

unmodified
software as
binaries

MPL-
2.0-C4

dis-
tributing
modified
program

as sources

MPL-
2.0-C5

dis-
tributing
modified

program as
binaries

MPL-
2.0-C6

dis-
tributing
modified
library
as inde-
pendent
sources

MPL-
2.0-C7

dis-
tributing
modified
library
as inde-
pendent
binaries

MPL-
2.0-C8

dis-
tributing
modified
library as
embedded
sources

MPL-
2.0-C9

dis-
tributing
modified
library as
embedded
binaries

6.11.1 MPL-2.0-C1: Using the software only for yourself

means that you received MPL-2.0 licensed software, that you will use it only for
yourself, and that you do not hand it over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N816

requires no tasks in order to fulfill the conditions of the Mozilla Public License
2.0 with respect to this use case:

• You are allowed to use any kind of MPL-2.0 software in any sense and
in any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

816) For details → OSLiC, pp. 112 – 124

277

6 Open Source License Compliance: To-Do Lists

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.2 MPL-2.0-C2: Passing the unmodified software as source code

means that you received MPL-2.0 licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S817

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received.

• [mandatory:] Give the recipient a copy of the MPL-2.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.818

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except

817) For details → OSLiC, pp. 112 – 120
818) For implementing the handover of files correctly → OSLiC, p. 127

278

6 Open Source License Compliance: To-Do Lists

as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.3 MPL-2.0-C3: Passing the unmodified software as binaries

means that you received MPL-2.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B819

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control: Push the source
code package into the repository and make it downloadable via the
Internet. Do no charge any fees from the user for downloading the
source. Ensure, that this repository is online for a reasonable period of
time after you ceased distributing the software.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case MPL-2.0-C2 for the
source code that you publish.820

• [voluntary:] Give the recipient a copy of the MPL-2.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.821

819) For details → OSLiC, pp. 113 – 121
820) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.
821) For implementing the handover of files correctly → OSLiC, p. 127

279

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.4 MPL-2.0-C4: Passing a modified program as source code

means that you received an MPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S822

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received.

• [mandatory:] Give the recipient a copy of the MPL-2.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.823

• [mandatory:] Organize your modifications in such a way that they
are covered by the existing MPL-2.0 licensing statements. If you add
new source code files, insert a header containing your copyright line
and an MPL-2.0 adequate licensing the statement.

822) For details → OSLiC, pp. 116
823) For implementing the handover of files correctly → OSLiC, p. 127

280

6 Open Source License Compliance: To-Do Lists

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to
the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Mark all modifications of the source code thoroughly,
preferably in the modified source itself.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.5 MPL-2.0-C5: Passing a modified program as binary

means that you received an MPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B824

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control: Push the source
code package into the repository and make it downloadable via the
Internet. Do no charge any fees from the user for downloading the

824) For details → OSLiC, pp. 116

281

6 Open Source License Compliance: To-Do Lists

source. Ensure, that this repository is online for a reasonable period of
time after you ceased distributing the software.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case MPL-2.0-C4 for the
source code that you publish.825

• [mandatory:] Organize your modifications in such a way that they
are covered by the existing MPL-2.0 licensing statements.

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to
the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Give the recipient a copy of the MPL-2.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.826

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

825) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

826) For implementing the handover of files correctly → OSLiC, p. 127

282

6 Open Source License Compliance: To-Do Lists

6.11.6 MPL-2.0-C6: Passing a modified library as independent source code

means that you received an MPL-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S827

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received.

• [mandatory:] Give the recipient a copy of the MPL-2.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.828

• [mandatory:] Organize your modifications in such a way that they
are covered by the existing MPL-2.0 licensing statements. If you add
new source code files, insert a header containing your copyright line
and an MPL-2.0 adequate licensing the statement.

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to
the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Mark all modifications of the source code thoroughly,
preferably in the modified source itself.

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

827) For details → OSLiC, pp. 122
828) For implementing the handover of files correctly → OSLiC, p. 127

283

6 Open Source License Compliance: To-Do Lists

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.7 MPL-2.0-C7: Passing a modified library as independent binary

means that you received an MPL-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B829

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control: Push the source
code package into the repository and make it downloadable via the
Internet. Do no charge any fees from the user for downloading the
source. Ensure, that this repository is online for a reasonable period of
time after you ceased distributing the software.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case MPL-2.0-C6 for the
source code that you publish.830

• [mandatory:] Organize your modifications in such a way that they
are covered by the existing MPL-2.0 licensing statements.

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to

829) For details → OSLiC, pp. 123
830) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

284

6 Open Source License Compliance: To-Do Lists

the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Give the recipient a copy of the MPL-2.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.831

• [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notice text files, the name of the software, a link to its homepage, and
a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.8 MPL-2.0-C8: Passing a modified library as embedded source code

means that you received an MPL-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S832

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received.

831) For implementing the handover of files correctly → OSLiC, p. 127
832) For details → OSLiC, pp. 125

285

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Give the recipient a copy of the MPL-2.0 license. If
it is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This
Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.833

• [mandatory:] Organize your modifications of the embedded library
in such a way that they are covered by the existing MPL-2.0 licensing
statements. If you add new source code files to the library itself, insert
a header containing your copyright line and an MPL-2.0 adequate
licensing the statement.

• [voluntary:] Arrange your source code distribution so that the licens-
ing elements (especially the MPL-2.0 license text and the licensing files)
clearly refer only to the embedded library and do not affect the licensing
of your own overarching work. It’s a good tradition to keep embedded
components like libraries, modules, snippets, or plugins in separate
directories, which contain also all additional licensing elements.

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to
the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Mark all modifications of the source code thoroughly,
preferably in the modified source itself.

• [voluntary:] Let the documentation of your distribution and/or
your additional material also reproduce the content of the existing
copyright notice text files, the name of the embedded MPL-2.0 licensed
component, a link to its homepage, and a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

833) For implementing the handover of files correctly → OSLiC, p. 127

286

6 Open Source License Compliance: To-Do Lists

6.11.9 MPL-2.0-C9: Passing a modified library as embedded binary

means that you received an MPL-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B834

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the licensing elements (especially all copy-
right notices, patent notices, disclaimers of warranty, or limitations
of liability) are retained in your package in exactly the form that you
have received.If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

• [mandatory:] Make the source code of the embedded library accessible
via a repository under your own control: Push the source code package
into the repository and make it downloadable via the Internet. Do
no charge any fees from the user for downloading the source. Ensure,
that this repository is online for a reasonable period of time after you
ceased distributing the software.

• [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

• [mandatory:] Execute the to-do list of use case MPL-2.0-C8 for the
source code that you publish.835

• [mandatory:] Organize your modifications of the embedded library
in such a way that they are covered by the existing MPL-2.0 licensing
statements.

• [voluntary:] Create a modification text file, if such a notice file still
does not exist. Add a general description of your modifications to
the modification text file. Incorporate the file into your distribution
package.

• [voluntary:] Give the recipient a copy of the MPL-2.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the MPL-2.0, additionally insert
your own correct MPL-2.0 licensing file containing the sentence: This

834) For details → OSLiC, pp. 126
835) Making the code accessible via a repository means distributing the software in the form of

source code. Hence, you must also fulfill all tasks of the corresponding use case.

287

6 Open Source License Compliance: To-Do Lists

Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at http://mozilla.org/MPL/2.0/.836

• [voluntary:] Arrange your binary distribution so that the licensing
elements (especially the MPL-2.0 license text and the licensing files)
clearly refer only to the embedded library and do not affect the licensing
of your own overarching work. It’s a good tradition to keep embedded
components like libraries, modules, snippets, or plugins in separate
directories, which contain also all additional licensing elements.

• [voluntary:] Let the documentation of your distribution and/or
your additional material also reproduce the content of the existing
copyright notice text files, the name of the embedded MPL-2.0 licensed
component, a link to its homepage, and a link to the MPL-2.0 license.

prohibits . . .

• to remove or to alter any license elements (including copyright no-
tices, patent notices, disclaimers of warranty, or limitations of liability)
contained within the software package you have received.

• to promote any of your services based on the this software by trade-
marks, service marks, or logos linked to this MPL-2.0 software, except
as required for reasonable and customary use in describing the origin
of the software and reproducing the copyright notice.

6.11.10 Discussions and Explanations

The MPL-2.0 offers a section “Responsibilities” which contains nearly all re-
quirements.837 Only for some subordinate aspects, one has also to reflect other
paragraphs.838§3 - concerning the trademarks With respect to this structure, we
can detect the following tasks:

• In a more general attitude, the MPL-2.0 states that it “[. . .] does not grant
any rights in the trademarks, service marks, or logos of any Contributor”—
except as it may be necessary “to comply with” other requirements of the
license.839 The OSLiC rewrites the message as the interdiction to promote
own services and products by and with such elements.

• The MPL-2.0 also generally prescribes that “you may not remove or alter the
substance of any license notice (including copyright notices, patent notices,

836) For implementing the handover of files correctly → OSLiC, p. 127
837) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.
838) cf. id., l.c., wp pars pro to cf..
839) cf. id., l.c., wp §2.3.

288

6 Open Source License Compliance: To-Do Lists

disclaimer of warranties, or limitations of liabiliy) contained within the
Source Code Form [. . .]”840 This focussing to the “substance of any license
notice” refers to the allowance to “[. . .] alter any license notices to the extent
required to remedy known factual innacuracies”.841 Following its principle
to offer one reliable way and to ignore variants of secondary importance,
the OSLiC simplifies this condition to the general proscription to modify
any licensing material for all use cases [MPL-2.0-C1 – MPL-2.0-C9]. But
for emphasizing that this is a job which must be activily done, the OSLiC
additionally rewrites this interdiction into all 2others use cases [MPL-2.0-C2
– MPL-2.0-C9] as the task to retain the licensing elements in the form one
has obtained them.

• Moreover, the MPL-2.0 requires for all “distributions of [the] source [code]
form” that all modifications of the software “[. . .] must be under the terms of
(the MPL-2.0)” and that the distributor “[. . .] must inform” all “recipients”
that the software “[. . .] is governed by the terms of (the MPL-2.0), and
how (the recipients) can obtain a copy of this license”.842 For the respective
use case (MPL-2.0-C2, MPL-2.0-C4, MPL-2.0-C6, MPL-2.0-C8), the OSLiC
rewrites these conditions so that each MPL-2.0 source code package must
neccessarily contain the MPL-2.0 itself as textfile and an additional licensing
file or statement strictly following the text given by the addendum of the
MPL-2.0.843 Because the MPL-2.0 is only a license with weak copyleft, the
OSLiC proposes to separate the MPL-2.0 licensed, embedded component
from the enclosing program (MPL-2.0-C8).

• But the MPL-2.0 does not explicitly require marking all modifications.
Nevertheless, this is state of the art in computer emgineering. Therefore, with
respect to the cases of distributing modified source code (MPL-2.0-C4, MPL-
2.0-C6 and MPL-2.0-C8), the OSLiC proposes to mark all modifications
inside of the source code and to update the description of the functional
changes. In case of distributing the modified software in the form of binaries,
it should be sufficient to describe the modifications only on the functional
level.

• Furthermore, the MPL-2.0 requires that the “Covered Software”—in all
cases of distributing it in an “Executable Form” (MPL-2.0-C3, MPL-2.0-C5,
MPL-2.0-C7, MPL-2.0-C9)—“[. . .] must also be made available in Source
Code Form [. . .]” and that the distributor “[. . .] must inform recipients of
the Executable Form how they can obtain a copy of such Source Code Form
by reasonable means in a timely manner, at a charge no more than the cost

840) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.4.
841) cf. id., ibid.
842) cf. id., l.c., wp §3.1.
843) cf. id., l.c., wp Exhibit A.

289

6 Open Source License Compliance: To-Do Lists

of distribution to the recipient”.844 The OSLiC rewrites these conditions as
the obligation to offer a download service at no charge and to point towards
this services inside of the distributed package.

• In this context, the MPL-2.0 allows to distribute the binaries under terms
of another license “[. . .] provided that that the license for the Executable
Form does not attempt to limit or alter the recipients’ rights in the Source
Code Form under this License.”845 This possibility might become important
for those cases where the license compatibility must explicitly be managed.
Normally, it should be sufficient also to distribute the binaries under the
MPL-2.0. Thus, in case of distributing binaries (MPL-2.0-C3, MPL-2.0-
C5, MPL-2.0-C7, MPL-2.0-C9), the OSLiC proposes to insert into the
distribution packages the MPL-2.0 itself and an additional licensing file or
statement strictly following the text given by the addendum of the MPL-
2.0.846 But again, because the MPL-2.0 is only a license with weak copyleft,
the OSLiC proposes to separate the MPL-2.0 licensed embedded component
from the overarching program (MPL-2.0-C9).

• Finally, one clearly has to state that the distribution of the source code
required by the previous rule must, of course, follow the rules of distributing
the software. Thus, the OSLiC requires in all cases of a binary distribution
to execute also the task-lists of the respective source code use cases.

6.12 Microsoft Public License

The MS-PL license is also one of the most permissive licenses. Thus, the MS-PL
specific finder can be simplified:

844) cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.2.a.
845) cf. id., l.c., wp §3.2.b.
846) cf. id., l.c., wp Exhibit A.

290

6 Open Source License Compliance: To-Do Lists

MS-PL

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

MS-PL-
C1 using
software
only for
yourself

MS-
PL-C2

dis-
tributing

unmodified
software

MS-
PL-C3

dis-
tributing
modified
program

as sources

MS-
PL-C4

dis-
tributing
modified

program as
binaries

MS-
PL-C5

dis-
tributing
modified
library
as inde-
pendent
sources

MS-
PL-C6

dis-
tributing
modified
library
as inde-
pendent
binaries

MS-
PL-C7

dis-
tributing
modified
library as
embedded
sources

MS-
PL-C8

dis-
tributing
modified
library as
embedded
binaries

6.12.1 MS-PL-C1: Using the software only for yourself

means that you received MS-PL licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N847

requires no tasks in order to fulfill the conditions of the Microsoft Public License
with respect to this use case:

• You are allowed to use any kind of MS-PL licensed software in any
sense and in any context without any other obligations if you do not
give the software to 3rd parties.

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

847) For details see pp. 112 - 124

291

6 Open Source License Compliance: To-Do Lists

6.12.2 MS-PL-C2: Passing the unmodified software

means that you received MS-PL licensed software which you are now going to
distribute to third parties in the form of unmodified binaries or as unmodifed
source code files. In this case it makes no difference if you distribute a
program, an application, a server, a snippet, a module, a library, or a plugin
as an independent package.

covers OSUC-02S, OSUC-02B, OSUC-05S, OSUC-05B, OSUC-07S, OSUC-07B848

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that all licensing elements (particularly all
copyright, patent, trademark, and attribution notices that are part of
the version you received) are completely retained in your package.

• [mandatory:] Incorporate a complete copy of the MS-PL license into
your package, regardless whether you distribute a source code or a
binary package.849

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage.

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.3 MS-PL-C3: Passing a modified program as source code

means that you received an MS-PL licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S850

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that all licensing elements (particularly all
copyright, patent, trademark, and attribution notices that are part of
the version you received) are completely retained in your package.

• [mandatory:] Incorporate a complete copy of the MS-PL license into
your package.

848) For details → OSLiC, pp. 113 – 121
849) → OSLiC, p. 297
850) For details → OSLiC, pp. 116

292

6 Open Source License Compliance: To-Do Lists

• [mandatory:] If you do not want to publish your modifications under
the MS-PL too, then cleanly separate your own sources and licensing
documents from original elements of the adopted work.

• [voluntary:] Mark your modifications in the sourcecode.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with the prohibitions stated below).

• [voluntary:] You are allowed to expand an existing copyright notice
of the program to mention your own contributions.

• [voluntary:] It is a good practice of the open source community, to
let the copyright notice which is shown by the running program also
state that the program is licensed under the MS-PL license (as far as
this does not clashes with the prohibitions stated below). Because you
are already modifying the program, you can also add such a hint, if
the original copyright notice lacks such a statement.

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.4 MS-PL-C4: Passing a modified program as binary

means that you received an MS-PL licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B851

requires the following tasks in order to fulfill the license conditions:

• [voluntary:] Mark your modifications in the source code even if you
do not intend to distribute it.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with with the prohibitions stated below).

• [voluntary:] It is a good practice of the open source community, to
let the copyright notice which is shown by the running program also

851) For details → OSLiC, pp. 116

293

6 Open Source License Compliance: To-Do Lists

state that the derivative work is based on a version originally licensed
under the MS-PL license (as far as this does not clashes with the
prohibitions stated below), perhaps by linking to the project homepage
of the original. Because you are already modifying the program, you
can also add such a hint, if the original copyright notice lacks such a
statement.

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.5 MS-PL-C5: Passing a modified library independently as source code

means that you received an MS-PL licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S852

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that all licensing elements (particularly all
copyright, patent, trademark, and attribution notices that are part of
the version you received) are completely retained in your package.

• [mandatory:] Incorporate a complete copy of the MS-PL license into
your package.

• [mandatory:] If you do not want to publish your modifications under
the MS-PL too, then cleanly separate your own sources and licensing
documents from original elements of the adopted part(s).

• [voluntary:] Mark your modifications in the sourcecode.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with with the prohibitions stated below).

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

852) For details → OSLiC, pp. 122

294

6 Open Source License Compliance: To-Do Lists

6.12.6 MS-PL-C6: Passing a modified library independently as binary

means that you received an MS-PL licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B853

requires the following tasks in order to fulfill the license conditions:

• [voluntary:] Mark your modifications in the source code even if do
not want to distribute it.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with with the prohibitions stated below).

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.7 MS-PL-C7: Passing a modified library as embedded source code

means that you received an MS-PL licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S854

requires the following tasks in order to fulfill the license conditions:

• [voluntary:] Ensure that all licensing elements (particularly all copy-
right, patent, trademark, and attribution notices that are part of the
version you received are completely retained in your package.

• [voluntary:] Incorporate a complete copy of the MS-PL license into
your package.

• [voluntary:] If you do not want to publish your modifications or your
overarching application under the MS-PL too, then cleanly separate

853) For details → OSLiC, pp. 123
854) For details → OSLiC, pp. 125

295

6 Open Source License Compliance: To-Do Lists

your own sources and licensing documents from original elements of
the adopted work.

• [voluntary:] Mark your modifications in the sourcecode.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with with the prohibitions stated below).

• [voluntary:] It is a good practice of the open source community, to
let the copyright notice shown by your overarching program also state
that it is based on a component originally licensed under the MS-PL
license, perhaps by linking the project homepage of the original (as far
as this does not clashes with the prohibitions stated below).

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.8 MS-PL-C8: Passing a modified library as embedded binary

means that you received an MS-PL licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B855

requires the following tasks in order to fulfill the license conditions:

• [voluntary:] Mark your modifications in the source code even if do
not want to distribute it.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution and/or your additional material also contain a link to the
original software (project) and its homepage (as far as this does not
clashes with with the prohibitions stated below).

• [voluntary:] It is a good practice of the open source community, to let
the copyright notice shown by your own overarching program also state
that it is based on a component originally licensed under the MS-PL
license, perhaps by linking the project homepage of the original (as far
as this does not clashes with the prohibitions stated below).

855) For details → OSLiC, pp. 126

296

6 Open Source License Compliance: To-Do Lists

prohibits . . .

• to use any contributors’ name, logo, or trademarks (without an addi-
tional or general legally based approval).

6.12.9 Discussions and Explanations

The MS-PL is also a very permissive and short license. It requires to do: (a) You
must preserve existing licensing elements. (b) You must distribute the source
code as whole or “portions” of the source code under the MS-PL. (c) You must
add a copy of the license if you distribute (parts of) the source code. (d) If you
distribute a binary package, you must distribute (the parts of) the work under a
license “that complies with this (MS-PL) license”856.

The most confusing clause is probably the condition, to “[. . .] distribute any
portion of the software in compiled or object code form [. . .] only [. . .] under a
license that complies with this license”. But a closer examination is lighting the
situation: The only other conditions of the license which refer to the context of
distributing binaries are the requirements a) not to abuse trademarks, b) not to
bring a patent claim against any contributor, and c) not to expect any warranties
or guarantees with respect to the distributed portion857.

Based on these readings we decided . . .

• . . . to let you incorporate a copy of the license into your distribution even
if it only contains the binaries of the unmodified version: if you have not
modified it, you do not lose any advantage if you add the license, too. So,
this is the best method to fulfill the MSL-PL binary condition.

• . . . to erase all mandatory conditions in case of the binary distributions:
the patent restriction of the MS-PL itself is already covered by the MS-PL
patent section of the OSLiC858 and the no warranty clause of the MS-PL
by the OSLiC section concerning the power of the MS-PL859 while the
trademark restrictions are explicitly added into the prohibition section.

• . . . to erase the hints to a voluntarily updated copyright dialog in case of
distributing a snimoli independently because the copyright dialog normally
is designed by the overarching work which uses the library, not by the library
itself.

856) cf. Open Source Initiative: MS-PL, 2013, wp.
857) cf. id., l.c., wp. §3A, §3B, §3E.
858) → OSLiC, p. 61
859) → OSLiC, p. 44

297

6 Open Source License Compliance: To-Do Lists

6.13 PostgreSQL License

Like the MIT License Postgres License is a very permissive licenses. Thus, the
PostgreSQL specific finder can be simplified:

PostgreSQL

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

type:
proapse

type:
snimoli

context:
independent

context:
embedded

PostgreSQL-C1
using software

only for yourself

PostgreSQL-C2
distributing un-
modified package

PostgreSQL-C3
distributing

modified program

PostgreSQL-C4
distributing

modified library
as indepen-
dent package

PostgreSQL-C5
distributing

modified library as
embedded package

6.13.1 PostgreSQL-C1: Using the software only for yourself

means that you received PostgreSQL licensed software, that you will use it only
for yourself, and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N860

requires no tasks in order to fulfill the conditions of the PostgreSQL license with
respect to this use case:

• You are allowed to use any kind of PostgreSQL licensed software in
any sense and in any context without any other obligations if you do
not give the software to third parties and if you do not modify the
existing copyright notices or the existing permission notice.

prohibits nothing explicitely.

860) For details → OSLiC, pp. 112 - 124

298

6 Open Source License Compliance: To-Do Lists

6.13.2 PostgreSQL-C2: Passing the unmodified software

means that you received PostgreSQL licensed software which you are now going to
distribute to third parties in the form of unmodified binaries or as unmodifed
source code files. In this case it makes no difference if you distribute a
program, an application, a server, a snippet, a module, a library, or a plugin
as an independent package.

covers OSUC-02S, OSUC-02B, OSUC-05S, OSUC-05B, OSUC-07S, OSUC-07B861

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PostgreSQL license including
the copyright notice, the permission notices, and the PostgreSQL
disclaimer are retained in your package in the form you have received
them.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage.

prohibits nothing explicitely.

6.13.3 PostgreSQL-C3: Passing a modified program

means that you received a PostgreSQL licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form binaries or as source code
files.

covers OSUC-04S, OSUC-04B862

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PostgreSQL license including
the copyright notice, the permission notices, and the PostgreSQL
disclaimer are retained in your package in the form you have received
them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage.

861) For details → OSLiC, pp. 112 – 121
862) For details → OSLiC, pp. 116

299

6 Open Source License Compliance: To-Do Lists

• [voluntary:] You can add information about your own work or modi-
fications to an existing copyright notice presented by the program.

• [voluntary:] It is a good practice of the open source community to let
the copyright notice, which is shown by the program, also state that it
is based on a version originally licensed under the PostgreSQL license.
Because you are already modifying the program, you may want to add
such a hint, if the original copyright notice lacks such a statement.

prohibits nothing explicitely.

6.13.4 PostgreSQL-C4: Passing a modified library independently

means that you received a PostgreSQL licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binaries or as
source code files together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component,
regardless whether you distribute it in the form of binaries or as source code
files.

covers OSUC-08S, OSUC-08B863

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PostgreSQL license including
the copyright notice, the permission notices, and the PostgreSQL
disclaimer are retained in your package in the form you have received
them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage.

prohibits nothing explicitely.

6.13.5 PostgreSQL-C5: Passing a modified library as embedded component

means that you received a PostgreSQL licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binaries or as
source code files together with another larger software unit which contains

863) For details → OSLiC, pp. 123

300

6 Open Source License Compliance: To-Do Lists

this code snippet, module, library, or plugin as an embedded component,
regardless whether you distribute it in the form of binaries or as source code
files.

covers OSUC-10S, OSUC-10B864

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PostgreSQL license including
the copyright notice, the permission notices, and the PostgreSQL
disclaimer are retained in your package in the form you have received
them.

• [voluntary:] Mark your modifications in the source code, regardless
whether you want to distribute the code or not.

• [voluntary:] It is a good practice of the open source community to
let the copyright notice, which is shown by the running program, also
state that the program uses a component being licensed under the
PostgreSQL license. And it is a good tradition to insert links to the
homepage or download page of this embedded component.

• [voluntary:] It’s a good tradition to let the documentation of your
distribution or your additional material also contain a link to the
original software (project) and its homepage.

• [voluntary:] Arrange your distribution so that the original licensing
elements (in particular the PostgreSQL license text containing the
copyright notices of the original author(s), the permission notices and
the PostgrSGL disclaimer) clearly refer only to the embedded library
and do not affect the licensing of your own overarching work. Consider
keeping embedded libraries, modules, snippets, or plugins in separate
directories which also contain all their licensing elements.

prohibits nothing explicitely.

6.13.6 Discussions and Explanations

The PostgreSQL-License follows the structure of the MIT license: it, too, contains
(1) a copyright notice, (2) a paragraph saying that you are allowed to do almost
anything you want, followed (3) by the condition that the copyright notice, the
permission notes, and the disclaimer “[. . .] apperar in all copies”, and (4) the
well known disclaimer.865 Moreover, like the MIT license, the PostgreSQL does

864) For details → OSLiC, pp. 125
865) cf. Open Source Initiative: PostgreSQL License, 2013, wp.

301

6 Open Source License Compliance: To-Do Lists

not talk about the difference between source code and object code. So, you can
apply the analysis of the MIT license866 also to the PostgreSQL.

6.14 PHP-3.0 licensed software

The PHP-3.0 license contains a few more conditions than the MIT license and
additionally distinguishes the “redistribution of source code”867 from the “redis-
tribution in binary form”.868 Nevertheless, the PHP-3.0 license focusses only on
the redistribution or—as we call it in the OSLiC—the 2others use cases. Thus,
the PHP-3.0 specific finder can be simplified:

PHP-3.0

recipient:
4yourself

recipient:
2others

state:
unmodified

state:
modified

form:
source

form:
binary

type:
proapse

type:
snimoli

form:
source

form:
binary

context:
independent

context:
embedded

form:
source

form:
binary

form:
source

form:
binary

PHP-3.0-
C1 using
software
only for
yourself

PHP-
3.0-C2

dis-
tributing

unmodified
software

as sources

PHP-
3.0-C3

dis-
tributing

unmodified
software as
binaries

PHP-
3.0-C4

dis-
tributing
modified
program

as sources

PHP-
3.0-C5

dis-
tributing
modified

program as
binaries

PHP-
3.0-C6

dis-
tributing
modified
library
as inde-
pendent
sources

PHP-
3.0-C7

dis-
tributing
modified
library
as inde-
pendent
binaries

PHP-
3.0-C8

dis-
tributing
modified
library as
embedded
sources

PHP-
3.0-C9

dis-
tributing
modified
library as
embedded
binaries

6.14.1 PHP-3.0-C1: Using the software only for yourself

means that you received PHP-3.0 licensed software, that you will use it only for
yourself, and that you do not hand it over to any third party in any sense.

866) → OSLiC, p. 275
867) cf. Open Source Initiative: PHP-3.0, 2013, wp.
868) cf. id., ibid.

302

6 Open Source License Compliance: To-Do Lists

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N869

requires no tasks in order to fulfill the conditions of the PHP 3.0 License with
respect to this use case:

• You are allowed to use any kind of PHP-3.0 software in any sense and
in any context without any obligations as long as you do not give the
software to third parties.

prohibits . . .

• to endorse or promote any service you establish based on this software
by the name ‘PHP.’

6.14.2 PHP-3.0-C2: Passing the unmodified software as source code

means that you received PHP-3.0 licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S870

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PHP-3.0 license (especially
the copyright notice, the PHP-3.0 conditions, and the PHP-3.0 dis-
claimer) are retained in your package in the form you have received
them.

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [voluntary:] Let the documentation of your distribution and/or your
additional material also contain the original copyright notice, the PHP-
3.0 conditions, and the PHP-3.0 disclaimer.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

869) For details → OSLiC, pp. 112 – 124
870) For details → OSLiC, pp. 112 – 120

303

6 Open Source License Compliance: To-Do Lists

6.14.3 PHP-3.0-C3: Passing the unmodified software as binary

means that you received PHP-3.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B871

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PHP-3.0 license (especially
the copyright notice, the PHP-3.0 conditions, and the PHP-3.0 dis-
claimer) are reproduced by your package in the form you have received
them. If you compile the binary file from the source code package
and if this process does not also generate and integrate the licensing
files then create the copyright notice, the PHP-3.0 conditions, and the
PHP-3.0 disclaimer in the form present in the source code package and
insert these files into your distribution manually.872873

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [voluntary:] Let the documentation of your distribution and/or your
additional material also contain the original copyright notice, the PHP-
3.0 conditions, and the PHP-3.0 disclaimer.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

6.14.4 PHP-3.0-C4: Passing a modified program as source code

means that you received a PHP-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S874

871) For details → OSLiC, pp. 113 – 121
872) Because you are distributing an unmodified binary, you could assume that the copright

screens of the application do already what they have to do.
873) For implementing the handover of files correctly → OSLiC, p. 127
874) For details → OSLiC, pp. 116

304

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PHP-3.0 license (especially
the copyright notice, the PHP-3.0 conditions, and the PHP-3.0 dis-
claimer) are retained in your package in the form you have received
them.

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [voluntary:] Let the documentation of your distribution and/or your
additional material also contain the original copyright notice, the PHP-
3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] It is a good practice of the open source community to
let the copyright notice, which is shown by the running program, also
state that the program is licensed under the PHP-3.0 license.. Because
you are already modifying the program you can also add such a hint if
the original copyright notice lacks such a statement. If such a notice
is missing in the copyright screen, consider, if it is possible to let it
reproduce the complete PHP-3.0 license including the copyright notice,
the PHP-3.0 conditions, and the PHP-3.0 disclaimer (as it is required
for binary distributions.)875

• [voluntary:] Mark your modifications in the source code.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

6.14.5 PHP-3.0-C5: Passing a modified program as binary

means that you received a PHP-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B876

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

875) Following distributors of compiled versions will appreciate your prepatory work.
876) For details → OSLiC, pp. 116

305

6 Open Source License Compliance: To-Do Lists

• [mandatory:] Let the documentation of your distribution and/or
your additional material also contain the original copyright notice, the
PHP-3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] Ensure that the complete PHP-3.0 license (especially the
copyright notice, the PHP-3.0 conditions, and the PHP-3.0 disclaimer)
are reproduced by your package in the form you have received them. If
you compile the binary file from the source code package and if this
process does not also generate and integrate the licensing files then
create the copyright notice, the PHP-3.0 conditions, and the PHP-3.0
disclaimer in the form present in the source code package and insert
these files into your distribution manually.

• [voluntary:] Mark your modifications in the source code, even if you
do not want to distribute the code.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

6.14.6 PHP-3.0-C6: Passing a modified library as independent source code

means that you received a PHP-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S877

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PHP-3.0 license (especially
the copyright notice, the PHP-3.0 conditions, and the PHP-3.0 dis-
claimer) are retained in your package in the form you have received
them.

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [voluntary:] Let the documentation of your distribution and/or your
additional material also contain the original copyright notice, the PHP-
3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] Mark your modifications in the source code.

877) For details → OSLiC, pp. 122

306

6 Open Source License Compliance: To-Do Lists

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

6.14.7 PHP-3.0-C7: Passing a modified library as independent binary

means that you received a PHP-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B878

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [mandatory:] Let the documentation of your distribution and/or
your additional material also contain the original copyright notice, the
PHP-3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] Ensure that the complete PHP-3.0 license (especially the
copyright notice, the PHP-3.0 conditions, and the PHP-3.0 disclaimer)
are reproduced by your package in the form you have received them. If
you compile the binary file from the source code package and if this
process does not also generate and integrate the licensing files then
create the copyright notice, the PHP-3.0 conditions, and the PHP-3.0
disclaimer in the form present in the source code package and insert
these files into your distribution manually.

• [voluntary:] Mark your modifications in the source code, even if you
do not want to distribute the code.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

6.14.8 PHP-3.0-C8: Passing a modified library as embedded source code

means that you received a PHP-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to

878) For details → OSLiC, pp. 123

307

6 Open Source License Compliance: To-Do Lists

distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S879

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Ensure that the complete PHP-3.0 license (especially
the copyright notice, the PHP-3.0 conditions, and the PHP-3.0 dis-
claimer) are retained in your package in the form you have received
them.

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [mandatory:] Let the documentation of your distribution and/or
your additional material also contain the original copyright notice, the
PHP-3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] It is a good practice of the open source community to let
the copyright notice, which is shown by the running program, also state
that the program uses a component licensed under the PHP-3.0 license.
So, let the copyright screen of the enclosing program reproduce the
complete PHP-3.0 license including the copyright notice, the PHP-3.0
conditions, and the PHP-3.0 disclaimer (as it is required for binary
distributions.)880

• [voluntary:] Mark your modifications in the source code.

• [voluntary:] Arrange your source code distribution so that the licens-
ing elements (especially the PHP-3.0 license text, the specific copyright
notice of the original author(s), and the PHP-3.0 disclaimer) clearly
refer only to the embedded library and do not affect the licensing of
your own overarching work. It’s a good tradition to keep embedded
components like libraries, modules, snippets, or plugins in separate
directories, which contain also all additional licensing elements.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

879) For details → OSLiC, pp. 125
880) Following distributors of compiled versions will appreciate your prepatory work.

308

6 Open Source License Compliance: To-Do Lists

6.14.9 PHP-3.0-C9: Passing a modified library as embedded binary

means that you received a PHP-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B881

requires the following tasks in order to fulfill the license conditions:

• [mandatory:] Let the documentation of your distribution or your addi-
tional material also contain a line of acknowledgment in the form: “This
product includes PHP, freely available from http://www.php.net/”

• [mandatory:] Let the documentation of your distribution and/or
your additional material also contain the original copyright notice, the
PHP-3.0 conditions, and the PHP-3.0 disclaimer.

• [voluntary:] Ensure that the complete PHP-3.0 license (especially the
copyright notice, the PHP-3.0 conditions, and the PHP-3.0 disclaimer)
are reproduced by your package in the form you have received them. If
you compile the binary file from the source code package and if this
process does not also generate and integrate the licensing files then
create the copyright notice, the PHP-3.0 conditions, and the PHP-3.0
disclaimer in the form present in the source code package and insert
these files into your distribution manually.

• [voluntary:] Mark your modifications in the source code, even if you
do not want to distribute the code.

• [voluntary:] Arrange your binary distribution so that the licensing
elements (especially the PHP-3.0 license text, the specific copyright
notice of the original author(s), and the PHP-3.0 disclaimer) clearly
refer only to the embedded library and do not affect the licensing of
your own overarching work. It’s a good tradition to keep embedded
components like libraries, modules, snippets, or plugins in separate
directories, which contain also all additional licensing elements.

prohibits . . .

• to endorse or promote your product by mentioning PHP, especially not
by making the string ‘PHP’ part of its name.

881) For details → OSLiC, pp. 126

309

6 Open Source License Compliance: To-Do Lists

6.14.10 Discussions and Explanations

First of all, it might surprise some readers that the OSLiC also describes the open
source use cases which concern the distribution of binary files although it deals
with the PHP-3.0 license. PHP is a script language. Thus, delivering the source
code seems to be a must. But one has to consider that the PHP-3.0 license could
also be applied to works which are based on other languages constituted on the
compiler paradigm. Or there might a PHP compiler be used.

It might also surprise some readers that in case of the binary distribution of
modifications the condition to repoduce the php license in the documentation is a
must, while its reproduction in a copyright screen of the program is a should. This is
directly caused by the binary-condition of the php license which expressly requires
that “Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.”882 But of course, implementing
the must and the should is best.

882) cf. Open Source Initiative: PHP-3.0, 2013, wp.

310

7 Conclusion

During the last 4 years, we have developed thisOpen Source LicenseCompendium.
We had the honor and the pleasure to discuss our ideas with many open source
experts, for example with those, who visit the European Legal and Licensing
Workshop, organized by the FSFE. We were invited to present our work on
different conferences, in Germany, in Europe, and even in Asia. We got a very
encouring feedback. Today we know what we only supposed when we started:
We could indeed close an important gap by offering a simple and reliable way to
ascertain what one has to do for using open source software compliantly. We are
proud of having gone this long way. And we pride ourselves on the fact that –
today – the OSLiC is officially listed by the OSI as one of those tools by which
one can manage the open source compliance883.

But, we also got adjusting feedback: Namely our initial premise was justifiably
not really accepted by the community. We were told that the software developers
themselves would never use our OSLiC. They would never read a book of more
than 300 pages full of lists and tables – as long as this book was not a specification
of a computer language. The OSLiC would be too large and too complex for
simplifying the daily life of the open source users. It would be an excellent
foundation for becoming an open source license expert – but not a tool for the
desk. And indeed, it was simply silly to assume that software developers, project
managers, or IT managers can directly understand and use the OSLiC: reading
the OSLiC the first time has a discouraging shock effect. Today, also we know
this.

Nevertheless, it was very important for us to fall for the charme of this illusion.
Without this error, we never would have started the development of the OSLiC.
And thus, we never would have find the idea to organize the issue in form of
finders and a 5 question form. Without this error, we today would never have a
work which justifies and proves each single assertion by quoting the licenses and
the experts. And without this frightening feedback we received, we never would
have got one of our best and encouraging experiences:

When we had accepted the feedback, we directly decided to develop an online
version of the OSLiC, the Open Source Compliance Advisor, also know as OS-
CAd884. We distributed it under the terms of the AGPL. Then, the company
Amadeus decided to take over the development of this online tool. We, on our

883) → http://osi.xwiki.com/bin/Projects/Process+and+Compliance+Resources
884) → http://opensource.telekom.net/oscad/

311

7 Conclusion

side, inserted an export interface into the OSLiC. They, on their side, rewrote
the OSCAd and integrated an import interface. So – finally – we both were able
to focus on only one specific aspect: they took the responsibility for computing
and maintaining the online tool885, we took the responsibility maintaining for the
fundamental analysis of the open source licenses886.

Thus, we concretely experienced the advantages of sharing ideas and sources,
which were so often emphazied: Playing the open source game actively means
giving a bit and getting back a lot. Playing the open source game actively means
saving the own resources.

Therefore, you may also take the fact that we finally could indeed publish the
version 1.0 of the OSLiC as a thankful profound curtsey to the open source
community!

885) → https://github.com/AmadeusITGroup/oscad
886) → https://github.com/dtag-dbu/oslic/

312

8 Appendices

8.1 Some Additional Remarks on the OSLiC Quotation Style

We have already characterized the general tone of our footnotes887. Let us now
briefly explain a little peculiarity of our bibliography:

Modern times have also changed the humanities. Formerly a book or an article
must be printed for being ripe to be quoted. Our statements relied on static,
readily prepared works. Nowadays even university libraries sometimes offer those
books and articles as PDF files which are printed in the original. As a scholar,
now you must rely on the equality of the printed version and the PDF file – at
least with respect to the page numbers and the appearance. You can not verify
the equivalence – at least to a certain degree.

Moreover: in case of such ’e-books’ and ’e-articles’ the libraries often do not offer
the pdf files themselves but links to the download pages of the publisher. Formerly
as a scholar you could trust that your readers would be able to retrieve the quoted
work if they want to verify your citations. It’s one task of our libraries to hold
available our scientific sources. But now they do not buy any longer the books,
but the right to download files over the university net. In this case these PDF files
are not stored on the serves of the university library. By using the link provided
by the publisher each student or each reader downloads his own file – case by
case. Therefore – as a scholar – you now have to trust that the publisher, who
provides the link, will not change that pdf file that you have cited.

But it gets even worse: While it might be that publishers modify their work
secretly (even it is not very likely that they do it), it’s a definite feature of the
web that its pages are frequently changed. Hence we must ask ourselves: Can we
seriously argue on the basis of statements and documents which might disappear?
Can we quote such possibly volatile sources? The problem is: we must do it,
especially if we write about an internet topic – and even if we want to write a
really reliable compendium.

So, what can we do? First, we must confide in our readers, that they either will
retrieve our sources or – if they can not find them – that they believe that we
really have found and read what we have written and quoted. Second, we store

887) → p. 14

313

8 Appendices

all these e-wares888 we read889. And thirdly we should lay open to our readers
the different levels of reliableness of our sources. Therefore we use the following
markers in our bibliographic data890:

• Print / Copy:- The source is printed and we saw either the printed work
really or we get an official copy by our library. Hence you should also be
able to get the work in a library, at least in those we used (UB Frankfurt or
ULB Darmstadt).

• BibWeb/[PDF/. . .] :- The source might be printed, but we read only the
electronic version (PDF or other type of format), offered by and over the
net of our university libraries (UB Frankfurt or ULB Darmstadt).

• FreeWeb/[PDF/. . .] :- We read the electronic version offered by the free
web. In this case we add the url891 and the date when we downloaded / saw
the text.

8.2 Some Widespread Open Source Myths

From the viewpoint of an internet student we have to consider that the web offers
a mass of rumors concerning the nature of open source software (Licenses). Here
are some of the myths892 we met:

BE CAREFUL: THIS SECTION MUST THOROUGHLY BE RE-
VIEWED AND REWRITTEN. IT’S ONLY AN OUTLINE!!! Do not
quote part of it. It must be verified.

888) Take this little word as (new) generalization of ’e-book’, ’e-article’, ’e-paper’ and so on.
889) But because of the copyright we ourselves are naturally not allowed to offer a download link

for them or to send a copy of it to those who want to verify our quotes.
890) And another hint: Nowadays sometimes even scientific libraries don’t offer exact ’e-copies’

of the original. In some cases one can only get html-versions of articles which formerly were
printed as part of journals. In these case the scholar has to use sources which lost their
original page-numbers. The same can happen to articles of proceedings etc. which are now
only offered as autonomous pdf files with an internal paging. If we quote such kind of articles
we try to specify the number of the quoted article in the original row of articles, added – if
possible – by an internal page number. But naturally we also try to follow the bibliographic
data delivered by that organization which distributes these kind of copies.

891) Please note: Long urls often destroy the pleasing appearance of a text because it’s difficult
to wrap the lines acceptably. Hence we wished to make it easier for LaTeX to do this job.
Therefor we sometimes split the urls and inserted blanks. So you have to erase all blanks if
you want to verify our urls.

892) At least one time even a scientific legally discussing book is talking about the “myth around
open source licenses” – although only as part of the title: cf Guibault, Lucie a. Ot van Daalen:
Unravelling the Myth around Open Source Licenses. An Anaysis from A Dutch and European
Law Perspective; The Hague: T. M. C. Asser Press, 2006 (= IT & Law, [Vol./No.] 8),
ISBN 978–90–6704–214–7, pp. 1ff, especially 209ff.

314

8 Appendices

open source tries to improve the world ethically :- No, there’s a clear ban to
exclude persons, groups, purposes. Thus, there is no chance to exclude
anyone from using open source software because he is an ethical or moralic
malefactor.

Changed open source software must be re-published :- No, in a double sense!
There are OS licenses which allow the proprietarization of the modified
code. And even the LGPL and the GPL, which clearly try to prevent the
proprietarization, do not require generally that a modified code must be
(re-)published. Only if you give your modfied (L)GPL licensed application
as binary to anybody, then you have to handover the modified code, too.

Modified open source software must be given back to the whole community
:- No. Again, there are OS licenses which allow the proprietarization of the
modified code. And even the LGPL and the GPL – which clearly require,
that you also publish the modified code, if you give the modified binary to
anybody – do not require that you distribute your modification around the
world. LGPL and GPL clearly say that you have to hand over the code to
those persons you give the binary to. And if you only give your improvement
only one person or a group of persons, then you must handover your code
only to that persons or only to all members of that group.

Published open source software is open for ever :- No, if this myth says that
also all future versions will have to be distributed under an open source
license. The copyright holder ever holds the copyright. They can change
the licence of next release of its software – but only for the following release,
not for the current or for former versions. Those releases, which already
have been distributed under an open source license, indeed remain open.

Software can either be open source software or proprietary software :- No. The
copyright holders themselves can additionally distribute the code under other
conditions when ever they want to do it. That’s not a question of the licence,
but of the copyright.

The opposite of open source software is commercial Software :- No. First,
you are also allowed to use the open source software in any commercial
purpose. There’s only one point which is excluded in OSS: you are not
allowed to ask for a licence fee if you distribute ’open source software’.
Second, there are many other forms like freeware, public domain software or
anything else which is neither open source software nor Commercial Software.
It’s pointless to take the question of money as a criterion for distinguish
open source software and its opposite. Moreover: Proprietary Software as
opposite of open source software should be defined ex negativo: all kind of
software, which does not fit the OSD is proprietary.

open source software prohibits to earn money :- No, you are allowed to invent

315

8 Appendices

each business model you want. There’s only one exception: you are not
allowed to ask for a licence fee if you distribute open source software. This
limitation is based on the open source definition which clearly states that a
license – which wants to become an open source license – “shall not restrict
any party from selling or giving away the software as a component of an
aggregate software distribution containing programs from several different
sources” and that the license under this circumstances “[. . .] shall not
require a royalty or other fee for such sale”893. If you combine this constraint
with the requirements that an open source license “[. . .] must not restrict
anyone from making use of the program [. . .]”894 and that it “[. . .] must
allow distribution in source code as well as compiled form [. . .]”895, you
can generally conclude that none of the open source licenses may require
a fee for using and/or distributing the program. But being paid for the
service to install the program, to collect and compile a customer specific
version, and/or to monitor the environment is of course not excluded by
this condition.

Historically this mistake might be evoked by Debian: The GNU project
missed its kernel while the Linux kernel was already distributed as part of
collections which also include GNU software. Then, in 1983? Ian Murdock
was supported by RMS and its FSF to build a really free distribution
(Debian) containg GNU software and the Linux kernel. But Ian Murdock
states also, that Debian does not want to earn money.

Modifications of open source software must be marked :- No. This is not a
defining postulation of the OSD. The OSD allows licenses to require the
mark of modifications. But it does not require from all licenses to require
the mark modifications for being an open source license.

Modifications of open source software must be marked by your personal data
:- No, it is only required to mark modifications so that a reader could dis-
tinguish the modifications from the original code. It’s required for saving
the integrity of the original author. And therefore it is not required as a
constitutive criterion by the OSD. It might be that a license additionally
requires your name. But that is not feature of open source software in
general. And at least the licenses discussed by us do not require to insert
your name.

The open source Definition determines the conditions to use open source software
:- No. The Open Source Definition determines which licenses are open source
licenses, nothing more. The OSD is a set of necessary conditions to be an
open source license. It determines the freedom and the responsibilities of a

893) cf. Open Source Initiative: The Open Source Definition, 2012, §1.
894) cf. id., l.c., §6.
895) cf. id., l.c., §2.

316

8 Appendices

user as a set of more or less abstract rules. But it does not constitute a set
of sufficient tasks which a user has to perform for fulfilling any open source
license. Open source licenses may differ by instantiating the OSD criteria.
So, if you want to know what you have to do to fulfill a license, you have to
go back to the real license of that software you are using.

This section outlines reflections by which we initially focused ourselves on the
question why we need an OSLiC and how its content and form should be derivated
from these needs.

8.2.1 Why

Do we need another book about open source? Do you need another book about
open source software? Let us address this question from the viewpoint of what
we already know, what we instinctively believe and what we may have heard. For
example you may presume one or more of the following statements are correct. Or
you may even have experienced similar perceptions from your peers or managers.
Or you have been told they describe ’open source’:

• The Open Source Definition offers rules to use open source software.

• Modified open source software must be published.

• Modified open source software must be given back to the community.

• All generations of open source software will remain open for ever.

• Software can either be open source software or proprietary software.

• The opposite of open source software is commercial software.

• open source software prohibits to earn money.

• Modifications of open source software must be marked explicitly.

• Modifiers of open source software must identify themselves.

• When distributing an open source binary it’s enough point to a download
page to obtain the source code.

• The aim of open source software is to improve the world ethically.

• open source software is viral and infectious.

Do these conceptions sound familiar to you? Unfortunately, whatever we might
believe or wish for, these concepts are incorrect. Naturally we will discuss this
issue later on. For the moment let us assume they are indeed incorrect896.

896) For those who want directly verify our argumentation, we have generated a condensed
summary of the arguments and citations. You can find this summary in our appendices.

317

8 Appendices

So, again: Do we need another book about open source software? We, that is – in
this case and at least initially – the large German company Deutsche Telekom AG.
Arguing from the perspective of a large company requires not only identifying the
common misconceptions, but catering for the unique needs of a large Enterprise.
And indeed the very size of the company brings its own problems.

Large companies use more open source software in more varied contexts than
small companies. There is an important question that every company should
ask: ’Are we sure that we respect all those requirements of open source software
we have to respect?’. But large companies cannot answer this question as easily
as small companies: the large number of diverse open source deployments in
different contexts mean that case by case governance, a model that may work
in small concerns, is far from appropriate for our needs. This leads to wasting
both time and money. Further, the chances of success are small: training at least
one employee in each software team as an open source software License expert is
unrealistic in terms of cost-efficiency and reliability.

Nevertheless even large companies want to and try to fulfill the rules of open
source software thoroughly – especially Deutsche Telekom AG. When this company
realized that the question Are we sure that we respect all those rules of open source
software correctly which we have to respect could be problematic, it directly asked
some of its employees known as open source enthusiasts to establish a service and
a process for answering this question.

So, it is no surprise that we, the initial authors of this Open Source License
Compendium, were asked by our employer Deutsche Telekom AG. Naturally we
were proud to work on an open source topic officially. But while we were doing
our job we had to ask ourselves if we perhaps needed another book on open source.
Our answer was Yes, we do! Let us shortly explain, why:

First, we already knew that there exists supporting software. These meta-pro-
grams take the code of any other application and try to list those open source
components being ’covered’ by that application897. But we had also already
realised that this supporting software did not always match the way we thought
the problem should be solved. Second, we recognized fairly quickly that we need
a reliable guide. We personally were asked to give the ok for projects of our
company. We could not answer such requests on the base of ’Oh yes, I read this
in the Heise-Ticker a few days ago’ – even if the Heise-Ticker had described the
situation completely correctly. We ourselves had to be more reliable than this898.

897) As general examples let us mention Palamida (http://www.palamida.com/) and BlackDuck
(http://www.blackducksoftware.com/).

898) But of course, we have to do ourselves the honor of conceding that we – like many many
other German open source enthusiasts – love using the Heise-Ticker as main IT information
source. Unfortunately, its reputation is stil not high enough that its news can directly be
cited.

318

8 Appendices

Naturally we already knew a great deal about open source software. Even so,
our knowledge was not as systematic as necessary. We looked for an open source
compendium which adequately described what a project or product development
team had to do to fulfill the criteria of its open source licenses. We wanted to use
that compendium to the basis of our recommendations.

We were very thorough but we did not find what we were looking for. Our ’little’
bibliography attest our seriousness. What we found was a lot of information
releated to individual issues spread over many sources. We did not find answers
to our question even in the specific literature. Let us describe three little steps to
increase the understanding of the issue:

Without open source licenses there is no open source movement. Nevertheless in
dealing with open source licenses, this is sometimes neglected. Take the Apache
Web Server as an example: No doubt, it is one of the most important pieces of open
source software899 with a specific license900. Moreover: the success of the open
source movement in the commercial world depends directly on the decision of IBM
to replace its corresponding own component in the IBM WebSphere Application
Server with the free Apache Web Server 901. Meanwhile many companies use the
Apache Web Server to act as a web provider. Currently the Apache http server –
as it has to be named correctly – is used more than twice as much as all the other
http server software together902. Hence many business models depend on the
Apache License. Another aspect is that even the famous Apache Cookbook, which
explains the installation, the configuration, and the maintainance of an Apache
Web Server in details903, does not mention anything about the license which allows

899) To prove that the Apache is really a piece of open source software one must execute a set
of steps: First, you have to note, that Apache is something like a meta project, covered by
the Apache Software Foundation, also known as ASF (cf. http://www.apache.org/, wp).
Thus, you can not directly jump into the Apache License. First of all you have to visit the
project site (cf. http://httpd.apache.org/, wp) even if at the end its license link leads
you back to the general Apache License sub site (cf. http://www.apache.org/licenses/,
wp) which announces, that “all software produced by The Apache Software Foundation
or any of its projects or subjects is licensed according to the terms of the documents
listed below”. Only now you can use the offered link for switching to the Apache License,
Version 2.0, if you want to check your rights and duties. But that is difficult. There does
not exist any simple list what you have to do for fulfilling the license. Even the faq (cf.
http://httpd.apache.org/docs/2.2/faq/, wp) – meanwhile being moved to a wiki – only
says that the server “[. . .] comes with an unrestrictive license” and that you are allowed
to put the code on a CD (cf. http://wiki.apache.org/httpd/FAQ, wp). Hence, from the
viewpoint of the ASF the license itself shall answer all questions. [Reference download for
all urls: 2011-08-31]

900) cf. Apache Software Foundation: Apache License, 2.0, wp.
901) cf. Moody : Die Software-Rebellen, 2001, pp. 287ff.
902) cf. Netcraft : August 2011 Web Server Survey; 2011 ⟨URL: http://news.netcraft.com/

archives/2011/08/05/august-2011-web-server-survey-3.html⟩ – reference download:
2011-08-31, wp.

903) cf. Coar, Ken a. Rich Bowen: Apache Kochbuch; deutsche Übersetzung v. Jochen

319

http://news.netcraft.com/archives/2011/08/05/august-2011-web-server-survey-3.html
http://news.netcraft.com/archives/2011/08/05/august-2011-web-server-survey-3.html

8 Appendices

for installation, configuration and maintenance. Neither the index lists the word
’license’904, nor the chapters ’Installation’905 or the chapter ’Miscellaneous’906

mentions the license question in a serious way. There’s only one short hint as to
the advantage of open source software, i.e. that everybody is allowed to install
it907. Can you be sure that you are allowed to do what you are doing on the base
of such a phrase?

Naturally, the Apache Cookbook is not a book for lawyers, it is a book for
administrators and developers. They do not want to get bogged down by legalities,
they want to set up an Apache Web Server as fast as possible and get down to
work. Indeed, the Apache Cookbook offers a good support. But not only as a
company you have to ask yourself whether you are really allowed to do what you
are doing. Can you find the answer in the Apache Cookbook? No. Can you find it
in the license itself? Yes, but it is difficult908. So again: Can you find your answer
in another book, which is Amazon’s current top recommendation for the search
term ’apache server’ 909? Not really: Sascha Kersken’s Apache 2.2 Handbook
offers a license chapter, but it is only two pages long910. Moreover, the rights and
duties are condensed into just 5 bullet points which taken together do not explain
when the software and the license have to be handed over to a customer and when
you are allowed to hide your improvements911.

This brings us to the question of what prevents us from using something like a
’general license cookbook’ which explains all the necessary details and which offers
quick access to the relevant points:

Of course we also browsed the internet. At least for German speaking people
there is an excellent site concerning the topic open source licenses. offered by
iffross, which, loosely translated, means an Institute for Legal Aspects of the Free
and open source software912, founded in 2000 as a private institute to track the
phenomenon ’free software’ from the viewpoint of (German) lawyers913. Besides

Wiedmann; Beijing [...]: O’Reilly, 2004, ISBN 3–89721–371–0, et passim.
904) cf. Coar a. Bowen: Apache Kochbuch, 2004, pp. 245ff, esp. p. 250.
905) cf. id., l.c., pp. 1ff.
906) cf. id., l.c., pp. 219ff.
907) cf. id., l.c., pp. 1: “. . . einer der Vorzüge von open source software besteht darin, dass

jedermann die Erlaubnis zur Erzeugung eines eigenen Installationskits hat ”.
908) And do we really want our developers and maintainers to read the original licenses? Do we

really want them to discover that they also have to check the licenses of the used modules?
909) Tested on http://www.amazon.de/ at 2011-08-31.
910) cf. Kersken, Sasche: Apache 2.2. Das umfassende Handbuch; 3rd, refreshed a. expanded

edition; Bonn: Galileo Press, 2009, ISBN 978–8362–1325–7, pp. 111f.
911) cf. id., l.c., p. 112.
912) originally: “Institut für Rechtsfragen der Freien und open source software”. Main entry

point for its site is the URL http://www.ifross.org/.
913) cf. ifross: Ziele, Aufgaben, Geschichte; 2011 ⟨URL: http://www.ifross.org/node/16⟩ –

reference download: 2011-09-05, wp.

320

http://www.ifross.org/node/16

8 Appendices

many other aspects this site offers a very well and thoroughly elaborated FAQ914

and a large list of open source licenses and other related licenses: moreover,
evidently it is classifying the open source licenses in those ’without copyleft-effect’
(BSD), in those with ’strict copyleft-effect’ (GPL) and in those with ’restricted
copyleft-effect’ (LGPL)915.

However, even this excellent site does not fulfill our needs. It does not offer those
context specific to-do lists which companies, developers or project managers can
use to ensure their open source software is used in a regular manner.

We therefore evaluated that standard book which is listed in the most legal
bibliographies916: the book of Jaeger and Metzger which concerns – loosely
translated – the judicial framework requirement for open source software917. Even
the most earliest edition of this book already had a clear structure in its chapter
’copyright’: For each license mentioned (or at least for each license cluster) it
offered a subchapter for the rights and a subchapter for the duties918 of the
software user919. Many other important aspects of the topic open source are
discussed, too920.

But we needed more than this. Despite the quality of the book we were certain
that we could not hand over this book to our programmers with the recommen-
dation check your touched licenses and follow the instructions of the relevant
subchapters. . . . This book did not contain simply checkable to-do lists, neither
in the first edition921 and in the second edition922 nor in the recently published
third edition923. So, how can a company or a developer or a project manager be
sure of fulfilling the requirements of the open source licenses sufficiently if he/she
does not have a verified list telling him ’do this, and in case of that, do that, and
finally do also this’? Why should he himself implicitly become an open source

914) cf. ifross : FAQ; 2011 ⟨URL: http://www.ifross.org/faq-haeufig-gestellte-fragen⟩ –
reference download: 2011-09-05, wp.

915) cf. ifross: ifross Lizenz-Center, 2011, wp.
916) at least in that German judicial literature dealing with open source
917) cf. Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen der

Freien Software; 1st edition. München: Verlag C.H. Beck, 2002, ISBN 3406484026, pp.V –
It can not be any surprise that both authors, Mr. Jaeger and Mr. Metzger are members of
ifross (cf. http://www.ifross.org/personen/, wp).

918) cf. id., l.c., pp. 30ff.
919) For getting a good survey of the structure and the line of thought see the contents cf. id.,

l.c., pp.VIIIf.
920) pars pro toto: have a look at the chapter concerning the liability: cf. id., l.c., pp. 137ff.
921) cf. id., l.c., pp.VIff.
922) cf. Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen

der Freien Software; 2nd edition. München: Verlag C.H. Beck, 2006, ISBN 3406538037,
pp.VIIff.

923) cf. Jaeger a. Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software, 2011, pp.VIIIff. Naturally we use this latest edition for adopting or discussing
systematical aspects.

321

http://www.ifross.org/faq-haeufig-gestellte-fragen

8 Appendices

licenses expert who has to extract the necessary steps out of the literature?

While we were searching for an existing open source compendium, we found an
article with the title ’Compendium for the Publication of open source software’924.
It aims to be a ’pragmatic guidebook’ and an ’assistance’ for ’publishing software
under the conditions of an open source license’925. Moreover, at the end of this
article, its authors formulate ambitiously that their ’guide’ should be carried out,
section by section – for getting a legally water tight process of publishing open
source software926.

The authors of this article describe something close to what we were looking for.
Indeed, the article lists important aspects which have to be taken in consideration
if you want to deal open source software correctly: It announces that no obligation
exists to publish code either if you embed GPL code into your proprietary code
or if you modify the GPL code. It is only if you hand over your binary to other
persons that you have to distribute the code too, but only to them and not to
the general public927. Additionally the articles explains exactly that software
– at least in Germany – can only be acknowledged as open source software by
transferring the rights to use – the ’Nutzungsrechte’ – to other people, while
the copyright itself – the ’Urheberpersönlichkeitsrecht’ – is not transferable and
belongs to the author928. Moreover, besides other aspects the articles briefly and
deeply discusses the problem of the No-Warranty-Clauses which are not valid in
Germany and which will therefore automatically be replaced by the liability rules
for a donation929. And last but not least this article actually summarizes the idea
of Copyleft and the differences between LGPL and GPL930.

However some gaps remain. The article does not analyze in which cases a
University or a company perhaps must publish its developments based on open
source software. It does not discern between different licenses and conditions.
It also does not discuss what Universities or companies, which (re-)use and/or
distribute open source software (internally), must do to fulfill the touched open
source licenses. And finally this article does not offer the step by step list as
promised.

924) approximately translated
925) cf. Bretschneider, Ulrich, Rainer Glaschick , a. Gernot Gräfe: Ratgeber für die Veröffent-

lichung von Open-Source-Software durch eine Hochschule; In Asche et al.: Open Source.
Kommerzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von Hochschulen
und Unternehmen, 2008, pp. 166f (originally: ein “pragmatischer Ratgeber” zur “Veröffentli-
chung einer Software unter den Rahmenbedingungen einer Open-Source-Lizenz”).

926) cf. id., l.c., pp. 186 (originally: ein “Ratgeber”, der es erlaubt “ (. . .) die zu berücksichti-
gende Aspekte (strukturiert abzuarbeiten) (. . .) ” und einen “rechtlich nicht angreifbaren
Veröffentlichungsprozess” zu ermöglichen).

927) cf. id., l.c., pp. 170 and 181.
928) cf. id., l.c., p. 173.
929) cf. id., l.c., p. 177.
930) cf. id., l.c., p. 181.

322

8 Appendices

We did, however, feel supported by this article, in two ways. First, it was a
well written summary of some main problems. Second, it stated the necessity to
have a compendium for being able to establish a legally ’water-tight’ process of
publishing open source software931. We seemed to be justified in our assumptions.
But the open source compendium we were looking for had to be more practical,
more processable, more distinguishing and more elaborated.

So again: Did we need a new book about open source software? We had looked
for a reliable integrated open source compendium. But we found separate pieces
of information and – as we know today – some rumors. Our answer was clear:
naturally we did not need a new general book about open source. But what was
lacking was a description of what responsible developers, project managers or
product developers require to fulfill open source licenses. We needed an Open
Source License Compendium.

At the best such an Open Source License Compendium would contain a set of
simply to process ’For-Fulfilling-The-License-To-Do-Lists’. Additionally it should
offer an intuitively user-friendly search option for these lists. In any case, it should
share developers and project managers the effort of having to become open source
license experts. For the other users, it should also clearly explain why one has to
do this and not that. Hence a reliable Open Source License Compendium should
not only list what one has to do, but should offer both, thoroughly verified reliable
details and clearly condensed guidance.

Although we did not find such an open source compendium we were familiar with
the spirit of the open source community. Hence we followed one of its most simple
rules: ’what you miss you must develop on your own’. Some principles should
help us to achieve our targets:

To-do lists as the core, discussions around them : Our work should be split
into two parts. As its core we wanted to offer a set of to-do-Lists. Each of
these lists should be relevant to one specific open source license and should
be clustered by the open source specific use cases. Around this all those
aspects of open source software which influence the interpretation of the
licenses and the rules core should be precisely characterized. Nevertheless,
the users should be able to skip details and go directly to the section they
require.

Quotations with thoroughly specified sources : Even if our users should not
be obliged to read every part of the compendium they should not be required
to believe us. We wanted to be revisable. Because our sources and our
conclusions should be easily verifiable, we decided to use the academic
citations and list bibliographic data extensively on the basis that our task

931) cf. Bretschneider, Glaschick, a. Gräfe: Ratgeber für die Veröffentlichung von Open-Source-
Software durch eine Hochschule, 2008a, p. 186.

323

8 Appendices

should be to collect information, not to invent new ’facts’.

Not the internet alone, also books and articles : We wanted to go back to
the originals even if the internet was full of more or less modified copies.
We wished to get reliable facts and descriptions. Therefore we decided to
evaluate not only the internet but also scientific sources – for example –
offered by university libraries.

Not clearing out the forest land, but cutting out a swathe : Even if we had
to deal with licenses and their legal aspects we did not want to get lost in
detailed discussions. It should not be our task to find out whether a specific
kind of handling would still be legal or already forbidden. We did not want
to fight against the licenses. We did not want to stretch their ambit or
to test their boundary. We wished to accept open source licenses as they
are: rules written from developers for developers. And even if some parts
of these licenses would not be valid with respect to a legal system932, we
wanted to take them as our guideline – at least while they do not violate
more general laws933. We simply wanted to find one proven way to cross the
maybe slightly unsure forest of open source licenses. Even if indeed some
clauses of the licenses finally were not enforceable against us we wanted
to respect them ’voluntarily’. We wanted to deliver a set of rules which
support users and remove the possibility of becoming involved in license
disputes with open source developers or the Free Software Foundation.

Take the text seriously : On the other side we wanted to take our license texts
as they were. If they lacked anything934, we would interpret the open issues

932) And indeed for example for the GPL one can argue in this way: Even if you take the GPL
as a contract of the type ’donation’ respectively “Schenkung”, it is presented in the form of
AGBs respectively “Allgemeine Geschäftsbedingungen” and must therefore follow the general
AGB rules.’Regrettably’ in Germany these general AGB rules do not allow to exclude each
type of warranty. If we follow Oberhem, §11 and §12 of the GPL must be invalid in Germany
because of these general AGB rules. Moreover, for Oberhem even §5 – the important clause
of the GPL by which you can only get the right to use and to distribute GPL software
if you respect the rules of the GPL – seems also to be invalid respectively “unwirksam”.
But the good message is that the GPL as whole is not invalid even if it contains invalid
clauses. Oberhem, Carolina: Vertrags- und Haftungsfragen beim Vertrieb von Open Source
Software; Dissertation; Hamburg: Verlag Dr. Kovač, 2008 (= Recht der Neuen Medien,
[Vol./No.] 50), ISBN 978–3–8300–4075–0, pp. 128, 133ff, 150ff, esp. 146, 159.

933) what they clearly do not do!
934) The systematical underdetermination of licenses is a problem being also known in the open

source respectively Free Software movement. Following the biography of RMS his main
judicial counselor Moglen has stated, that “there is uncertainty in every legal process (. . .) ”
and that it seemed to be silly to try “(. . .) to take out all the bugs (. . .)”. Nevertheless –
so Moglen resp. Williams – the goal of Richard Stallman was “the complete opposite”: He
tried “(. . .) to remove uncertainty which is inherently impossible”. But – and that’s the
nub of this analysis – Moglen had to follow Stallmann because of RMS character. And he
had to summarize their work so, that “(. . .) the resulting elegance (of the GPL; KR.), the

324

8 Appendices

in the spirit of the open source idea. But where the text was clear and
definite we wanted to take its propositions as a definite decision – even if
that meaning stood against well known open source ’facts’.

Trust the swarm : We did not want to use our own research alone as a basis. We
knew that the swarm is ever stronger than a set of some randomly selected
experts. Therefore we decided to publish our text as a still unfinished
work, starting with an early release 0.2. And then we wanted to invite
the community to complete the compendium together with us. We would
elaborate our open source compendium as a set of LaTeX- and BibTeX files
which could be developed and managed in GIT or any other version control
system. And finally we would publish our text under a Creative Commons
Attribution-Share Alike German 3.0 license, to allow other people to correct
us, to help us or even to take our results for their own purposes.

And so we did. Here is the result. Feel free to use it – according to our licensing.

8.2.2 What

Now we can briefly explain how one should be able to use the compendium:

The Same Idea, Different Licenses :- Here you will find background informa-
tion to help you interpret open source licenses in the sense of the Free
Software movement935, the open source software movement936, or the GNU-
Project937. We discuss different ways to cluster open source licenses. Finally
we present our own taxonomy based on the labels ’protecting the developer’,
’protecting the licensed code’ and ’protecting the on-top-developments’. If
you are familiar with the methods of grouping different open source licenses
and particular if you know that you can not authorize your doings on the

resulting simplicity (of the GPL; KR.) in design almost achieves what it has to achieve”.
Hence we are asked to take the license texts themselves seriously. cf. Williams: Free as in
Freedom. Richard Stallman’s Crusade for Free Software, 2002, pp. 177f.

935) At least at this place you are perhaps expecting that we use the logograms FLOSS, F/OSS,
F/LOSS, or whatever. As you will read later on the word Free is ambiguous and has strained
the use of the concept Free Software. Later on we will also talk about the invention of the
concept open source designed as a ’replacement’ and acting as a ’splitter’. The mentioned
logograms are introduced to re-establish or – at least – to underline the common history and
the common center of ’both’ movements, whereby the word Libre shall resolve the ambiguity
of the word Free. For a first survey cf. Wikipedia (en): Free and open source software;
n.l., 2011 ⟨URL: http://en.wikipedia.org/wiki/Free_and_open_source_software⟩ –
reference download: 2011-09-08, wp.

936) For another brief and informative introduction cf. Fogel : Producing Open Source Software,
2006, pp. 231ff esp. p. 232f.

937) We ourselves will stay with the concept open source because the OSD specifies the scope of
our analysis. But we do it with a deep obeisance to Stallmann and the FSF – even if we
know that this will not protect us from the thunderbolt of RMS.

325

http://en.wikipedia.org/wiki/Free_and_open_source_software

8 Appendices

base of descriptions of such license groups, then it is enough, in order to
understand our line of thought, to briefly note our taxonomy and its wording.

The Problem of Derivated Works :- This chapter is important. In the spirit of
software developers we try to explain which kinds of programming evoke a
derivated work and which not. Our to-do lists will refer to this analysis.

The Problem of Combining Different Licenses :- You should not ignore this
chapter. We will explain why and how combining software of different
licenses is not as dangerous as it is often told. The results of this chapter
influence the structure of our to-do lists.

open source software and Money :- Here we will shortly discuss ways in which
money is no problem. If you already know that it is only prohibited to
require payment for the act of licensing a piece of open source software to
second or third parties and if you already know that this is only forbidden
by some licenses, and not by all, than you can postpone the reading of this
chapter.

The Problem of Implicitly Freeing Patents :- Here we will illuminate some as-
pects of software patents and how the are handled by some open source
licenses. You should know what licenses implicitly do with your patents.
But it is not our intention to write a software patent compendium.

Open Source Use Cases as Principle of Classification :- This is an important
chapter. We explain our categories ’Use as it is’, ’Modify the Code’, ’With
Redistribution’, ’Without Redistribution’, ’Isolated Initial Development’,
’On-Top-Development’: we develop and discuss our taxonomy with respect
to the side effects of ’combining different licenses’ and ’generating derivated
works’. This taxonomy will determine the following chapters.

open source licenses: Find Your Specific To-do Lists :- This is a kind of sum-
mary which joins the relevant aspects and elaborates the ’finder for your
to-do lists’. This is the chapter which you probably will reuse frequently,
even if you do not want to read any of our explanations.

open source license Fulfillment: Classified To-do Lists :- This chapter offers
all classified to-do lists. The structure of its subchapters will match the
structure of our finder and the structure of our taxonomy.

open source licenses and Their Legal Environments :- Here we discuss why
using open source software in a regular manner is not only a question of the
licenses themselves but of the kind of the surrounding legal system.

Appendices: Some Widespread Open Source Myths :- Here we make good on
our promise to explain why all the propositions mentioned at the beginning of
this chapter are wrong. You might read this chapter as a special introduction
or a reminder epilogue whenever you want to do.

326

Periodicals, Shortcuts, and Abbreviations

AGPL GNU Affero General Public License

ApL Apache License

BISE Business & Information Systems Engineering [ISSN: 1867-0202]

BSD Berkeley Software Distrobution (License)

[n.abbr.] Berkeley Technology Law Journal

BWV Berliner Wissenschafts-Verlag GmbH

[n.abbr.] Cultural Anthropology [ISSN: 1548-1360]

CiHB Computers in Human Behavior [ISSN: 0747-5632]

CotACM Communications of the ACM [ISSN: 0001-0782]

CR Computer und Recht. Zeitschrift für die Praxis des Rechts der Informa-
tionstechnologien

CRi Computer Law Review international [ISSN: 1610-7608]

[n.abbr.] Computers & Education [ISSN: 0360-1315]

[n.abbr.] Cutter IT Journal [ISSN: 1048-5600]

DDT Drug Discovery Today [ISSN: 1359-6446]

DSS Decision Support Systems [ISSN: 0167-9236]

[n.abbr.] Ethics and Information Technology [ISSN: 1388-1957]

E.C.L.R. European Competition Law Review

EER European Economic Review [ISSN: 0014-2921]

EPL Eclipse Public License

et seqq. and the following ones

EUPL European Union Public License

GPL GNU General Public License

[n.abbr.] Information & Management [ISSN: 0378-7206]

ibid. ibidem = latin for ’at the same place’

ICC Industrial and Corporate Change [ISSN: 0960-6491]

id. idem = latin for ’the same’, be it a man, woman or a group. . .

IEaP Information Economics and Policy [ISSN: 0167-6245]

[n.abbr.] IEEE Software [ISSN: 0740-7459]

ifross Institut für Rechtsfragen der Freien und Open Source Software

[n.abbr.] International Information and Library Review [ISSN: 1057-2317]

[n.abbr.] International Journal of Medical Informatics [ISSN: 1386-5056]

[n.abbr.] interactions[ISSN: 1072-5520]

ISJ Information Systems Journal [ISSN: 1365-2575]

ITRB Der IT-Rechtsberater [ISSN: 1617-1527]

JAIS Journal of the Association for Information Systems [ISSN: 1536-9323]

JCSC Journal of Computing Sciences in [Small] Colleges [ISSN: 1937-4771]

JISE Journal of Information Science and Engineering [ISSN: 1016-2364]

JLEO Journal of Law, Economics, & Organization [ISSN: 1465-7341]

JMIR Journal of Medical Information Research [ISSN: 1438-8871]

[n.abbr.] Journal of Academic Librarianship [ISSN: 0099-1333]

327

Periodicals, Shortcuts, and Abbreviations

[n.abbr.] Journal of Comparative Economics [ISSN: 0147-5967]

[n.abbr.] Journal of Systems and Software [ISSN: 0164-1212]

JSIS Journal of Strategic Information Systems [ISSN: 0963-8687]

l.c. loco citato = latin for ’in the place cited’

LGPL GNU Lesser General Public License

LJ Linux Journal [ISSN: 1075-3583]

MIT Massachusetts Institute of Technology (License)

MPL Mozilla Public License

Ms-PL Microsoft Public License

n.abbr. no abbreviation (known)

[n.abbr.] netWorker [ISSN: 1091-3556]

n.y. year not stated / no year

n.l. location not stated / no location

np. no page numbering

n.st. not stated

[n.abbr.] Organization Science [ISSN: 1047-7039]

PgL Postgres License

PHP PHP (License)

[n.abbr.] Queue [ISSN: 1542-7730]

[n.abbr.] R&D Management [ISSN: 1467-9310]

RP Research Policy [ISSN: 0048-7333]

SIGCSE Bulletin . . . SIGCSE Bulletin [ISSN: 0097-8418]

SIGCAS ACM SIGCAS Computers and Society [ISSN: 0095-2737]

SIGMIS Database . . ACM SIGMIS - The Data Base for Advances in Information Systems
[ISSN: 0095-0033]

SIGSOFT SEN SIGSOFT Software Engineering Notes [ISSN: 0163-5948]

[n.abbr.] Stanford Law Review [ISSN: 00389765]

[n.abbr.] Software Qualilty Journal [ISSN: 0963-9314]

STHV Science, Technology & Human Values [ISSN: 0162-2439]

ToIT Transaction on Internet Technology [ISSN: 1533-5399]

ToSEM Transactions on Software Engineering Methodology [ISSN: 1049-331X]

Ubiquity Ubiquity - The ACM IT Magazine and Forum [ISSN: 1530-2180]

UB ’Universitätsbibliothek’ = library of university X

ULB ’Universitäts- & Landesbibliothek’ = library of university and state X

[n.abbr.] University of Chicago Law Review

[n.abbr.] University of Illinois Law Review

[n.abbr.] University of Pittsburgh Law Review

wp. webpage / webdocument without any internal (page)numbering

ZGE / IPJ Zeitschrift für geistiges Eigentum [ISSN: 1867-237x]

328

Bibliography

Perspectives on free and open source software; o.O.?: ???, 2005

Proceedings of the Linux Symposium; Ottawa, 2006

Ågerfalk, Pär et al., editors : Open Source Software: New Horizons; 6th International IFIP WG
2.13 Conference on Open Source Systems, OSS 2010; (= IFIP Advances in Information and
Communication Technology, [Vol./No.] 319) Berlin, Heidelberg u. New York: Springer, 2010,
BibWeb/PDF, ISBN 978–3–642–13243–8

Ahtiainen, Aleksi , Sami Surakka, a. Mikko Rahikainen: Plaggie: GNU-licensed Source Code
Plagiarism Detection Engine for Java Exercises; in: Proceedings of the 6th Baltic Sea
Conference on Computing Education Research; New York, NY, USA: ACM, 2006 (= Baltic
Sea ’06) ⟨URL: http://doi.acm.org/10.1145/1315803.1315831⟩ – reference download:
2011-12-29, BibWeb/PDF, pp. 141–142

Airlie, D. M.: Open Source Graphic Drivers. They Don’t Kill the Kittens; In Proceedings of
the Linux Symposium, 2006, p. 19.26

Alexi, O. a. J. Henkel : Promoting the Penguin: Who Is Advocating Open Source Software in
Commercial Settings? München, 2007 ⟨URL: http://ssrn.com/abstract/=988363⟩

Alexy, Oliver : Free Revealing. How Firms Can Profit From Being Open; Wiesbaden: Gabler,
2009 (= Gabler Edition Wissenschaft), Print and BibWeb/PDF, ISBN 978–3–8349–1475–0

Allman, Eric: A Conversation with Chris DiBona; in: Queue, 1 July (2003), pp. 10–19
⟨URL: http://doi.acm.org/10.1145/945074.945130⟩ – reference download: 2011-12-29,
BibWeb/PDF

Allman, Eric a. Marshall Kirk McKusick : From the Editors: Open Source Revisited; in: Queue,
2 May (2004), pp. 8–9 ⟨URL: http://doi.acm.org/10.1145/1005062.1005072⟩

Alspaugh, Thomas A., Hazeline U. Asuncion, a. Walt Scacchi : Analyzing software licenses
in open architecture software systems; In Proceedings of the 2009 ICSE Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development, 2009,
pp. 54–57 ⟨URL: http://dx.doi.org/10.1109/FLOSS.2009.5071361⟩ – reference download:
2011-12-28, BibWeb/PDF

Alspaugh, Thomas A., Walt Scacchi , a. Hazeline U. Asuncion: Software Licenses in Context: The
Challenge of Heterogeneously-Licensed Systems; in: JAIS, 11 (2010), No. 11/12, pp. 730–755,
BibWeb/PDF

Amega-Selorm, Charles a. Johanna Awotwi : Free and Open Source Software (FOSS): It’s
Significance or Otherwise to the E-Governance Process in Ghana; in: Proceedings of the
4th International Conference on Theory and Practice of Electronic Governance; New York,
NY, USA: ACM, 2010 (= ICEGOV ’10) ⟨URL: http://doi.acm.org/10.1145/1930321.
1930342⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0058–2, pp. 91–
95

anonymous: Mircosoft und Open Source: nichts als Ärger; 2000 ⟨URL: http://www.heise.
de/newsticker/meldungen/8314⟩

anonymous : Microsoft und die GPL: Freiheit, die ich meine ... 2002 ⟨URL: http://www.heise.
de/newsticker/meldung/26355⟩

anonymous : Mircosoft Shared Source Initiative Overview; 2004 ⟨URL: http://www.microsoft.
com/resources/sharedsource/Intiative/Intiative.mspx⟩

Anonymous: The Triumph of the Commons; in: The Economist (2005)

329

http://doi.acm.org/10.1145/1315803.1315831
http://ssrn.com/abstract/=988363
http://doi.acm.org/10.1145/945074.945130
http://doi.acm.org/10.1145/1005062.1005072
http://dx.doi.org/10.1109/FLOSS.2009.5071361
http://doi.acm.org/10.1145/1930321.1930342
http://doi.acm.org/10.1145/1930321.1930342
http://www.heise.de/newsticker/meldungen/8314
http://www.heise.de/newsticker/meldungen/8314
http://www.heise.de/newsticker/meldung/26355
http://www.heise.de/newsticker/meldung/26355
http://www.microsoft.com/resources/sharedsource/Intiative/Intiative.mspx
http://www.microsoft.com/resources/sharedsource/Intiative/Intiative.mspx

Bibliography

Anvaari, Mohsen a. Slinger Jansen: Evaluating Architectural Openness in Mobile Software
Platforms; in: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume; New York, NY, USA: ACM, 2010 (= ECSA ’10) ⟨URL: http://
doi.acm.org/10.1145/1842752.1842775⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 978–1–4503–0179–4, pp. 85–92

Apache Software Foundation: Apache License, Version 2.0; 2004, FreeWeb/Html ⟨URL:
http://www.apache.org/licenses/LICENSE-2.0⟩ – reference download: 2011-08-31

Apache Software Foundation: Licenses; 2013 [n.y], FreeWeb/Html ⟨URL: http://www.apache.
org/licenses/⟩ – reference download: 2013-02-25

Arlt , Brinkel , a. Volkmann; Spindler, Gerald, editor : ’BSD’ - und ’Mozilla’-artige Lizenzen; In
Spindler : Rechtsfragen bei Open Source Software, 2004, pp. 317–372, Print

Arnö, Kaj : Dual Licensing - A Business Model from the Second Generation of Open-Source
Companies; In Wynants a. Cornelius: How Open is the Future?, 2005, pp. 479–486

Asay, Matt : A Funny Thing Happened on the Way to the Market: Linux, the General Public
License, and a New Model for Software Innovation; Stanford CA, 2002, Web/Pdf ⟨URL:
http://www.linuxdevices.com/files/misc/asay-paper.pdf⟩

Asche, Michael et al., editors: Open Source. Kommerzialisierungsmöglichkeiten und Chancen
für die Zusammenarbeit von Hochschulen und Unternehmen; (= POWeR / Patent Offensive
Westfalen Ruhr, [Vol./No.] 3) Münster, New York, München [... etc.]: Waxmann, 2008, Print,
ISBN 978–3–8309–1845–5

Ascher, David : Is Open Source Right for You? in: Queue, 2 May (2004), pp. 32–38 ⟨URL:
http://doi.acm.org/10.1145/1005062.1005065⟩ – reference download: 2011-12-28, Bib-
Web/PDF

Asiri, Sami : Open Source Software; in: SIGCAS, 33 March (2003), p. 2 ⟨URL: http://doi.
acm.org/10.1145/966498.966501⟩ – reference download: 2011-12-28, BIbWeb/HTML

Asundi, Jai : The Need for Effort Estimation Models for Open Source Software Projects; In
Proceedings of the Fifth Workshop on Open Source Software Engineering, 2005, pp. 6:1–6:3
⟨URL: http://doi.acm.org/10.1145/1082983.1083260⟩ – reference download: 2011-12-29,
BibWeb/PDF

Axel Metzger, Till Jaeger und : Die neue Version 3 der GNU Genereal Public License; in:
GRUR, o.A. (2008), No. 2, pp. 130–137, Copy

Ayala, Claudia et al.: Challenges of the Open Source Component Marketplace in the Industry;
conference contribution; In Boldyreff et al.: Open Source Ecosystems, 2009, pp. 213–224,
BibWeb/PDF

Azzi, R. Michael : CPR: How Jacobsen V. Katzer Resuscitated the Open Source Movement; in:
University of Illinois Law Review, (2010), No. 4, pp. 1271–1302, BibWeb/PDF

Babcock, Charles: Big Test For Open Source GPL; in: Informationweek, 17 December (2006),
p. np., Copy

Bach, Paula M. a. John M. Carroll : Characterizing the Dynamics of Open User Experience
Design: The Cases of Firefox and OpenOffice.org; in: JAIS, 11 (2010), No. 12, pp. 902–925,
BibWeb/PDF

Backu, Frieder : Open Source Software und Interoperabilität; in: ITRB (IT-Rechtsberater),
(2003), p. 180

Baerwolff, Matthias, Robert A. Gehring , a. Bernd Lutterbeck, editors: Open Source
Jahrbuch 2005. Zwischen Softwareentwicklung und Gesellschaftsmodell; Berlin: Leh-
manns Media, 2005 ⟨URL: http://www.opensourcejahrbuch.de/download/jb2005/

OpenSourceJahrbuch2005_online.pdf⟩ – reference download: 2011-10-17, Print & Free-
Web/PDF, ISBN 3–86541–059–6

330

http://doi.acm.org/10.1145/1842752.1842775
http://doi.acm.org/10.1145/1842752.1842775
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://www.linuxdevices.com/files/misc/asay-paper.pdf
http://doi.acm.org/10.1145/1005062.1005065
http://doi.acm.org/10.1145/966498.966501
http://doi.acm.org/10.1145/966498.966501
http://doi.acm.org/10.1145/1082983.1083260
http://www.opensourcejahrbuch.de/ download/ jb2005/ Open Source Jahrbuch 2005_online.pdf
http://www.opensourcejahrbuch.de/ download/ jb2005/ Open Source Jahrbuch 2005_online.pdf

Bibliography

Bain, Malcolm et al.: Legal Aspects of the Information Society; Oberta de Catalunya: Free
Technology Academy, 2010 ⟨URL: http://www.ftacademy.org/materials/fsm/6#1⟩ – ref-
erence download: 2012-101-20, FreeWeb/PDF

Baird, Stacy Avery : The Heterogeneous World of Proprietary and Open-Source Software;
in: Proceedings of the 2nd international conference on Theory and practice of electronic
governance; New York, NY, USA: ACM, 2008 (= ICEGOV ’08) ⟨URL: http://doi.acm.
org/10.1145/1509096.1509143⟩ – reference download: 2011-12-28, BibWeb/PDF, ISBN
978–1–60558–386–0, pp. 232–238

Bake, Pio: Open Source Software, Competition and Potential Entry; Working Paper; 2003,
Web/Pdf ⟨URL: http://www.berlecon.de/tw/osscompetition.pdf⟩

Bakker, Arno, Maarten Van Steen, a. Andrew S. Tanenbaum: A Wide-Area Distribution
Network for Free Software; in: Transaction on Internet Technology, 6 August (2006), No. 3,
pp. 259–281 ⟨URL: http://doi.acm.org/10.1145/1151087.1151089⟩ – reference download:
2011-12-29, BibWeb/PDF

Baldi, Stefan, Hauke Heier , a. Anett Mehler-Bicher : Open Courseware and Open Source
Software; in: Communications of the ACM, 46 September (2003), No. 9, pp. 105–107
⟨URL: http://doi.acm.org/10.1145/903893.903922⟩ – reference download: 2011-12-29,
BibWeb/PDF

Barcellini, Flore, Françoise Détienne, a. Jean Marie Burkhardt : Cross-Participants: Fostering
Design-Use Mediation in an Open Source Software Community; in: Proceedings of the 14th
European Conference on Cognitive Ergonomics: Invent! Explore! New York, NY, USA:
ACM, 2007 (= ECCE ’07) ⟨URL: http://doi.acm.org/10.1145/1362550.1362564⟩, ISBN
978–1–84799–849–1, pp. 57–64

Barcellini, Flore et al.: Thematic Coherence and Quotation Practices in OSS Design-Oriented
Online Discussions; in: Proceedings of the 2005 International ACM SIGGROUP Confer-
ence on Supporting Group Work; New York, NY, USA: ACM, 2005 (= GROUP ’05)
⟨URL: http://doi.acm.org/10.1145/1099203.1099237⟩ – reference download: 2012-02-01,
BibWeb/PDF, ISBN 1–59593–223–2, pp. 177–186

Bayersdorfer, Mitch: Managing a Project With Open Source Components; in: interactions,
14 November/December (2007), pp. 33–34 ⟨URL: http://doi.acm.org/10.1145/1300655.
1300677⟩ – reference download: 2011-12-29, BibWeb/PDF

Baytiyeh, Hoda a. Jay Pfaffman: Open source software: A community of altruists; in:
Computers in Human Behavior, 26 (2010), p. 1345–1354, BibWeb/PDF

Beard, Ashley a. Hyunju Kim: A Survey On Open Source Software Licenses; in: JCSC, 22 (2007),
No. 4, pp. 205–211 ⟨URL: http://dl.acm.org/citation.cfm?id=1229637.1229673⟩

Behlendorf, Brian: Open Source as a Business Strategy; In DiBona, Ockman, a. Stone: Open
Sources, 1999, pp. 149–170

Behlendorf, Brian: How Open Source Can Still Save the World; conference contribution; In
Boldyreff et al.: Open Source Ecosystems, 2009, p. 2, BibWeb/PDF

Beigbeder, Michel , Wray Buntine, a. Wai Gen Yee: Open Source Search and Research; in:
Proceedings of the 2006 International Workshop on Research Issues in Digital Libraries;
New York, NY, USA: ACM, 2007 (= IWRIDL ’06) ⟨URL: http://doi.acm.org/10.1145/
1364742.1364748⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–59593–608–4,
pp. 5:1–5:7

Berglund, Erik a. Michael Priestley : Open-Source Documentation: In Search of User-Driven,
Just-in-Time Writing; in: Proceedings of the 19th annual international conference on
Computer documentation; New York, NY, USA: ACM, 2001 (= SIGDOC ’01) ⟨URL: http:
//doi.acm.org/10.1145/501516.501543⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 1–58113–295–6, pp. 132–141

331

http://www.ftacademy.org/materials/fsm/6#1
http://doi.acm.org/10.1145/1509096.1509143
http://doi.acm.org/10.1145/1509096.1509143
http://www.berlecon.de/tw/osscompetition.pdf
http://doi.acm.org/10.1145/1151087.1151089
http://doi.acm.org/10.1145/903893.903922
http://doi.acm.org/10.1145/1362550.1362564
http://doi.acm.org/10.1145/1099203.1099237
http://doi.acm.org/10.1145/1300655.1300677
http://doi.acm.org/10.1145/1300655.1300677
http://dl.acm.org/citation.cfm?id=1229637.1229673
http://doi.acm.org/10.1145/1364742.1364748
http://doi.acm.org/10.1145/1364742.1364748
http://doi.acm.org/10.1145/501516.501543
http://doi.acm.org/10.1145/501516.501543

Bibliography

Bergquist, Magnus a. Jan Ljungberg : The power of gifts: organizing social relationships in open
source communities; in: Information Systems Journal, 11 (2001), pp. 305–320

Berlecon[-]Research: Basics of Open Source Software Markets and Business Models; FLOSS Final
Report - Part 3; 2002, Web/Pdf ⟨URL: http://www.berlecon.de/studien/downloads/
200207FLOSS_Basics.pdf⟩

Berlecon[-]Research: Firms Open Source Activities: Motivations and Policy Implications;
FLOSS Final Report - Part 2; 2002, Web/Pdf ⟨URL: http://www.berlecon.de/studien/
downloads/200207FLOSS_Activities.pdf⟩

Berry, David M.: Copy, Rip, Burn; The Politics of Copyleft and Open Source; London: Pluto
Press, 2008, Print, ISBN 978–0–7453–2414–2

Bessen, James: What Good is Free Software? In Hahn: Government Policy toward Open
Source Software, 2002, pp. 12–34

Bessen, James: Holdup and licensing of cumulative innovations with private information; in:
Economics Letters, 82 (2004), No. 3, pp. 321–326

Bessen, James a. Robert M. Hunt : An empirical look at software patents; in: Federal Reserve
Bank of Philadelphia, Working Paper 03-17 (2004)

Bezroukov, Nikoplai : BSD vs. GPL: Part 2: The Dynamic Properties of BSD and GPL Licenses
in the Context of the Program Life Cycle; 2003 ⟨URL: http://www.softpanorama.org/
Copyright/License-classification/social_dynamics_of_BSD_and_GPL.shtml⟩

Bhattacharya, Jaijit a. Sourabh Suman: Analysis of popular open source licenses and their
applicability to e-governance; in: Proceedings of the 1st international conference on Theory
and practice of electronic governance; New York, NY, USA: ACM, 2007 (= ICEGOV ’07)
⟨URL: http://doi.acm.org/10.1145/1328057.1328110⟩ – reference download: 2011-12-28,
BibWeb/PDF, ISBN 978–1–59593–822–0, pp. 254–257

Bianco, Vieri del et al.: The QualiSPo approach to OSS product quality evaluation; [General
Chairs: Justin Erenkrantz and Hyrum K. Wright]; In Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Develop-
ment, 2010, pp. 23–28 ⟨URL: http://doi.acm.org/10.1145/1833272.1833277⟩ – reference
download: 2011-12-29, BibWeb/PDF

Bieman, James: Editorial: Free/open source software, silver bullets, and mythical months;
in: Software Quality Journal, 14 (2006), pp. 289–290 ⟨URL: http://dx.doi.org/10.1007/
s11219-006-0036-3⟩ – reference download: 2012-202-03, BibWeb/PDF

Bird, Christian, Alex Gourley , a. Prem Devanbu: Detecting Patch Submission and Accep-
tance in OSS Projects; in: Proceedings of the Fourth International Workshop on Mining
Software Repositories; Washington, DC, USA: IEEE Computer Society, 2007 (= MSR
’07) ⟨URL: http://dx.doi.org/10.1109/MSR.2007.6⟩ – reference download: 2012-02-01,
BibWeb/PDF, ISBN 0–7695–2950–X, pp. 26:1–26:4

Bird, Christian et al.: Open Borders? Immigration in Open Source Projects; in: Proceedings
of the Fourth International Workshop on Mining Software Repositories; Washington, DC,
USA: IEEE Computer Society, 2007 (= MSR ’07) ⟨URL: http://dx.doi.org/10.1109/MSR.
2007.23⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 0–7695–2950–X, pp. 6:1–6:8

Bird, Christian et al.: Latent Social Structure in Open Source Projects; in: Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering;
New York, NY, USA: ACM, 2008 (= SIGSOFT ’08/FSE-16) ⟨URL: http://doi.acm.
org/10.1145/1453101.1453107⟩ – reference download: 2012-01-02, BibWeb/PDF, ISBN
978–1–59593–995–1, pp. 24–35

Bitzer, Jürgen, Wolfram Schrettl , a. Philipp J.H. Schröder : Intrinsic motivation in open
source software development; in: Journal of Comparative Economics, 35 (2007), p. 160–169,
BibWeb/PDF

332

http://www.berlecon.de/studien/downloads/200207FLOSS_Basics.pdf
http://www.berlecon.de/studien/downloads/200207FLOSS_Basics.pdf
http://www.berlecon.de/studien/downloads/200207FLOSS_Activities.pdf
http://www.berlecon.de/studien/downloads/200207FLOSS_Activities.pdf
http://www.softpanorama.org/Copyright/License-classification/social_dynamics_of_BSD_and_GPL.shtml
http://www.softpanorama.org/Copyright/License-classification/social_dynamics_of_BSD_and_GPL.shtml
http://doi.acm.org/10.1145/1328057.1328110
http://doi.acm.org/10.1145/1833272.1833277
http://dx.doi.org/10.1007/s11219-006-0036-3
http://dx.doi.org/10.1007/s11219-006-0036-3
http://dx.doi.org/10.1109/MSR.2007.6
http://dx.doi.org/10.1109/MSR.2007.23
http://dx.doi.org/10.1109/MSR.2007.23
http://doi.acm.org/10.1145/1453101.1453107
http://doi.acm.org/10.1145/1453101.1453107

Bibliography

Björgvinsson, Tryggvi a. Helgi Thorbergsson: Software Development for Governmental Use
Utilizing Free and Open Source Software; in: Proceedings of the 1st International Conference
on Theory and Practice of Electronic Governance; New York, NY, USA: ACM, 2007 (= ICE-
GOV ’07) ⟨URL: http://doi.acm.org/10.1145/1328057.1328087⟩ – reference download:
2011-12-29, BibWeb/PDF, ISBN 978–1–59593–822–0, pp. 133–140

Black Duck : Top 20 Open Source Licenses; 2014 [n.y], FreeWeb/HTML ⟨URL: http:

//www.blackducksoftware.com/resources/data/top-20-open-source-licenses⟩ – ref-
erence download: 2014-02-11

Böckler, Lina: Mit Freier Software gegen den Wettbewerb; in: Katharina Vera Boesche, editor:
Variationen im Recht: Beiträge zum Arbeits-, Immaterialgüter-, Infrastruktur-, Lauterkeits-,
Unternehmens-, Wettbewerbs- und Zivilrecht; Festbeigabe für Fanz Jürgen Säcker zum 65.
Geburstag; Berlin: BWV, 2006, ISBN 3–8305–1234–1, pp. 69 – 76, BibWeb/Copy

Boehm, Barry : A View of 20th and 21st Century Software Engineering; in: Proceedings of
the 28th International Conference on Software Engineering; New York, NY, USA: ACM,
2006 (= ICSE ’06) ⟨URL: http://doi.acm.org/10.1145/1134285.1134288⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 1–59593–375–1, pp. 12–29

Boldrin, Michele a. David K. Levine: The Case Against Intellectual Property; in: American
Economic Review, 92 (2002), No. 2, pp. 209–212

Boldrito, Remo Suppi a. Josep Jorba Esteve: GNU/Linux Advanced Administration; co-
ordinated by Josep Jorba Esteve; Barcelona: Free Technology Academy, 2007 ⟨URL:
http://www.ftacademy.org/⟩ – reference download: 2012-01-20, FreeWeb/PDF

Boldyreff, Cornelia et al., editors: Open Source Ecosystems: Diverse Communities Interaction;
5th IFIP WG 2.13 International Conference on Open Source Systems, OSS 2009 Skövde,
Sweden, June 3-6, 2009; Berlin, Heidelberg and New York: Springer, 2009, BibWeb/PDF,
ISBN 978–3–642–02031–5

Bolzern, Mark : A New Project or a GNU Project? in: Linux Journal, 13 May (1995), p. 7:1 ⟨URL:
http://dl.acm.org/citation.cfm?id=324822.324829⟩ – reference download: 2011-12-29,
BibWeb/HTML

Bonaccorsi, A., M. Merito ans L. Piscitello, a. C. Rossi : The ’Open Innovation’ Paradigm.
How Firms Do Business out of Open Source Software; Copenhagen, 2006, Paper preseneted
at the DRUID Summer Conference

Bonaccorsi, A. a. C. Rossi : Contributing to the Common Pool Resources in Open Source
Software. A Comparison between Individuals and Firms. Pisa, 2003, Sant’ Anna School of
Advanced Studies; Working Paper

Bonaccorsi, A. a. C. Rossi : Why Open Source Software Can Succeed; in: Research Policy, 32
(2003), No. 7, pp. 1243–1258

Bonaccorsi, A. a. C. Rossi : Comparing Motivations of Individual Programmers and Firms to
Take Part in the Open Source Movement. From Community to Business; Pisa, 2004, Sant’
Anna School of Advanced Studies; Working Paper ⟨URL: http://opensource.mit.org/⟩

Bonaccorsi, Andrea et al.: Business Firms’ Engagement in Community Projects. Empirical
Evidence and Further Developments of the Research; in: Proceedings of the First International
Workshop on Emerging Trends in FLOSS Research and Development; Washington, DC,
USA: IEEE Computer Society, 2007 (= FLOSS ’07) ⟨URL: http://dx.doi.org/10.1109/
FLOSS.2007.3⟩, ISBN 0–7695–2961–5, pp. 13–

Booth, David R.: Peer Production and Software. What Mozilla Has To Teach Government;
Cambridge (Massachusetts) and London (England): MIT Press, 2010 (= The John D. and
Catherine T. MacArthur Foundation Reports on Digital Media and Learning), Print, ISBN
978–0–262–51461–3

Bresson, Jean, Carlos Agon, a. Gérard Assayag : OpenMusic; Visual Programming Environment
for Music Composition, Analysis and Research; in: Proceedings of the 19th ACM International

333

http://doi.acm.org/10.1145/1328057.1328087
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://doi.acm.org/10.1145/1134285.1134288
http://www.ftacademy.org/
http://dl.acm.org/citation.cfm?id=324822.324829
http://opensource.mit.org/
http://dx.doi.org/10.1109/FLOSS.2007.3
http://dx.doi.org/10.1109/FLOSS.2007.3

Bibliography

Conference on Multimedia; New York, NY, USA: ACM, 2011 (= MM ’11) ⟨URL: http://
doi.acm.org/10.1145/2072298.2072434⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 978–1–4503–0616–4, pp. 743–746

Bretschneider, Ulrich, Rainer Glaschick , a. Gernot Gräfe: Ratgeber für die Veröffentlichung
von Open-Source-Software durch eine Hochschule; In Asche et al.: Open Source. Kom-
merzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von Hochschulen und
Unternehmen, 2008, pp. 167–188, Print

Brodie, Mark et al.: Support services: persuading employees and customers to do what is in the
community’s best interest; in: Proceedings of the 2nd international conference on Persuasive
technology; Berlin, Heidelberg: Springer-Verlag, 2007 (= PERSUASIVE’07) ⟨URL:
http://dl.acm.org/citation.cfm?id=1780402.1780424⟩, ISBN 3–540–77005–4, 978–3–
540–77005–3, pp. 121–124

Brown, Peter : EOF: The Free Software Foundation at 20; in: Linux Journal, 137 September
(2005), p. 15:1 ⟨URL: http://dl.acm.org/citation.cfm?id=1084783.1084798⟩ – reference
download: 2011-12-29, BibWeb/HTML

Brügge, Bernd et al.: Open-Source Software. Eine ökonomische und technische Analyse; Berlin
and Heidelberg: Springer, 2004, Print, ISBN 3–540–20366–4

Buchtala, Rouven: Determinanten der Open Source Software-Lizenzwahl. Eine spieltheoretische
Analyse; Frankfurt am Main, Berlin, Bern [... etc.]: Peter Lang, 2007 (= Informationsmanage-
ment und strategische Unternehmensführung), [Vol./No.] 12), Print, ISBN 978–3–631–57114–9

Burgess, Guy : Open Source: The Affero General Public License; in: Magazine of the Society
for Computers and Law, 19 (2008), No. 4, pp. 42–43, Copy

Bygott, David : David Bygott’s Gnu Book. A light-hearted look at the Gnu, or Wildebeest; firstly
published 1998; Southerton, Harare: Robert Woollacott, 1992, Print, ISBN 0–7974–1082–1

Bärwolff, M.: Tight Prior Open Source Equilibrium: The Rise of Open Source as a Source of
Economic Welfare; in: First Monday, 11 (2006) ⟨URL: http://firstmanday.org/issues/
issue11_1/barwolff/index.html⟩

Camp, L. Jean: DRM: Doesn’t Really Mean Digital Copyright Management; in: Proceedings
of the 9th ACM Conference on Computer and Communications Security; New York, NY,
USA: ACM, 2002 (= CCS ’02) ⟨URL: http://doi.acm.org/10.1145/586110.586122⟩ –
reference download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–612–9, pp. 78–87

Campbell-Kelly, Martin: Historical Reflections: Will the Future of Software be Open Source?
in: Communications of the ACM, 51 October (2008), No. 10, pp. 21–23 ⟨URL: http://doi.
acm.org/10.1145/1400181.1400189⟩ – reference download: 2011-12-29, BibWeb/PDF

Capiluppi, Andrea, Andres Baravalle, a. Nick W. Heap: From ”Community” to ”Commercial”
FLOSS - the Case of Moodle; [General Chairs: Justin Erenkrantz and Hyrum K. Wright];
In Proceedings of the 3rd International Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, 2010, pp. 11–16 ⟨URL: http://doi.acm.org/
10.1145/1833272.1833275⟩ – reference download: 2012-02-01, BibWeb/PDF

Capiluppi, Andrea a. Thomas Knowles : Software Engineering in Practice: Design and Architec-
ture of FLOSS Systems; 5th IFIP WG 2.13 International Conference on Open Source Systems,
OSS 2009 Skövde, Sweden, June 3-6, 2009; In Boldyreff et al.: Open Source Ecosystems,
2009, pp. 34–46, BibWeb/PDF

Chawner, Brenda: F/OSS in the Library World: An Exploration; In Proceedings of the Fifth
Workshop on Open Source Software Engineering, 2005, pp. 3:1–3:4 ⟨URL: http://doi.acm.
org/10.1145/1082983.1083262⟩ – reference download: 2011-12-29, BibWeb/PDF

Cheliotis, Giorgos: From open source to open content: Organization, licensing and
decision processes in open cultural production; in: Decision Support Systems, 47
(2009), No. 3, pp. 229–244 ⟨URL: http://www.sciencedirect.com/science/article/pii/
S0167923609000578⟩ – reference download: 2012-02-01, BibWeb/PDF

334

http://doi.acm.org/10.1145/2072298.2072434
http://doi.acm.org/10.1145/2072298.2072434
http://dl.acm.org/citation.cfm?id=1780402.1780424
http://dl.acm.org/citation.cfm?id=1084783.1084798
http://firstmanday.org/issues/issue11_1/barwolff/index.html
http://firstmanday.org/issues/issue11_1/barwolff/index.html
http://doi.acm.org/10.1145/586110.586122
http://doi.acm.org/10.1145/1400181.1400189
http://doi.acm.org/10.1145/1400181.1400189
http://doi.acm.org/10.1145/1833272.1833275
http://doi.acm.org/10.1145/1833272.1833275
http://doi.acm.org/10.1145/1082983.1083262
http://doi.acm.org/10.1145/1082983.1083262
http://www.sciencedirect.com/science/article/pii/S0167923609000578
http://www.sciencedirect.com/science/article/pii/S0167923609000578

Bibliography

Chen, Shun-ling : Free/Open Source Software. Licensing; Shri Pratap Udyog, Srini-
was Puri, New Delhi: Elsevier India, 2006 ⟨URL: http://www.iosn.net/licensing/

foss-licensing-primer/foss-licensing-final.pdf⟩ – reference download: 2013-02-02,
FreeWeb/PDF, ISBN 978–81–312–0422–1

Chen, Zhixiong a. Delia Marx : Experiences with Eclipse IDE in Programming Courses; in:
JCSC, 21 December (2005), No. 2, pp. 104–112 ⟨URL: http://dl.acm.org/citation.cfm?
id=1089053.1089068⟩ – reference download: 2011-12-29, BibWeb/PDF

Cheung, Gifford et al.: Designing for Discovery: Opening the Hood for Open-Source End User
Tinkering; in: Proceedings of the 27th International Conference Extended Abstracts on
Human Factors in Computing Systems; New York, NY, USA: ACM, 2009 (= CHI EA ’09)
⟨URL: http://doi.acm.org/10.1145/1520340.1520660⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–60558–247–4, pp. 4321–4326

Chindalia, Sanjanaa: Open source software: The future ahead; in: JOURNAL OF INTEL-
LECTUAL PROPERTY RIGHTS, 13 (2008), pp. 218–224

Chopra, S. a. S. Dexter : Free software and the political philosophy of the cyborg world;
in: SIGCAS, 37 November (2007), No. 2, pp. 41–52 ⟨URL: http://doi.acm.org/10.1145/
1327325.1327328⟩ – reference download: 2011-12-29, BibWeb/PDF

Chopra, S. a. S. Dexter : Free software, economic ’realities’, and information justice; in:
SIGCAS, 39 December (2009), No. 3, pp. 12–26 ⟨URL: http://doi.acm.org/10.1145/
1713066.1713067⟩ – reference download: 2011-12-29, BibWeb/PDF

Chopra, Samir a. Scott Dexter : The freedoms of software and its ethical uses; in: Ethics
and Information Technology, 11 (2009), pp. 287–297 ⟨URL: http://dx.doi.org/10.1007/
s10676-009-9191-0⟩, BibWeb/PDF

Christ, Fabian a. Stefan Sauer : OSS - Open-Source-Stacks; In Asche et al.: Open Source.
Kommerzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von Hochschulen
und Unternehmen, 2008, pp. 133–154, Print

Ciffolilli, Andrea: The Economics of Open Source Hijacking and Declining Quality of Digital
Information Resources: A Case for Copyleft; 2004 ⟨URL: http://opensource.mit.edu/
papers/ciffolili.pdf⟩

Coar, Ken a. Rich Bowen: Apache Kochbuch; deutsche Übersetzung v. Jochen Wiedmann;
Beijing [...]: O’Reilly, 2004, Print, ISBN 3–89721–371–0

Colazo, Jorge a. Yulin Fang : Impact of License Choice on Open Source Software Development
Activity; in: Journal of the American Society for Information Science and Technology, 60
(2009), No. 5, pp. 997–1011, BibWeb/PDF

Coleman, Gabriella: CODE IS SPEECH: Legal Tinkering, Expertise, and Protest among
Free and Open Source Software Developers; in: Cultural Anthropology, 24 (2009), No. 3,
pp. 420–454 ⟨URL: http://dx.doi.org/10.1111/j.1548-1360.2009.01036.x⟩ – reference
download: 2012-02-03, BibWeb/PDF, ISSN 1548–1360

Comino, Stefano a. Fabio M. Manenti : Dual licensing in open source software markets;
in: Information Economics and Policy, 23 (2011), No. 3–4, pp. 234–242 ⟨URL: http:

//www.sciencedirect.com/science/article/pii/S016762451100028X⟩ – reference down-
load: 2012-02-01, BibWeb/PDF

Comino, Stefano, Fabio M. Manenti , a. Maria Laura Parisi : From planning to mature: On the
success of open source projects; in: Research Policy, 36 (2007), No. 10, pp. 1575–1586 ⟨URL:
http://www.sciencedirect.com/science/article/pii/S0048733307001709⟩ – reference
download: 2012-02-01, BibWeb/PDF

copyleft.org : What is copyleft.org; n.l, 2014, FreeWeb/HTML ⟨URL: http://copyleft.org/⟩ –
reference download: 2014-12-15

Costa-Soria, Cristóbal a. Jennifer Pérez : Teaching Software Architectures and Aspect-Oriented
Software Development using Open-Source Projects; in: Proceedings of the 14th Annual ACM

335

http://www.iosn.net/licensing/foss-licensing-primer/foss-licensing-final.pdf
http://www.iosn.net/licensing/foss-licensing-primer/foss-licensing-final.pdf
http://dl.acm.org/citation.cfm?id=1089053.1089068
http://dl.acm.org/citation.cfm?id=1089053.1089068
http://doi.acm.org/10.1145/1520340.1520660
http://doi.acm.org/10.1145/1327325.1327328
http://doi.acm.org/10.1145/1327325.1327328
http://doi.acm.org/10.1145/1713066.1713067
http://doi.acm.org/10.1145/1713066.1713067
http://dx.doi.org/10.1007/s10676-009-9191-0
http://dx.doi.org/10.1007/s10676-009-9191-0
http://opensource.mit.edu/papers/ciffolili.pdf
http://opensource.mit.edu/papers/ciffolili.pdf
http://dx.doi.org/10.1111/j.1548-1360.2009.01036.x
http://www.sciencedirect.com/science/article/pii/S016762451100028X
http://www.sciencedirect.com/science/article/pii/S016762451100028X
http://www.sciencedirect.com/science/article/pii/S0048733307001709
http://copyleft.org/

Bibliography

SIGCSE Conference on Innovation and Technology in Computer Science Education; New
York, NY, USA: ACM, 2009 (= ITiCSE ’09) ⟨URL: http://doi.acm.org/10.1145/1562877.
1563027⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–60558–381–5, p. 385

Crowston, Kevin et al.: Effective Work Practices for Software Engineering: Free/Libre Open
Source Software Development; in: Proceedings of the 2004 ACM Workshop on Interdisci-
plinary Software Engineering Research; New York, NY, USA: ACM, 2004 (= WISER ’04)
⟨URL: http://doi.acm.org/10.1145/1029997.1030003⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 1–58113–988–8, pp. 18–26

Crowston, Kevin a. James Howison: The social structure of Free and Open Source software
development; in: First Monday 10 (2005), No. 2

Crowston, Kevin et al.: Self-organization of teams for free/libre open source software de-
velopment; in: Information and Software Technology, 49 (2007), No. 6, pp. 564 –
575 ⟨URL: http://www.sciencedirect.com/science/article/pii/S0950584907000080⟩,
¡ce:title¿Qualitative Software Engineering Research¡/ce:title¿, ISSN 0950–5849

Cuéllar, Luis E.: Open Source License Alternatives for Software Applications; Is it a solution
to stop software piracy?; in: Proceedings of the 43rd Annual Southeast Regional Conference;
Volume 2, New York, NY, USA: ACM, 2005 ⟨URL: http://doi.acm.org/10.1145/1167253.
1167314⟩ – reference download: 2011-12-28, BibWeb/PDF, ISBN 1–59593–059–0, pp. 269–274

Currion, Paul , Chamindra de Silva, a. Bartel Van de Walle: Open Source Software For
Disaster Management; in: Communications of the ACM, 50 March (2007), No. 3, pp. 61–65
⟨URL: http://doi.acm.org/10.1145/1226736.1226768⟩ – reference download: 2011-12-29,
BibWeb/PDF

Cusumano, Michael A.: Reflections on Free and Open Software; in: Communications of the
ACM, 47 October (2004), No. 10, pp. 25–27 ⟨URL: http://doi.acm.org/10.1145/1022594.
1022615⟩ – reference download: 2012-202-03, BibWeb/PDF

Dahlander, L.: Appropriation and Appropriability in Open Source Software; in: International
Journal of Innovation Management, 9 (2005), No. 3, pp. 259–285

Dahlander, Linus: Penguin in a new suit: a tale of how de novo entrants emerged to harness
free and open source software communities; in: Industrial and Corporate Change, 16
(2007), No. 5, pp. 913–943 ⟨URL: http://icc.oxfordjournals.org/content/16/5/913.
abstract⟩ – reference download: 2012-202-03, BibWeb/PDF

Dalle, Jean-Michel et al.: Advancing Economic Research on the Free and Open Source Software
Mode of Production; In Wynants a. Cornelius : How Open is the Future?, 2005, pp. 395–426

David, Paul A. a. Francesco Rullani : Dynamics of innovation in an “open source” collaboration
environment: lurking, laboring, and launching FLOSS projects on SourceForge; in: Industrial
and Corporate Change, 17 (2008), No. 4, pp. 647–710, BibWeb/PDF

Davies, Julius : Measuring Subversions: Security and Legal Risk in Reused Software Artifacts; in:
Proceedings of the 33rd International Conference on Software Engineering; New York, NY,
USA: ACM, 2011 (= ICSE ’11) ⟨URL: http://doi.acm.org/10.1145/1985793.1986025⟩ –
reference download: 2011-12-28, BibWeb/PDF, ISBN 978–1–4503–0445–0, pp. 1149–1151

Davis, Donald a. Iffat Jabeen: Learning in the GNU/Linux Community; in: Proceedings of
the 2011 Conference on Information Technology Education; New York, NY, USA: ACM,
2011 (= SIGITE ’11) ⟨URL: http://doi.acm.org/10.1145/2047594.2047600⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–1017–8, pp. 21–26

Davis, Mike et al.: Linux and Open Source in the Academic Enterprise; in: Proceedings of the
28th annual ACM SIGUCCS conference on User services: Building the future; New York,
NY, USA: ACM, 2000 (= SIGUCCS ’00) ⟨URL: http://doi.acm.org/10.1145/354908.
354923⟩ – reference download: 2011-12-28, BibWeb/PDF, ISBN 1–58113–229–8, pp. 65–69

de Laat, Paul B.: Copyright or copyleft? An analysis of property regimes for software develop-
ment; in: Research Policy, 34 (2005), pp. 1511–1532, BibWeb/PDF

336

http://doi.acm.org/10.1145/1562877.1563027
http://doi.acm.org/10.1145/1562877.1563027
http://doi.acm.org/10.1145/1029997.1030003
http://www.sciencedirect.com/science/article/pii/S0950584907000080
http://doi.acm.org/10.1145/1167253.1167314
http://doi.acm.org/10.1145/1167253.1167314
http://doi.acm.org/10.1145/1226736.1226768
http://doi.acm.org/10.1145/1022594.1022615
http://doi.acm.org/10.1145/1022594.1022615
http://icc.oxfordjournals.org/content/16/5/913.abstract
http://icc.oxfordjournals.org/content/16/5/913.abstract
http://doi.acm.org/10.1145/1985793.1986025
http://doi.acm.org/10.1145/2047594.2047600
http://doi.acm.org/10.1145/354908.354923
http://doi.acm.org/10.1145/354908.354923

Bibliography

De Nicolò, Christopher : Open Source Software - Rechtliche Aspekte nach deutschem und
italienischem Recht. Eine rechtsvergleichende Studie. Dissertation; Regensburg: Universität
Regensburg, 2010, Print

Debian: The Debian Free Software Guidelines (DFSG); 2013 [n.y.], FreeWeb/HTML ⟨URL:
http://www.debian.org/social_contract#guidelines⟩ – reference download: 2013-01-22

Deike, Thies: Open Source Software: IPR-Fragen und Einordnung ins deutsche Rechtssystem;
in: CR [Computer und Recht], (2003), pp. 9ff

Deitcher, Avi : The challenges of open source in the enterprise; in: Linux Journal, 195 July
(2010), pp.Article No. 3 ⟨URL: http://dl.acm.org/citation.cfm?id=1883478.1883481⟩ –
reference download: 2011-12-28, BibWeb/HTML

Dempsey, Bert J. et al.: A quatitative profile of a community of Open Source Linux developers;
North Carolina: University of North Carolina at Chapel Hill, School of Information and
Librabry Science, 1999 (= (= [University of North Carolina] Technical Report TR 1999-05))

Dempsey, Bert J. et al.: Who Is an Open Source Software Developer? in: Communications of the
ACM, 45 (2002), No. 2, pp. 67–72 ⟨URL: http://doi.acm.org/10.1145/503124.503125⟩ –
reference download: 2011-12-28, BibWeb/PDF

Deodhar, Swanand J., K. B. C. Saxena, a. Mikko Ruohonen: Firm-Oriented Success Factors of
an Open Source Software (OSS) Product; [General Chairs: Justin Erenkrantz and Hyrum
K. Wright]; In Proceedings of the 3rd International Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, 2010, pp. 1–4 ⟨URL: http://
doi.acm.org/10.1145/1833272.1833273⟩ – reference download: 2011-12-29, BibWeb/PDF

Determann, Lothar : Softwarekombinationen unter der GPL; in: GRUR Int. (slg: Gewerblicher
Rechtsschutz und Urheberrecht, Internationaler Teil, 2006), (2006), pp. 645 – 653

Di Penta, Massimiliano et al.: An Exploratory Study of the Evolution of Software Licensing;
in: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering;
Volume 1, New York, NY, USA: ACM, 2010 ⟨URL: http://doi.acm.org/10.1145/1806799.
1806824⟩ – reference download: 2011-12-28, BibWeb/PDF, ISBN 978–1–60558–719–6, pp. 145–
154

DiBona, Chris, Cooper C , a. D. Stone, editors: Open Sources 2.0: The Continuing Evolution;
Sebastopol CA: O’Reilly, 2005

DiBona, Chris, Sam Ockman, a. Mark Stone, editors: Open Sources. Voices from the Open
Source Revolution; Beijing u.a.: O’Reilly, 1999

Diedrich, Oliver : Die Geschichte von Linux; 2011, FreeWeb/PDF ⟨URL: http://www.

heise.de/open/artikel/Die-Geschichte-von-Linux-1329997.html⟩ – reference down-
load: 20110826

Dionisio, John David N. et al.: An Open Source Software Culture in the Undergraduate
Computer Science Curriculum; in: SIGCSE Bulletin, 39 June (2007), No. 2, pp. 70–74
⟨URL: http://doi.acm.org/10.1145/1272848.1272888⟩ – reference download: 2011-12-29,
BibWeb/PDF

Djordjevic, Valle et al., editors: Urheberrecht im Alltag. Kopieren, bearbeiten, selber machen;
Bonn: Bundeszentrale für politische Bildung, 2008, Print, ISBN 978–3–89331–812–4

Dobb, Dr.: It All About The License; in: Informationweek, n.V. (2009), No. 1253, p. 46, Copy

Doernhoefer, Mark : Surfing the Net for Software Enginerring Notes; in: SIGSOFT Software
Engineering Notes, 35 (2010), No. 4, pp. 8–16, BibWeb/PDF

Donnelly, Francis P.: Evaluating open source GIS for libraries; in: Library Hi Tech, 28 (2010),
No. 1, pp. 131–151 ⟨URL: http://www.emeraldinsight.com/0737-8831.htm⟩ – reference
download: 2012-02-13, BibWeb/PDF

Donorfio, Brian: The Politics of ”Free”: Open Source Software in Government; in:
JCSC, 19 (2004), No. 5, pp. 279–280 ⟨URL: http://dl.acm.org/citation.cfm?id=1060081.
1060117⟩ – reference download: 2011-12-29, BibWeb/PDF

337

http://www.debian.org/social_contract#guidelines
http://dl.acm.org/citation.cfm?id=1883478.1883481
http://doi.acm.org/10.1145/503124.503125
http://doi.acm.org/10.1145/1833272.1833273
http://doi.acm.org/10.1145/1833272.1833273
http://doi.acm.org/10.1145/1806799.1806824
http://doi.acm.org/10.1145/1806799.1806824
http:// www. heise. de/ open/ artikel/ Die-Geschichte-von-Linux-1329997.html
http:// www. heise. de/ open/ artikel/ Die-Geschichte-von-Linux-1329997.html
http://doi.acm.org/10.1145/1272848.1272888
http://www.emeraldinsight.com/0737-8831.htm
http://dl.acm.org/citation.cfm?id=1060081.1060117
http://dl.acm.org/citation.cfm?id=1060081.1060117

Bibliography

Dorman, David : The Case for Open Source Software in the Library Market; in: Ubiquity,
January (2004), p. 4:1 ⟨URL: http://doi.acm.org/10.1145/985600.985601⟩ – reference
download: 2011-12-29, BibWeb/HTML

Dougherty, William C. a. Audrey Schadt : Linux Is for Everyone; Librarians Included!
in: The Journal of Academic Librarianship, 36 (2010), No. 2, pp. 173–175 ⟨URL: http:
//www.sciencedirect.com/science/article/pii/S0099133310000108⟩ – reference down-
load: 2012-02-09, BibWeb/PDF

Douglas, David : A bundle of software rights and duties; in: Ethics and Information Tech-
nology, 13 (2011), pp. 185–197 ⟨URL: http://dx.doi.org/10.1007/s10676-010-9229-3⟩ –
reference download: 2012.02.09, BibWeb/PDF

Drossou, Olga, Stefan Krempl , a. Andreas Poltermann: Der Kampf um die Innovationsfreiheit:
Der Big Bang des Wissens und seine Sprengkraft. Plädoyer für einen offenen Umgang mit
Wissen im Interesse der Innovationskraft von Wirtschaft und Gesellschaft; Editorial; In
Drossou, Krempl, a. Poltmann: Die wunderbare Wissensvermehrung, 2006, pp. 1–10, Print

Drossou, Olga, Stefan Krempl , a. Andreas Poltmann, editors: Die wunderbare Wissensvermeh-
rung. Wie Open Innovation unsere Welt revolutioniert; (= Telepolis) Hannover: Heise, 2006,
Print, ISBN 3–936931–38–0

Eckl, Julian: Die politische Ökonomie der Wissenschaftsgesellschaft. Geistige Eigentumsrechte
und die Frage des Zugangs zu Ideen; Marburg: Tectum Verlag, 2004, Print, ISBN 3–8288–
8735–X

Eclipse Foundation: Eclipse Public License, Version 1.0; 2005 [n.y. of the page itself],
FreeWeb/HTML ⟨URL: http://www.eclipse.org/org/documents/epl-v10.php⟩ – refer-
ence download: 2013-02-20

Eclipse Foundation: CPL to EPL Conversion; 2013 [n.y. of the page itself], FreeWeb/HTML
⟨URL: http://www.eclipse.org/legal/cpl2epl/⟩ – reference download: 2013-02-20

Economides, Nicholas a. Evangelos Katsamakas: Two-Sided Competition of Proprietary vs.
Open Source Technology Platforms and the Implications for the Software Industry; in:
Management Science, 52 (2006), No. 7, pp. 1057–1071

Elkemann-Reusch, Ilva: Die erzwungene Gegengabe; in: ZGE / IPJ, 2 (2010), pp. 413–452,
Copy

Elliott, Margaret , Mark S. Ackerman, a. Walt Scacchi : Knowledge Work Artifacts: Kernel
Cousins for Free/Open Source Software Development; in: Proceedings of the 2007 in-
ternational ACM conference on Supporting group work; New York, NY, USA: ACM,
2007 (= GROUP ’07) ⟨URL: http://doi.acm.org/10.1145/1316624.1316650⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–59593–845–9, pp. 177–186

Elliott, Margaret S. a. Walt Scacchi : Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration; in: Proceedings of the 2003 International
ACM SIGGROUP Conference on Supporting Group Work; New York, NY, USA: ACM,
2003 (= GROUP ’03) ⟨URL: http://doi.acm.org/10.1145/958160.958164⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–693–5, pp. 21–30

Ellis, Jason a. Jean-Paul Van Belle: Open Source Software Adoption by South African MSEs:
Barriers and Enablers; in: Proceedings of the 2009 Annual Conference of the Southern
African Computer Lecturers’ Association; New York, NY, USA: ACM, 2009 (= SACLA ’09)
⟨URL: http://doi.acm.org/10.1145/1562741.1562746⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–60558–683–0, pp. 41–49

Engelfriet, Arnoud : Tools of the Trade[:] Choosing an Open Source License; in: IEEE Software,
27 (2010), No. 1, pp. 48–49, Copy

Epplin, J.: Using GPL Software in Embedded Applications; ⟨URL: http://www.linux.

devices.com/articles/AT916119242.html⟩

338

http://doi.acm.org/10.1145/985600.985601
http://www.sciencedirect.com/science/article/pii/S0099133310000108
http://www.sciencedirect.com/science/article/pii/S0099133310000108
http://dx.doi.org/10.1007/s10676-010-9229-3
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/legal/cpl2epl/
http://doi.acm.org/10.1145/1316624.1316650
http://doi.acm.org/10.1145/958160.958164
http://doi.acm.org/10.1145/1562741.1562746
http://www.linux.devices.com/articles/AT916119242.html
http://www.linux.devices.com/articles/AT916119242.html

Bibliography

Ernst, Stefan: Die Verfügbarkeit des Sourcecodes; in: MultiMedia und Recht, 4 (2001),
pp. 208–213

Euler, Ellen: Creative Commons: Mehr Innovation durch die Öffnung des Urheberechts? In
Drossou, Krempl, a. Poltmann: Die wunderbare Wissensvermehrung, 2006, pp. 147–158,
Print

European Community a. European commission Joinup: European Union Public Licence v. 1.1.
2007, FreeWeb/HTML ⟨URL: http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.
1.1%20-%20Licence.pdf⟩ – reference download: 2013-02-08

European Community a. European commission Joinup: New FSF statements on the EUPL are a
step in the right direction; 2013 [n.y], FreeWeb/HTML ⟨URL: https://joinup.ec.europa.
eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction⟩ –
reference download: 2013-03-05

Europäische Gemeinschaft a. European commission Joinup: Open-Source-Lizenz für die Eu-
ropäische Union; 2007, FreeWeb/HTML ⟨URL: http://joinup.ec.europa.eu/system/
files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf⟩ – reference download: 2013-02-08

Evans, David S. a. Bernard J. Reddy : Government Preferences for Promoting Open-Source
Software: A Solution in Search of a Problem; in: 9 Mich Telecomm. Tech. L. Rev. 313 (2003),
pp. 313–394

Ezeala, Adanna, Hyunju Kim, a. Loretta A. Moore: Open Source Software Development:
Expectations and Experience from a Small Development Project; in: Proceedings of the 46th
Annual Southeast Regional Conference on XX; New York, NY, USA: ACM, 2008 (= ACM-SE
46) ⟨URL: http://doi.acm.org/10.1145/1593105.1593168⟩ – reference download: 2011-
12-29, BibWeb/PDF, ISBN 978–1–60558–105–7, pp. 243–246

Fantl, Stephen: Copyleft or Copyright. Into the new paradigm; in: MacTech Magazine, 16
(2000), No. 10, pp. 98–100, Copy

Fehr, Ernst a. Simon Gächter : Fairness and Retaliation: The Economics of Reciprocity; in:
Journal of Economic Perspectives, 14 (2000), pp. 159–181

Feig, Michael : Einführung in GNU; München and Wien: Carl Hanser Verlag, 1996 (= Unix
easy), Print, ISBN 3–446–18311–6

Feller, Joseph: Meeting challenges and surviving success: the 2nd workshop on open source
software engineering; evaluate the complete workshop results; in: Proceedings of the
24th International Conference on Software Engineering; New York, NY, USA: ACM, 2002
(= ICSE ’02) ⟨URL: http://doi.acm.org/10.1145/581339.581436⟩, ISBN 1–58113–472–X,
pp. 669–670

Feller, Joseph a. Brian Fitzgerald : A Framework Analysis of the Open Source Software
Development Paradigm; in: Proceedings of the twenty first international conference on
Information systems; Atlanta, GA, USA: Association for Information Systems, 2000 (= ICIS
’00) ⟨URL: http://dl.acm.org/citation.cfm?id=359640.359723⟩, BibWeb/PDF, pp. 58–
69

Feller, Joseph et al.: Collaboration, Conflict and Control: The 4th Workshop on Open Source
Software Engineering; evaluate worksup results; in: Proceedings of the 26th International
Conference on Software Engineering; Washington, DC, USA: IEEE Computer Society,
2004 (= ICSE ’04) ⟨URL: http://dl.acm.org/citation.cfm?id=998675.999508⟩, ISBN
0–7695–2163–0, pp. 764–765

Feller, Joseph et al.: Collaboration, conflict and control: report on the 4th workshop on open
source software engineering; in: SIGSOFT Softw. Eng. Notes, 30 May (2005), pp. 1–2 ⟨URL:
http://doi.acm.org/10.1145/1061874.1061885⟩, ISSN 0163–5948

Feller, Joseph et al.: Taking stock of the bazaar: the third workshop on open source software
engineering; in: SIGSOFT Softw. Eng. Notes, 28 November (2003), pp. 5–5 ⟨URL: http:
//doi.acm.org/10.1145/966221.966227⟩, ISSN 0163–5948

339

http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.1.1%20-%20Licence.pdf
http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.1.1%20-%20Licence.pdf
https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction
https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction
http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://doi.acm.org/10.1145/1593105.1593168
http://doi.acm.org/10.1145/581339.581436
http://dl.acm.org/citation.cfm?id=359640.359723
http://dl.acm.org/citation.cfm?id=998675.999508
http://doi.acm.org/10.1145/1061874.1061885
http://doi.acm.org/10.1145/966221.966227
http://doi.acm.org/10.1145/966221.966227

Bibliography

Feller, Joseph, Brian Fitzgerald , a. André van der Hoek : 1st workshop on open source software
engineering; evaluate workshop results; in: Proceedings of the 23rd International Conference
on Software Engineering; Washington, DC, USA: IEEE Computer Society, 2001 (= ICSE
’01) ⟨URL: http://dl.acm.org/citation.cfm?id=381473.381660⟩, ISBN 0–7695–1050–7,
pp. 780–781

Feller, Joseph, Brian Fitzgerald , a. André van der Hoek : Making sense of the bazaar: 1st
workshop on open source software engineering; in: SIGSOFT Softw. Eng. Notes, 26 November
(2001), pp. 51–52 ⟨URL: http://doi.acm.org/10.1145/505532.505543⟩, ISSN 0163–5948

Feller, Joseph et al.: Open source application spaces: the 5th workshop on open source software
engineering; evaluatre workshop results; in: Proceedings of the 27th international conference
on Software engineering; New York, NY, USA: ACM, 2005 (= ICSE ’05) ⟨URL: http:
//doi.acm.org/10.1145/1062455.1062619⟩, ISBN 1–58113–963–2, pp. 694–694

Feller, Jospeph a. Brian Fitzgerald : Understanding Open Source Software Development; Read-
ing, Mass., London?: Addison-Wesley, 2002

Fielding, Roy T.: Shared leadership in the Apache Project; in: Communications of the ACM,
42 (1999), No. 4, pp. 42–43

Fielding, Roy T.: Software Architecture in an Open Source World; in: Proceedings of the
27th International Conference on Software Engineering; New York, NY, USA: ACM,
2005 (= ICSE ’05) ⟨URL: http://doi.acm.org/10.1145/1062455.1062474⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–963–2, pp. 43–43

Fink, Martin: The business and economics of Linux and open source; Upper Saddle River,
N.J.: Prentice Hal, 2003

Fitzgerald, Brian: The Transformation of Open Source Software; in: MIS Quarterly, 30 (2006),
No. 3, pp. 587–598

Fogel, Karl : Producing Open Source Software; How to Run a Successful Free Software Project;
Beijing, Cambridge, Köln [...]: O’Reilly, 2006, Print, ISBN 978–0–596–00759–1

Fosfuri, Andrea, Marco S. Giarratana, a. Alessandra Luzzi : The Penguin Has Entered the
Building: The Commercialization of Open Source Software Products; in: OrganizationScience,
19 March-April (2008), No. 2, p. 292–305, BibWeb/PDF

Fox, Laurie a. Shawn Plummer : Opening the Lines of Communications with Open Source
Software; in: Proceedings of the 34th Annual ACM SIGUCCS Fall Conference; New York,
NY, USA: ACM, 2006 (= SIGUCCS ’06) ⟨URL: http://doi.acm.org/10.1145/1181216.
1181242⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–59593–438–3, pp. 114–117

Franck, Egon a. Carola Jungwirth: Die Governance von Open Source Projekten; in: Zeitschrift
für Betriebswirtschaft, 73 (2003), No. 5 (Ergänzungsheft), pp. 1 –21

Franky, Maŕıa Consuelo: Agile Management and Development of Software Projects based on
Collaborative Environments; in: SIGSOFT Software Engineering Notes, 36 May (2011),
No. 3, pp. 1–6 ⟨URL: http://doi.acm.org/10.1145/1968587.1968605⟩ – reference down-
load: 2011-12-29, BibWeb/PDF

Free Software Foundation: GNU General Public License, version 2; 1991 [n.y. of the html page
itself], FreeWeb/HTML ⟨URL: http://www.gnu.org/licenses/gpl-2.0.html⟩ – reference
download: 2013-02-05

Free Software Foundation: GNU Library General Public License [version 2.0]; 1991 [n.y. of the
html page itself], FreeWeb/HTML ⟨URL: http://www.gnu.org/licenses/old-licenses/
lgpl-2.0.html⟩ – reference download: 2013-03-25

Free Software Foundation: GNU Lesser General Public License [Version 2.1]; 1999 [n.y. of the
html page itself], FreeWeb/HTML ⟨URL: http://www.gnu.org/licenses/lgpl-2.1.html⟩ –
reference download: 2013-03-06

Free Software Foundation: GNU General Public License [version 3]; 2007 [n.y. of the html

340

http://dl.acm.org/citation.cfm?id=381473.381660
http://doi.acm.org/10.1145/505532.505543
http://doi.acm.org/10.1145/1062455.1062619
http://doi.acm.org/10.1145/1062455.1062619
http://doi.acm.org/10.1145/1062455.1062474
http://doi.acm.org/10.1145/1181216.1181242
http://doi.acm.org/10.1145/1181216.1181242
http://doi.acm.org/10.1145/1968587.1968605
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/lgpl-2.1.html

Bibliography

page itself], FreeWeb/HTML ⟨URL: http://www.gnu.org/licenses/gpl.html⟩ – reference
download: 2013-03-06

Free Software Foundation: GNU Lesser General Public License [version 3]; 2007 [n.y. of the
html page itself], FreeWeb/HTML ⟨URL: http://www.gnu.org/copyleft/lesser.html⟩ –
reference download: 2013-03-06

Free Software Foundation: GNU Operating System[:] Licenses; 2011, FreeWeb/HTML ⟨URL:
http://www.gnu.org/licenses/⟩ – reference download: 2013-03-25

Free Software Foundation: Various Licenses and Comments about Them; 2013 [n.y.],
FreeWeb/HTML ⟨URL: http://www.gnu.org/licenses/license-list.html⟩ – reference
download: 2013-02-08

Free Software Foundation: What is free software? The Free Software Definition; 2015 [n.y.],
FreeWeb/HTML ⟨URL: https://www.gnu.org/philosophy/free-sw.en.html⟩ – reference
download: 2015-02-20

Friedman, Batya et al.: Development of a Privacy Addendum for Open Source Licenses: Value
Sensitive Design in Industry; in: Paul Dourish a. Adrian Friday, editors: UbiComp
2006: Ubiquitous Computing; [Proceedings of the] 8th International Conference, UbiComp
2006 Orange County, CA, USA, September 17-21, 2006; Berlin, Heidelberg, a. New York:
Springer, 2006 (= Lecture Notes in Computer Science, [Vol./No.] 4206), BibWeb/PDF, ISBN
978–3–540–39634–5, pp. 194–211

Fujita, Kunihiko a. Yasuyuki Tsukada: An Analysis of Interoperability between Licenses; in:
Proceedings of the Tenth Annual ACM Workshop on Digital Rights Management; New
York, NY, USA: ACM, 2010 (= DRM ’10) ⟨URL: http://doi.acm.org/10.1145/1866870.
1866884⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0091–9, pp. 61–
72

Funk, Axel a. Georg Zeitfang : Die GNU General Public License, Version3; in: CR [Computer
und Recht], (2007), pp. 617 – 624

Funk, Axel a. Gregor Zeitfang : Die GNU General Public License, Version 3; in: Computer und
Recht, 23 (2007), No. 10, pp. 617–624, BibWeb/Copy

Fuse Source Team, The: How to Use Open Source Integration Software Safely in the Enterprise.
Analysis of potential risks and how to protect your IT environment; October 2010,
FreeWeb/PDF [File received by a promotion campaign of itwhitepapers.com. The article
refers to http:// www. fusesource. com/. But we didn’t retrieve the paper there.] ⟨URL:
http://www.itwhitepapers.com/?option=com_categoryreport\&task=viewabstract\

&pathway=no\&autodn=1\&title=14770\&crv=0\&src=5053\&ctg=410\&cmp=3732\&yld=

0\&pi=1628115⟩ – reference download: 2011-08-24

Gallini, Nancy a. Suzanne Scotchmer : Intellectual Property: When Is It the Best Incentive
System? in: NBER Innovation Policy & the Economy, 2 (2002), No. 1, pp. 51–77

Gambardella, Alfonso a. Bronwyn H. Hall : Proprietary versus public domain licensing of
software and research products; in: RP, 35 (2006), No. 6, pp. 875–892 ⟨URL: http:

//www.sciencedirect.com/science/article/pii/S0048733306000643⟩ – reference down-
load: 2012-02-09, BibWeb/PDF

Gandal, Neil a. Chaim Fershtman: Open Source Projectsd: Output per Contributor and
Restrictive Licensing; o.O.: ???, 2004 (= (= CEPR Working Paper 2650))

Gassmann, Oliver a. Martin A. Bader : Patentmanagement: Innovationen erfolgreich nutzen
und schützen; Berlin: ???, 2005

Geese, Elmar : Innovation und freie Software; In Drossou, Krempl, a. Poltmann: Die wunderbare
Wissensvermehrung, 2006, pp. 77–84, Print

Gehring, Robert A. a. Bernd Lutterbeck, editors: Open Source Jahrbuch 2004. Zwischen Soft-
wareentwicklung und Gesellschaftsmodell; Berlin: Lehmanns Media, 2004 ⟨URL: http:

341

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/license-list.html
https://www.gnu.org/philosophy/free-sw.en.html
http://doi.acm.org/10.1145/1866870.1866884
http://doi.acm.org/10.1145/1866870.1866884
http://www.itwhitepapers.com/ ?option = com_categoryreport \& task=viewabstract \& pathway=no \& autodn=1 \& title=14770 \& crv=0 \& src=5053 \& ctg=410 \& cmp=3732 \& yld=0 \& pi=1628115
http://www.itwhitepapers.com/ ?option = com_categoryreport \& task=viewabstract \& pathway=no \& autodn=1 \& title=14770 \& crv=0 \& src=5053 \& ctg=410 \& cmp=3732 \& yld=0 \& pi=1628115
http://www.itwhitepapers.com/ ?option = com_categoryreport \& task=viewabstract \& pathway=no \& autodn=1 \& title=14770 \& crv=0 \& src=5053 \& ctg=410 \& cmp=3732 \& yld=0 \& pi=1628115
http://www.sciencedirect.com/science/article/pii/S0048733306000643
http://www.sciencedirect.com/science/article/pii/S0048733306000643
http:// www. opensourcejahrbuch. de /download/ jb2004/ Open Source Jahrbuch 2004.pdf
http:// www. opensourcejahrbuch. de /download/ jb2004/ Open Source Jahrbuch 2004.pdf

Bibliography

//www.opensourcejahrbuch.de/download/jb2004/OpenSourceJahrbuch2004.pdf⟩ – refe-
rence download: 2011-08-29, Print & FreeWeb/PDF, ISBN 3–936427–78–X

Gerber, Aurona, Onkgopotse Molefe, a. Alta van der Merwe: Documenting Open Source
Migration Processes for Re-use; in: Proceedings of the 2010 Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists; New York,
NY, USA: ACM, 2010 (= SAICSIT ’10) ⟨URL: http://doi.acm.org/10.1145/1899503.
1899512⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 978–1–60558–950–3, pp. 75–
85

Gerlach, Carsten: Praxisprobleme der Open-Source-Lizenzierung; in: CR [Computer und
Recht], (2006), pp. 649 – 654

German, Daniel M.: Using software distributions to understand the relationship among free
and open source software projects; in: Proceedings of the Fourth International Work-
shop on Mining Software Repositories; Washington, DC, USA: IEEE Computer Society,
2007 (= MSR ’07) ⟨URL: http://dl.acm.org/citation.cfm?id=1268983.1269038⟩, Bib-
Web/PDF, ISBN 0–7695–2950–X, p. 24

German, Daniel M. a. Jesús M. González-Barahona: An Empirical Study of the Reuse of
Software Licensed under the GNU General Public License; conference contribution; In
Boldyreff et al.: Open Source Ecosystems, 2009, pp. 185–198, BibWeb/PDF

German, Daniel M. a. Ahmed E. Hassan: License Integration Patterns: Addressing License
Mismatches in Component-Based Development; in: Proceedings of the 31st International
Conference on Software Engineering; Washington, DC, USA: IEEE Computer Society,
2009 (= ICSE ’09) ⟨URL: http://dx.doi.org/10.1109/ICSE.2009.5070520⟩ – reference
download: 2011-12-28, BibWeb/PDF, ISBN 978–1–4244–3453–4, pp. 188–198

German, Daniel M., Yuki Manabe, a. Katsuro Inoue: A Sentence-Matching Method for
Automatic License Identification of Source Code Files; in: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering; New York, NY, USA: ACM,
2010 (= ASE ’10) ⟨URL: http://doi.acm.org/10.1145/1858996.1859088⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0116–9, pp. 437–446

German, Daniel M., Jens H. Webber , a. Massimiliano Di Penta: Lawful Software Engineering;
in: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research;
New York, NY, USA: ACM, 2010 (= FoSER ’10) ⟨URL: http://doi.acm.org/10.1145/
1882362.1882390⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0427–
6, pp. 129–132

Gilroy, Bernard Michael a. Tobias Volpert : Die Funktionen eines Patentsystems und ihre
Bedeutung für Unternehmensausgründungen aus Hochschulen; In Asche et al.: Open Source.
Kommerzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von Hochschulen
und Unternehmen, 2008, pp. 21–39, Print

Gobeille, Robert : The FOSSology Project; in: Proceedings of the 2008 international working
conference on Mining software repositories; New York, NY, USA: ACM, 2008 (= MSR ’08)
⟨URL: http://doi.acm.org/10.1145/1370750.1370763⟩ – reference download: 2011-12-28,
BibWeb/PDF, ISBN 978–1–60558–024–1, pp. 47–50

Godfrey, Michael a. Qiang Tu: Growth, Evolution, and Structural Change in Open Source
Software; in: Proceedings of the 4th International Workshop on Principles of Software
Evolution; New York, NY, USA: ACM, 2001 (= IWPSE ’01) ⟨URL: http://doi.acm.org/
10.1145/602461.602482⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 1–58113–
508–4, pp. 103–106

Goeminne, Mathieu a. Tom Mens: A Framework for Analysing and Visualising Open Source
Software Ecosystems; in: Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution (IWPSE); New
York, NY, USA: ACM, 2010 (= IWPSE-EVOL ’10) ⟨URL: http://doi.acm.org/10.1145/

342

http:// www. opensourcejahrbuch. de /download/ jb2004/ Open Source Jahrbuch 2004.pdf
http:// www. opensourcejahrbuch. de /download/ jb2004/ Open Source Jahrbuch 2004.pdf
http:// www. opensourcejahrbuch. de /download/ jb2004/ Open Source Jahrbuch 2004.pdf
http://doi.acm.org/10.1145/1899503.1899512
http://doi.acm.org/10.1145/1899503.1899512
http://dl.acm.org/citation.cfm?id=1268983.1269038
http://dx.doi.org/10.1109/ICSE.2009.5070520
http://doi.acm.org/10.1145/1858996.1859088
http://doi.acm.org/10.1145/1882362.1882390
http://doi.acm.org/10.1145/1882362.1882390
http://doi.acm.org/10.1145/1370750.1370763
http://doi.acm.org/10.1145/602461.602482
http://doi.acm.org/10.1145/602461.602482
http://doi.acm.org/10.1145/1862372.1862384
http://doi.acm.org/10.1145/1862372.1862384

Bibliography

1862372.1862384⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0128–
2, pp. 42–47

Goldmann, R. a. R.P. Gabriel : Innovation Happens Elsewhere. Opne Source as Business
Strategy; San Francisco: Elsevier, 2005

Gomulkiewicz, Robert W.: De-Bugging Open Source Software Licensing; in: University of
Pittsburgh Law Review, 64 (2002), pp. 75–99, BibWeb/PDF

González-Barahona, Jesús M., Joaqúın Seoane Pascual , a. Gregorio Robles: Introduction
to Free Software; coordinated by Jordi Mas Hernández and David Meǵıas Jiménez;
Oberta de Catalunya: Free Technology Academy, 2009 ⟨URL: http://www.ftacademy.
org/materials/fsm/1#1⟩ – reference download: 2012-01-20, FreeWeb/PDF

Goode, Sigi : Something for nothing: management rejection of open source software in Australia’s
top firms; in: Information & Management, 669–681 (2005), p. 42, BibWeb/PDF

Gordon, Thomas F.: Analyzing Open Source License Compatibility Issues with Carneades; in:
Proceedings of the 13th International Conference on Artificial Intelligence and Law; New
York, NY, USA: ACM, 2011 (= ICAIL ’11) ⟨URL: http://doi.acm.org/10.1145/2018358.
2018364⟩ – reference download: 2011-12-29, BIbWeb/PDF, ISBN 978–1–4503–0755–0, pp. 51–
55

Grassmuck, Volker : Open Source - Betriebssysteme für eine freiheitliche Gesellschaft; ⟨URL:
http://www.waste.informatik.hu-berlin.de/Grassmuck/Texts/OSS-Tutzing-5-00.

html⟩
Grassmuck, Volker : Freie Software. Geschichte, Dynamiken und gesellschaftliche Bezüge; Berlin,

2000

Grassmuck, Volker : Lizenzmodelle; 2000 ⟨URL: http://www.mikro.org/Events/OS/text/
lizenzen.html⟩

Grassmuck, Volker : Freie Software. Zwischen Privat- und Gemeineigentum; Themen und
Materialien; Bonn: Bundeszentrale für politische Bildung, 2002, Print, ISBN 3–89331–432–6

Green, Collin et al.: Leveraging Open-Source Software in the Design and Development Process;
in: Proceedings of the 27th International Conference Extended Abstracts on Human Factors
in Computing Systems; New York, NY, USA: ACM, 2009 (= CHI EA ’09) ⟨URL: http://
doi.acm.org/10.1145/1520340.1520433⟩ – reference download: 2012-02-01, BibWeb/PDF,
ISBN 978–1–60558–247–4, pp. 3061–3074

Green, Eric Lee: Economics of Open Source Software; 1998 ⟨URL: http://badtux.org/home/
eric/editorial/economics.php⟩

Green, Lisa a. Heather Meeker : Open Software Licenses: Part II; in: Intellectual Property
Strategist 10 (1999)

Greve, Georg C. F.: Geschichte und Philosophie des GNU Projekts; ⟨URL: http://www.gnu.
org/philosophy/greeve-clown.html⟩

Grodzinsky, F. S. a. M. C. Bottis : Private Use as Fair Use: Is it Fair? in: SIGCAS, 37 November
(2007), No. 2, pp. 11–24 ⟨URL: http://doi.acm.org/10.1145/1327325.1327326⟩ – refer-
ence download: 2011-12-29, BibWeb/PDF

Gräfe, Gernot : Open-Source-Software und Open-Source-Portale - Potentiale für die Softwareent-
wicklung in Hochschulen und den Ergebnistransfer in die Praxis; In Asche et al.: Open Source.
Kommerzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von Hochschulen
und Unternehmen, 2008, pp. 55–72, Print

Grützmacher, Malte: Open-Source-Software - die GNU General Public License / Lizenzbes-
timmungen im Umfeld des neuen Schuld- und Urhebervertragsrechts; in: ITRB (IT-
Rechtsberater), (2002), pp. 84ff

Grützmacher, Malte: Open Source Software - BSD Copyright and Apache Software. Copyright
statt Copyleft; in: ITRB, o.A. (2006), No. 5, pp. 1008–112, Copy

343

http://doi.acm.org/10.1145/1862372.1862384
http://doi.acm.org/10.1145/1862372.1862384
http://doi.acm.org/10.1145/1862372.1862384
http://www.ftacademy.org/materials/fsm/1#1
http://www.ftacademy.org/materials/fsm/1#1
http://doi.acm.org/10.1145/2018358.2018364
http://doi.acm.org/10.1145/2018358.2018364
http://www.waste.informatik.hu-berlin.de/Grassmuck/Texts/OSS-Tutzing-5-00.html
http://www.waste.informatik.hu-berlin.de/Grassmuck/Texts/OSS-Tutzing-5-00.html
http://www.mikro.org/Events/OS/text/lizenzen.html
http://www.mikro.org/Events/OS/text/lizenzen.html
http://doi.acm.org/10.1145/1520340.1520433
http://doi.acm.org/10.1145/1520340.1520433
http://badtux.org/home/eric/editorial/economics.php
http://badtux.org/home/eric/editorial/economics.php
http://www.gnu.org/philosophy/greeve-clown.html
http://www.gnu.org/philosophy/greeve-clown.html
http://doi.acm.org/10.1145/1327325.1327326

Bibliography

Guibault, Lucie a. Ot van Daalen: Unravelling the Myth around Open Source Licenses. An
Anaysis from A Dutch and European Law Perspective; The Hague: T. M. C. Asser Press,
2006 (= IT & Law, [Vol./No.] 8), Print, ISBN 978–90–6704–214–7

Gull, Daniel : Valuation of Discount Options in Software License Agreements; in: BISE, 4
(2011), pp. 221–230 ⟨URL: http://dx.doi.org/10.1007/s12599-011-0170-8⟩ – reference
download: 2012-02-09, BibWeb/PDF

Gurbani, Vijay K., Anita Garvert , a. James D. Herbsleb: Managing a Corporate Open Source
Software Asset; in: Commununications of the ACM, 53 February (2010), No. 2, pp. 155–159
⟨URL: http://doi.acm.org/10.1145/1646353.1646392⟩ – reference download: 2011-12-29,
BibWeb/PDF

Gutsche, Jörg : Ökonomische Analyse offener Software; Mannheim: Universität Mannheim,
2006, BibWeb/PDF

Gutwin, Carl , Reagan Penner , a. Kevin Schneider : Group Awareness in Distributed Software
Development; in: Proceedings of the 2004 ACM Conference on Computer Supported
Cooperative Work; New York, NY, USA: ACM, 2004 (= CSCW ’04) ⟨URL: http://
doi.acm.org/10.1145/1031607.1031621⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 1–58113–810–5, pp. 72–81

Haase, H.: Die Patentierbarkeit von Computersoftware; Hamburg, 2003

Haddad, I.: Adopting an Open Source Approach to Software Development, Distribution,
and Licensing; in: Enterprise Open Source Magazine, (2007) ⟨URL: http://opensource.
sys-con.com/read/318776.htm⟩

Haddad, Ibrahim: Open-Source Compliance; in: Linux Journal, 185 September (2009),
p. 5:1 ⟨URL: http://dl.acm.org/citation.cfm?id=1610564.1610569⟩ – reference down-
load: 2011-12-29, BibWeb/HTML

Hahn, Robert, editor : Government Policy toward Open Source Software; AEI-Brooking Joint
Centre (Org.) 2002

Hamerly, Jim, Tom Paquin, a. Susan Walton: Freeing the Source: The Story of Mozilla; In
DiBona, Ockman, a. Stone: Open Sources, 1999, pp. 197–206

Hammouda, Imed et al.: Open source legality patterns: architectural design decisions motivated
by legal concerns; in: Proceedings of the 14th International Academic MindTrek Conference:
Envisioning Future Media Environments; New York, NY, USA: ACM, 2010 (= MindTrek ’10)
⟨URL: http://doi.acm.org/10.1145/1930488.1930533⟩ – reference download: 2012-01-06,
BibWeb/PDF, ISBN 978–1–4503–0011–7, pp. 207–214

Hardaway, Donald E.: Sharing Research in the 21st Century: Borrowing a Page from Open
Source Software; in: Communications of the ACM, 48 August (2005), No. 8, pp. 125–128
⟨URL: http://doi.acm.org/10.1145/1076211.1076216⟩ – reference download: 2011-12-29,
BibWeb/PDF

Hars, Alexander a. Shaosong Ou: Working for free? Motivations for participating in open
source projects; in: International Journal of Electronic Commerce, 6 (2002), No. 3, pp. 25–39

Hauge, Oyvind et al.: An Empirical Study on Selection of Open Source Software - Preliminary
results; In Proceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, 2009, pp. 42–47 ⟨URL: http://dx.doi.org/10.
1109/FLOSS.2009.5071359⟩ – reference download: 2011-12-29, BibWeb/PDF

Hauge, Oyvind a. Sven Ziemer : Providing Commercial Open Source Software: Lessons Learned;
conference contribution; In Boldyreff et al.: Open Source Ecosystems, 2009, pp. 70–82,
BibWeb/PDF

Hawkins, R. E.: The Economics of Open Source Software in a Competitive Firm: Why Give It
Away For Free? in: Netnomics, 6 (2004), pp. 103–117

Heap, Nicholas: OSI-Referenzmodell ohne Geheimnis; translated by G & U, Flensburg;
Hannover: Heise, 1994, Print, ISBN 3–88229–045–5

344

http://dx.doi.org/10.1007/s12599-011-0170-8
http://doi.acm.org/10.1145/1646353.1646392
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/1031607.1031621
http://opensource.sys-con.com/read/318776.htm
http://opensource.sys-con.com/read/318776.htm
http://dl.acm.org/citation.cfm?id=1610564.1610569
http://doi.acm.org/10.1145/1930488.1930533
http://doi.acm.org/10.1145/1076211.1076216
http://dx.doi.org/10.1109/FLOSS.2009.5071359
http://dx.doi.org/10.1109/FLOSS.2009.5071359

Bibliography

Hecker, F.: Setting up Shop: The Business of Open Source Software; in: IEEE Software,
Jan/Feb (1999), pp. 46–61

Heffan, Ira V.: Copyleft: Licensing Collaborative Works in the Digital Age; in: Stanford
Law Review, 1997 (49), pp. 1487–1521 ⟨URL: http://www.jstor.org/stable/1229351⟩ –
reference download: 2012-02-09, BibWeb/PDF

Heise online: Deutsches Gericht bestätigt Wirksamkeit der GPL; 2004 ⟨URL: http://www.
heise,de/newsticker/meldung/49377⟩

Heise online: Der Streit um Softwarepateht; 2007 ⟨URL: http://www.heise,de/ct/

hintergrund/meldung/61230⟩
Hemel, Armijn et al.: Finding Software License Violations Through Binary Code Clone Detection;

in: Proceedings of the 8th Working Conference on Mining Software Repositories; New
York, NY, USA: ACM, 2011 (= MSR ’11) ⟨URL: http://doi.acm.org/10.1145/1985441.
1985453⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0574–7, pp. 63–
72

Henkel, Joachim: Software development in embedded Linux; In Uhr, Esswein, a. Schoop:
Wirtschaftsinformatik 2003 / Band II, 2003, pp. 81–99

Henkel, Joachim: The Jukebox Mode of Innovation; A Model of Commercial Open Source
Development; 2004 ⟨URL: http://opensource.mit.edu/papers/henkel.pdf⟩

Henkel, Joachim: Open source software from commercial firms; Tools, complements, and collec-
tive invention; in: Zeitschrift für Betriebswirtschaft, 4/2004 (2004), No. 4 Ergänzungsheft,
pp. 1–23

Henkel, Joachim: Patterns of Free Revealing; Balancing Code Sharing and Protection in
Commercial Open Source Development; 2004 ⟨URL: http://opensource.mit.edu/papers/
henkel2.pdf⟩

Henkel, Joachim: Offene Innovationsprozesse. Die kommerzielle Entwicklung von Open-Source-
Software; Wiesbaden: Deutscher Universitäts-Verlag, 2007 (= Gabler Edition Wissenschaft),
BibWeb/PDF, ISBN 978–3–8350–0978–3

Herraiz, Israel et al.: The Processes of Joining in Global Distributed Software Projects; in:
Proceedings of the 2006 International Workshop on Global Software Development for the
Practitioner; New York, NY, USA: ACM, 2006 (= GSD ’06) ⟨URL: http://doi.acm.
org/10.1145/1138506.1138513⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN
1–59593–404–9, pp. 27–33

Herraiz, Israel , Gregorio Robles, a. Jesus M. Gonzalez-Barahona: Towards Predictor Models
for large Libre Software Projects; in: Proceedings of the 2005 Workshop on Predictor
Models in Software Engineering; New York, NY, USA: ACM, 2005 (= PROMISE ’05)
⟨URL: http://doi.acm.org/10.1145/1082983.1083168⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN –159593–125–2, pp. 1–6

Herraiz, Israel , Gregorio Robles, a. Jesus M. Gonzalez-Barahona: Research Friendly Software
Repositories; in: Proceedings of the Joint International and Annual ERCIM Workshops on
Principles of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops; New
York, NY, USA: ACM, 2009 (= IWPSE-Evol ’09) ⟨URL: http://doi.acm.org/10.1145/
1595808.1595814⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–60558–678–
6, pp. 19–24

Hertel, Guido, Sven Niedner , a. Stefanie Herrmann: Motivation of Software Developers in
Open Source Projects: An Internet-based Survey of Contributors to the Linux Kernel; in:
Research Policy, 32 (2003), pp. 1159–1177

Hill, Benjamin Mako: Samir Chopra, Scott D. Dexter, Decoding Liberation: The Promise
of Free and Open Source Software; in: Minds Mach. 18 June (2008), pp. 297–299 ⟨URL:
http://dl.acm.org/citation.cfm?id=1375424.1375428⟩, ISSN 0924–6495

345

http://www.jstor.org/stable/1229351
http://www.heise,de/newsticker/meldung/49377
http://www.heise,de/newsticker/meldung/49377
http://www.heise,de/ct/hintergrund/meldung/61230
http://www.heise,de/ct/hintergrund/meldung/61230
http://doi.acm.org/10.1145/1985441.1985453
http://doi.acm.org/10.1145/1985441.1985453
http://opensource.mit.edu/papers/henkel.pdf
http://opensource.mit.edu/papers/henkel2.pdf
http://opensource.mit.edu/papers/henkel2.pdf
http://doi.acm.org/10.1145/1138506.1138513
http://doi.acm.org/10.1145/1138506.1138513
http://doi.acm.org/10.1145/1082983.1083168
http://doi.acm.org/10.1145/1595808.1595814
http://doi.acm.org/10.1145/1595808.1595814
http://dl.acm.org/citation.cfm?id=1375424.1375428

Bibliography

Hislop, Gregory W. et al.: Using Open Source sSoftware to Engage Students in Computer
Science Education; in: Proceedings of the 40th ACM technical symposium on Computer
science education; New York, NY, USA: ACM, 2009 (= SIGCSE ’09) ⟨URL: http://
doi.acm.org/10.1145/1508865.1508915⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 978–1–60558–183–5, pp. 134–135

Hissam, Scott A. et al., editors : Open Source Systems: Grounding Research; 7th IFIP WG 2.13
International Conference, OSS 2011; (= IFIP Advances in Information and Communication
Technology, [Vol./No.] 365) Heidelberg, Dordrecht, London u. NewYork: Springer, 2011,
BibWeb/PDF, ISBN 978–3–642–24418–6

Hoeren, Thomas: Anmerkungen zum Urteil vom 19.5.2004 des LG München I zur Wirksamkeit
einer GPL-Lizenz; in: CR [Computer und Recht], (2004), pp. 776–778

Hoeren, Thomas: Internetrecht; April 2011, Web/PDF? ⟨URL: http://www.uni-muenster.
de/Jura.itm/hoeren/lehre/materialien⟩

Hofmann, Susanne, Sven Pfeiffer , a. Urs Walter : Open Source School. Neue Synergien
zwischen Schule und Kiez in Gropiusstadt. Architektur als sozialer Katalysator; Berlin,
2010, BibWeb/PDF ⟨URL: http://opus.kobv.de/tuberlin/volltexte/2010/2841/pdf/
9783798322738_content.pdf⟩ – reference download: 2011-07-30

Horne, Natasha: Open Source Software Licensing: Using Copyright Law to Encourage Free
Use; in: Georgia State University Law Review, (2001), pp. 863–891

Horns, A.: Der Patentschutz für software bezogene Erfindungen im Verhätnis zur ’Open
Source’-Software; in: Zeitschrift für Rechtsinformatik, (2000) ⟨URL: http://www.jurpc.de/
aufsatz/2000223.htm⟩

Howland, John E.: Software Freedom, Open Software and the Undergraduate Computer Science
Curriculum; in: JCSC, 15 March (2000), No. 3, pp. 293–301 ⟨URL: http://dl.acm.org/
citation.cfm?id=1852563.1852604⟩ – reference download: 2011-12-29, BibWeb/PDF

Howland, John E.: Managing Computer Science Laboratories Using Open Software; in: JCSC,
16 March (2001), No. 3, pp. 117–126 ⟨URL: http://dl.acm.org/citation.cfm?id=374685.
374726⟩ – reference download: 2011-12-29, BibWeb/PDF

Hubbard, Jordan: Open Source to the Core; in: Queue, 2 (2004), pp. 24–31 ⟨URL: http:
//doi.acm.org/10.1145/1005062.1005064⟩, BibWeb/PDF

ifross: FAQ; 2011, FreeWeb/HTML ⟨URL: http://www.ifross.org/

faq-haeufig-gestellte-fragen⟩ – reference download: 2011-09-05

ifross: Ziele, Aufgaben, Geschichte; 2011, FreeWeb/HTML ⟨URL: http://www.ifross.org/
node/16⟩ – reference download: 2011-09-05

ifross: License Center; 2011 [n.y.], FreeWeb/HTML ⟨URL: http://www.ifross.org/ifross_
html/lizenzcenter-en.html⟩ – reference download: 2013-02-26

ifross et al.: Die GPL kommentiert und erklärt; Beijing, Cambridge, Farnham [etc ..]: O’Reilly,
2005, Print, ISBN 3–89721–389–3

Ilardi, Terry J.: Common OSS License Problems; n.l, 2010, FreeWeb/PDF ⟨URL: http:
//www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf⟩ – reference download:
2014-12-16

Imhorst, Christian: Die Anarchie der Hacker. Richard Stallman und die Freie-Software-Bewegung;
Marburg: Tectum Verlag, 2004, Print, ISBN 3–8288–8769–4

Izurieta, Clemente a. James Bieman: The Evolution of FreeBSD and Linux; in: Proceedings
of the 2006 ACM/IEEE international Symposium on Empirical Software Engineering; New
York, NY, USA: ACM, 2006 (= ISESE ’06) ⟨URL: http://doi.acm.org/10.1145/1159733.
1159765⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 1–59593–218–6, pp. 204–211

Jackson, Darla W.: Thinking about Technology . . . Watson, Answer Me This: Will You Make
Librarians Obsolete or Can I Use Free and Open Source Software and Cloud Computing

346

http://doi.acm.org/10.1145/1508865.1508915
http://doi.acm.org/10.1145/1508865.1508915
http://www.uni-muenster.de/Jura.itm/hoeren/lehre/materialien
http://www.uni-muenster.de/Jura.itm/hoeren/lehre/materialien
http:// opus. kobv. de/ tuberlin/ volltexte/ 2010/ 2841/ pdf/ 9783798322738_content.pdf
http:// opus. kobv. de/ tuberlin/ volltexte/ 2010/ 2841/ pdf/ 9783798322738_content.pdf
http://www.jurpc.de/aufsatz/2000223.htm
http://www.jurpc.de/aufsatz/2000223.htm
http://dl.acm.org/citation.cfm?id=1852563.1852604
http://dl.acm.org/citation.cfm?id=1852563.1852604
http://dl.acm.org/citation.cfm?id=374685.374726
http://dl.acm.org/citation.cfm?id=374685.374726
http://doi.acm.org/10.1145/1005062.1005064
http://doi.acm.org/10.1145/1005062.1005064
http://www.ifross.org/faq-haeufig-gestellte-fragen
http://www.ifross.org/faq-haeufig-gestellte-fragen
http://www.ifross.org/node/16
http://www.ifross.org/node/16
http://www.ifross.org/ifross_html/lizenzcenter-en.html
http://www.ifross.org/ifross_html/lizenzcenter-en.html
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://doi.acm.org/10.1145/1159733.1159765
http://doi.acm.org/10.1145/1159733.1159765

Bibliography

to Ensure a Bright Future? in: Law Library Journal, 103 (2011), No. 3, pp. 497–504,
BibWeb/PDF

Jacobs, Stephen, Clif Kussmaul , a.Mihaela Sabin: Free and Open Source Software in Computing
Education; in: Proceedings of the 2011 Conference on Information Technology Education;
New York, NY, USA: ACM, 2011 (= SIGITE ’11) ⟨URL: http://doi.acm.org/10.1145/
2047594.2047606⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–1017–
8, pp. 41–42

Jaeger, Till : Copyright oder Copyleft; in: Computerwoche Spezial, 27 (2000), No. 4, p. 36
⟨URL: http://www.ifross,de/ifross_html/art6.html⟩

Jaeger, Till : GPL und Haftung: Ohne Verantwortung? in: Linux-Magazin, (2000), No. 5,
pp. 134ff

Jaeger, Till : Die GPL kommentiert und erklärt; hrsg; v. ifross; Köln, 2005

Jaeger, Till a. Axel Metzger : Open Source Software und deutsches Urheberrecht; in: GRUR
Int. (1999), pp. 839ff

Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software; 1st edition. München: Verlag C.H. Beck, 2002, Print, ISBN 3406484026

Jaeger, Till a. Axel Metzger : Open Content-Lizenzen nach deutschem Recht; in: MultiMedia
und Recht, (2003), pp. 431ff

Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software; 2nd edition. München: Verlag C.H. Beck, 2006, Print, ISBN 3406538037

Jaeger, Till a. Axel Metzger : Die neue Version 3 der GNU general Public License; in: GRUR
(Gerwerblicher Rechtsschutz und Urheberrecht), (2008), pp. 130–137

Jaeger, Till a. Axel Metzger : Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software; 3rd edition. München: Verlag C.H. Beck, 2011, Print

Jaeger, Till a. Carsten Schulz : Gutachten zu ausgewählten rechtlichen Aspekten der Open
Source Software - im Rahmen des Projektes ’NOW - Nutzung des Open Source-Konzepts in
Wirtschaft und Industrie’; Feb 2005

Janamanchi, Balaji et al.: The State and Profile of Open Source Software Projects in health and
medical informatics; in: International Journal of Medical Informatics, 78 (2009), No. 7, pp. 457–
472 ⟨URL: http://www.sciencedirect.com/science/article/pii/S1386505609000318⟩ –
reference download: 2012-02-09, BibWeb/PDF

Jansson, Kurt , Patrick Danowski , a. Jakob Voss: Wikipedia: Kreative Anarchie für den freien
Informations- und Wissensaustausch; In Drossou, Krempl, a. Poltmann: Die wunderbare
Wissensvermehrung, 2006, pp. 159–167, Print

Jendroska, Dirk : Arbeitsgestaltung in der Softwareentwicklung: Ein empirischer Vergleich sub-
jektiver Arbeitsmerkmale in proprietären und Open Source Softwareprojekten; Dissertation;
Münster: Philosophischen Fakultät der Westfälischen Wilhelms Universität zu Münster, 2010,
BibWeb/PDF

Johnson, Justin P.: Open Source Software: Private Provision of a Public Good; in: Journal of
Economics & Management Strategy, 11 (2002), No. 4, pp. 637–663

Johnson, Michael K.: Licenses and Copyright; in: Linux Journal, 29 September (1996),
p. 3:1 ⟨URL: http://dl.acm.org/citation.cfm?id=326350.326353⟩ – reference download:
2011-12-28, BibWeb/HTML

Johnson-Eilola, Johndan: Open Source Basics: Definitions, Models, and Questions; in: Proceed-
ings of the 20th Annual International Conference on Computer Documentation; New York,
NY, USA: ACM, 2002 (= SIGDOC ’02) ⟨URL: http://doi.acm.org/10.1145/584955.
584967⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–543–2, pp. 79–83

Johri, Aditya, Oded Nov , a. Raktim Mitra: “Cool” or “Monster”? Company Takeovers and Their
Effect on Open Source Community Participation; in: Proceedings of the 2011 iConference;

347

http://doi.acm.org/10.1145/2047594.2047606
http://doi.acm.org/10.1145/2047594.2047606
http://www.ifross,de/ifross_html/art6.html
http://www.sciencedirect.com/science/article/pii/S1386505609000318
http://dl.acm.org/citation.cfm?id=326350.326353
http://doi.acm.org/10.1145/584955.584967
http://doi.acm.org/10.1145/584955.584967

Bibliography

New York, NY, USA: ACM, 2011 (= iConference ’11) ⟨URL: http://doi.acm.org/10.
1145/1940761.1940806⟩, ISBN 978–1–4503–0121–3, pp. 327–331

Jones, Paul : Open (Source)ing the Doors for Contributor-run Digital Libraries; in: Communi-
cations of the ACM, 44 May (2001), No. 1, pp. 45–46 ⟨URL: http://doi.acm.org/10.1145/
374308.374337⟩ – reference download: 2011-12-49, BibWeb/PDF

Karels, Michael J.: Commercializing Open Source Software; in: Queue, 1 July/August
(2003), pp. 46–55 ⟨URL: http://doi.acm.org/10.1145/945074.945125⟩ – reference down-
load: 2011-12-28, BibWeb/PDF

Karus, Siim a. Harald Gall : A Study of Language Usage Evolution in Open Source Software; in:
Proceedings of the 8th Working Conference on Mining Software Repositories; New York, NY,
USA: ACM, 2011 (= MSR ’11) ⟨URL: http://doi.acm.org/10.1145/1985441.1985447⟩ –
reference download: 2012-02-01, BibWeb/PDF, ISBN 978–1–4503–0574–7, pp. 13–22

Kelty, Christopher M : Free Software/Free Science; in: First Monday, 6 (2001), No. 12, p. o.A.

Kelty, Christopher M.: Two Bits: The cultural Significance of Free Software; ???, 2008

Kennedy, D. M.: A primer on open source licensing legal issues: copyright, copyleft and
copyfuture; 2001 ⟨URL: http://www.denniskennedy.com/opensourcedmk.pdf⟩

Kern, W. a. F. Rammig : Eine Einführung zum Open Source Konzept aus Sicht der
wirtschaftlichen und rechtlichen Aspekte; Paderborn; in: C-LAB Report, 2 (2003), vielleicht
Buch?

Kersken, Sasche: Apache 2.2. Das umfassende Handbuch; 3rd, refreshed a. expanded edition;
Bonn: Galileo Press, 2009, Print, ISBN 978–8362–1325–7

Keuffel, Warren: License Overload; in: Software Development, 14 (2006), No. 2, p. 56, Copy

Keßler, Steffen a. Paul Alpar : Customization of Open Source Software in Companies; 5th IFIP
WG 2.13 International Conference on Open Source Systems, OSS 2009 Skövde, Sweden, June
3-6, 2009; In Boldyreff et al.: Open Source Ecosystems, 2009, pp. 129–142, BibWeb/PDF

Kienle, Holger M. et al.: Intellectual Property Aspects of Web Publishing; in: Proceedings of
the 22nd annual international conference on Design of communication: The engineering of
quality documentation; New York, NY, USA: ACM, 2004 (= SIGDOC ’04) ⟨URL: http://
doi.acm.org/10.1145/1026533.1026569⟩ – reference download: 2011-12-28, BibWeb/PDF,
ISBN 1–58113–809–1, pp. 136–144

Kilamo, Terhi : The Community Game: Learning Open Source Development Through Partici-
patory Exercise; in: Proceedings of the 14th International Academic MindTrek Conference:
Envisioning Future Media Environments; New York, NY, USA: ACM, 2010 (= MindTrek ’10)
⟨URL: http://doi.acm.org/10.1145/1930488.1930500⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–4503–0011–7, pp. 55–60

Kirschner, Bryan: Building a Balanced Scorecard for Open Source Policy and Strategy: A Case
Study of the Microsoft Experience; in: Proceedings of the 2nd International Conference on
Theory and Practice of Electronic Governance; New York, NY, USA: ACM, 2008 (= ICEGOV
’08) ⟨URL: http://doi.acm.org/10.1145/1509096.1509142⟩ – reference download: 2011-
12-29, BibWeb/PDF, ISBN 978–1–60558–386–0, pp. 226–231

Kitcat, Jason: Source Availability and E-voting: An Advocate Recants; in: Communications
of the ACM, 47 October (2004), No. 10, pp. 65–67 ⟨URL: http://doi.acm.org/10.1145/
1022594.1022625⟩ – reference download: 2011-12-29, BibWeb/PDF

Klemm, Martin: GPL Version 3.0; in: Innovation und internationale Rechtspraxis, o.A. (2009),
pp. 363–381, Copy

Koch, Frank A.: Urheber- und kartellrechtliche Aspekte der Nutzung von Open-Source-Software
(I); in: CR [Computer und Recht], (2000), pp. 273ff

Koch, Frank A.: Urheber- und kartellrechtliche Aspekte der Nutzung von Open-Source-Software
(II); in: CR [Computer und Recht], (2000), p. 333

348

http://doi.acm.org/10.1145/1940761.1940806
http://doi.acm.org/10.1145/1940761.1940806
http://doi.acm.org/10.1145/374308.374337
http://doi.acm.org/10.1145/374308.374337
http://doi.acm.org/10.1145/945074.945125
http://doi.acm.org/10.1145/1985441.1985447
http://www.denniskennedy.com/opensourcedmk.pdf
http://doi.acm.org/10.1145/1026533.1026569
http://doi.acm.org/10.1145/1026533.1026569
http://doi.acm.org/10.1145/1930488.1930500
http://doi.acm.org/10.1145/1509096.1509142
http://doi.acm.org/10.1145/1022594.1022625
http://doi.acm.org/10.1145/1022594.1022625

Bibliography

Koch, Frank A.: Probleme beim Wechsel zur neuen Version 3 der General Public License (Teil
1); in: ITRB (IT-Rechtsberater), (2007), pp. 261–263

Koch, Frank A.: Probleme beim Wechsel zur neuen Version 3 der General Public License (Teil
2); in: ITRB (IT-Rechtsberater), (2007), pp. 285–288

Koeglin, Olaf : Entfesseltes Wissen - Creative Commons und der Versuch, das GPL-Prinzip für
jede Schöpfung anzuwenden; in: Linux-Magazin, (2003), No. 10, p. 70

Koeglin, Olaf : Die Nutzung von Open Source Software unter neuen GPL Versionen nach der
’any later Version’-Klausel; in: CR [Computer und Recht], (2008), pp. 137–143

Koeglin, Olaf a. Axel Metzger : Urheber- und Lizenzrecht im Bereich von Open-Source-Software;
in Open Source Jahrbuch 2004; 2004, pp. 293ff

Koenig, J.: Seven Open Source Business Strategies for mCompetitive Advantage; in: IT
Manager’s Journal, (2004) ⟨URL: http://management.itmanagersjournal.com/article?
sid=04/05/10/2052216⟩

Koglin, Olaf : Opensourcerecht. Die urheber- und schuldrechtlichen Beziehungen zwischen
Lizenzgeber und Lizenznehmer bei Open Source Software am Beispiel der General Public
License (GPL); Frankfurt am Main: Peter Lang, 2007 (= Schriften zum Wirtschafts- und
Medienrecht, Steuerrecht und Zivilprozeßrecht, [Vol./No.] 31), Print, ISBN 978–3–631–56308–
3

Kogut, B. a. A. Metiu: Open Source Software Development and Distributed Innovation; in:
Oxford Review of Economic Policy, 17 (2001), pp. 248–264

Koponen, Timo a. Virpi Hotti : Open Source Software Maintenance Process Framework; In
Proceedings of the Fifth Workshop on Open Source Software Engineering, 2005, pp. 4:1–4:5
⟨URL: http://doi.acm.org/10.1145/1082983.1083265⟩ – reference download: 2011-12-28,
BibWeb/PDF

Kreutzer, Till : Anmerkungen zum Urteil vom 19.5.2004 des LG München I zur Wirksamkeit
einer GPL-Lizenz; in: MultiMedia und Recht, (2004), pp. 695–698

Kreutzer, Till : Software und Spiele kopieren[:] Das Lizenzmodell entscheidet; In Djordjevic et al.:
Urheberrecht im Alltag, 2008, pp. 29–33, Print

Kreutzer, Till : Software veröffentlichen[:] Wem gehören die Rechte? In Djordjevic et al.:
Urheberrecht im Alltag, 2008, pp. 163–167, Print

Kreutzer, Till : Softwarelizenzen - Beispiele[:] Und welche Lizenz nehme ich jetzt? In Djordje-
vic et al.: Urheberrecht im Alltag, 2008, pp. 176–179, Print

Krishnamurthya, Sandeep a. Arvind K. Tripathi : Monetary donations to an open source software
platform; in: Research Policy, 38 (2009), pp. 404–414

Krogstie, Birgit R.: Power Through Brokering: Open Source Community Participation in
Software Engineering Student Projects; in: Proceedings of the 30th International Conference
on Software Engineering; New York, NY, USA: ACM, 2008 (= ICSE ’08) ⟨URL: http://
doi.acm.org/10.1145/1368088.1368201⟩ – reference download: 2011-12-29, BIbWeb/PDF,
ISBN 978–1–60558–079–1, pp. 791–800

Kugler, Petra: Coordinating Innovation: Evidence from Open Source Development; Dissertation;
St. Gallen: University of. St. Gallen, 2005, Print

Kuhlen, Rainer : Open Innovation: Teil einer nachhaltigen Wissensökonomie; In Drossou,
Krempl, a. Poltmann: Die wunderbare Wissensvermehrung, 2006, pp. 12–23, Print

Kuhn, Bradley M. et al.: Copyleft and the GNU General Public License: A Comprehen-
sive Tutorial and Guide; n.l, 2014, FreeWeb/PDF ⟨URL: http://copyleft.org/guide/
comprehensive-gpl-guide.pdf⟩ – reference download: 2014-12-15

Kumar, Vineet , Brett R. Gordon, a. Kannan Srinivasan: Competitive Strategy for Open Source
Software; in: MARKETING SCIENCE, 30 (2011), No. 6, pp. 1066–1078, BibWeb/PDF

Käs, Simone: Rethinking industry practice. The emergence of openness in the embedded
component industry; München: Pro BUSINESS, 2008, Print, ISBN 978–3–86805–256–5

349

http://management.itmanagersjournal.com/article?sid=04/05/10/2052216
http://management.itmanagersjournal.com/article?sid=04/05/10/2052216
http://doi.acm.org/10.1145/1082983.1083265
http://doi.acm.org/10.1145/1368088.1368201
http://doi.acm.org/10.1145/1368088.1368201
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf

Bibliography

Lacy, Sarah: Open Source: Now It’s an Ecosystem; 2005 ⟨URL: http://www.businessweek.
com/technology/content/oct2005/tc2005103_0519_tc_218.htm⟩

Lakhani, Karim R. a. Eric Hippel : How Open Source software works: ”Free” user-to-user
assistance; 2002, MIT Sloan School of Management Working Paper

Lakhani, Karim R. a. Robert G. Wolf : Why Hackers Do What They Do: Understanding Moti-
vation Effort in Free/Open Source Software Projects; (= MIT Sloan School of Management
Working, Paper 4425-03), 2003

Laroque, Chrstoph, Andre Döring , a. Thorsten Timm: ’Give or Let Buy’: Kritische Überlegun-
gen eines Software-Ingeneurs zur Veröffentlichung von Software als Open-Source-Projekte;
In Asche et al.: Open Source. Kommerzialisierungsmöglichkeiten und Chancen für die Zusam-
menarbeit von Hochschulen und Unternehmen, 2008, pp. 155–166, Print

Lavazza, Luigi et al.: Predicting OSS Trustworthiness on the Basis of Elementary Code Sssess-
ment; in: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement; New York, NY, USA: ACM, 2010 (= ESEM ’10)
⟨URL: http://doi.acm.org/10.1145/1852786.1852834⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–4503–0039–1, pp. 36:1–36:4

Lawrie, Tony a. Cristina Gacek : Issues of Dependability in Open Source Software Development;
in: SIGSOFT Software Engineering Notes, 27 May (2002), No. 3, pp. 34–37 ⟨URL: http:
//doi.acm.org/10.1145/638574.638584⟩

Lee, Samuel , Nina Moisa, a. Marco Weiss. An Economic Analysis : Open Source as a Signalling
Device; Frankfurt a.M.: Goethe-University Frankfur/Main, 2003 (= Working Paper Series:
Finance and Accounting, [Vol./No.] 102), BibWeb/PDF

Lee, Samuel , Nina Moisa, a. Marco Weiss : Conditions for Open Source as a Signalling Device;
Frankfurt a.M.: Goethe-University Frankfur/Main, 2004 (= Working Paper Series: Finance
and Accounting), BibWeb/PDF

Lejeune, Mathias: Rechtsprobleme bei der Lizenzierung von Open Source Software nach der
GNU GPL; in: ITRB (IT-Rechtsberater), 1 (2003), pp. 10–12

Lelli, Francesco a. Mehdi Jazayeri : Community Support for Software Development in Small
Groups: the Initial Steps; in: Proceedings of the 2nd international workshop on Social
software engineering and applications; New York, NY, USA: ACM, 2009 (= SoSEA ’09)
⟨URL: http://doi.acm.org/10.1145/1595836.1595840⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–60558–682–3, pp. 15–22

Lemley, Mark A. a. Ziv Shafir : Who Chooses Open-Source Software? in: University of Chicago
Law Review, 78 (2011), pp. 139–163, BibWeb/PDF

Lenarcic, John a. Eric C. Mousset : The Open Source Singularity: A Postmodernist View; in:
Selected papers from conference on Computers and philosophy - Volume 37; Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003 (= CRPIT ’03) ⟨URL:
http://dl.acm.org/citation.cfm?id=1082145.1082157⟩ – reference download: 2011-12-
28, BibWeb/PDF, ISBN 1–920–68219–8, pp. 73–77

Lerner, Josh a. Jean Tirole: The open source movement: Key research questions; in: European
Economic Review, 45 (2001), pp. 819–826, BibWeb/PDF

Lerner, Josh a. Jean Tirole: The Scope of Open Source Licensing; in: JLEO, 21 (2005), No. 1,
pp. 20–56, BibWeb/PDF

Lerner, Joshua a. Jean Tirole: Some simple economics of Open Source; in: Journal of Industrial
Economics, 50 (2002), No. 2, pp. 197–234

Levy, S.: Hackers; USA: Penguin, 2001

Li, Yan, Chuan Hoo Tan, a. Hock Hai Teo: Firm-Specificity and Organizational Learning-
related Scale on Investment in Internal Human Capital for Open Source Software Adoption;
in: Proceedings of the 2008 ACM SIGMIS CPR Conference on Computer Personnel Doctoral

350

http://www.businessweek.com/technology/content/oct2005/tc2005103_0519_tc_218.htm
http://www.businessweek.com/technology/content/oct2005/tc2005103_0519_tc_218.htm
http://doi.acm.org/10.1145/1852786.1852834
http://doi.acm.org/10.1145/638574.638584
http://doi.acm.org/10.1145/638574.638584
http://doi.acm.org/10.1145/1595836.1595840
http://dl.acm.org/citation.cfm?id=1082145.1082157

Bibliography

Consortium and Research; New York, NY, USA: ACM, 2008 (= SIGMIS CPR ’08)
⟨URL: http://doi.acm.org/10.1145/1355238.1355244⟩ – reference download: 2012-02-01,
BibWeb/PDF, ISBN 978–1–60558–069–2, pp. 22–29

Li, Yan et al.: Motivating Open Source Software Developers: Influence of Transformational
and Transactional Leaderships; in: Proceedings of the 2006 ACM SIGMIS CPR Confer-
ence on Computer Personnel Research: Forty Four Years of Computer Personnel Research:
Achievements, Challenges & the Future; New York, NY, USA: ACM, 2006 (= SIGMIS
CPR ’06) ⟨URL: http://doi.acm.org/10.1145/1125170.1125182⟩ – reference download:
2011-12-29, BibWeb/PDF, ISBN 1–59593–349–2, pp. 34–43

Li, Yan et al.: Open Source Software Adoption: Motivations of Adopters and Amotivations of
Non-adopters; in: SIGMIS Database, 42 May (2011), No. 2, pp. 76–94 ⟨URL: http://doi.
acm.org/10.1145/1989098.1989103⟩ – reference download: 2011-12-29, BibWeb/PDF

Li, Yung-Ming , Jhih-Hua Jhang-Li , a. Yen-Chun Liu: Optimal Strategies of IT Consulting
Firms: The Impact of License Fee and Open Source; in: Proceedings of the 10th International
Conference on Electronic Commerce; New York, NY, USA: ACM, 2008 (= ICEC ’08) ⟨URL:
http://doi.acm.org/10.1145/1409540.1409594⟩ – reference download: 2011-12-29, ISBN
978–1–60558–075–3, pp. 40:1–40:7

Lin, Yi-Hsuan et al.: Open Source Licenses and the Creative Commons Framework: License
Selection and Comparison; in: JISE, 22 (2006), pp. 1–17, BibWeb/PDF

Lin, Yu-Wei a. Enrico Zini : Free/libre open source software implementation in schools:
Evidence from the field and implications for the future; in: Computers & Education, 50
(2008), No. 3, pp. 1092–1102 ⟨URL: http://www.sciencedirect.com/science/article/
pii/S0360131506001722⟩, BibWeb/PDF, ISSN 0360–1315

Lindman, J., M. Rossi , a. A. Puustell : Matching Open Source Software Licenses with Corre-
sponding Business Models; in: Software, IEEE, 28 july-aug. (2011), No. 4, pp. 31 –35, ISSN
0740–7459

Lindman, Juho, Juha-Pekka Juutilainen, a. Matti Rossi : Beyond the Business Model: In-
centives for Organizations to Publish Software Source Code; conference contribution; In
Boldyreff et al.: Open Source Ecosystems, 2009, pp. 47–56, BibWeb/PDF

Lovett, Jayne: Open Source - A Practical Solution; in: Proceedings of the 35th Annual
ACM SIGUCCS Fall Conference; New York, NY, USA: ACM, 2007 (= SIGUCCS ’07)
⟨URL: http://doi.acm.org/10.1145/1294046.1294099⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–59593–634–9, pp. 221–223

Lundell, Björn, Brian Lings, a. Edvin Lindqvist : Open source in Swedish companies: where
are we? in: Information Systems Journal, 20 (2010), p. 519–535, BibWeb/PDF

Lutterbeck, Bernd , Matthias Baerwolff , a. Robert A. Gehring, editors: Open Source
Jahrbuch 2006. Zwischen Softwareentwicklung und Gesellschaftsmodell; Berlin: Leh-
manns Media, 2006 ⟨URL: http://www.opensourcejahrbuch.de/download/jb2006/

OpenSourceJahrbuch2006_online.pdf⟩ – reference download: 2011-10-17, Print & Free-
Web/PDF, ISBN 3–86541–135–5

Lutterbeck, Bernd , Matthias Baerwolff , a. Robert A. Gehring, editors: Open Source
Jahrbuch 2007. Zwischen Softwareentwicklung und Gesellschaftsmodell; Berlin: Leh-
manns Media, 2007 ⟨URL: http://www.opensourcejahrbuch.de/download/jb2007/

OpenSourceJahrbuch2007_online.pdf⟩ – reference download: 2011-10-17, Print & Free-
Web/PDF, ISBN 978–3–86541–191–4

Lutterbeck, Bernd , Matthias Baerwolff , a. Robert A. Gehring, editors: Open Source Jahrbuch
2008. Zwischen Softwareentwicklung und Gesellschaftsmodell; Berlin: Lehmanns Media, 2008
⟨URL: http://www.opensourcejahrbuch.de/download/jb2008/osjb08.pdf⟩ – reference
download: 2011-10-17, Print & FreeWeb/PDF, ISBN 978–3–86541–271–3

351

http://doi.acm.org/10.1145/1355238.1355244
http://doi.acm.org/10.1145/1125170.1125182
http://doi.acm.org/10.1145/1989098.1989103
http://doi.acm.org/10.1145/1989098.1989103
http://doi.acm.org/10.1145/1409540.1409594
http://www.sciencedirect.com/science/article/pii/S0360131506001722
http://www.sciencedirect.com/science/article/pii/S0360131506001722
http://doi.acm.org/10.1145/1294046.1294099
http://www.opensourcejahrbuch.de/ download/ jb2006/ Open Source Jahrbuch 2006_online.pdf
http://www.opensourcejahrbuch.de/ download/ jb2006/ Open Source Jahrbuch 2006_online.pdf
http://www.opensourcejahrbuch.de/ download/ jb2007/ Open Source Jahrbuch 2007_online.pdf
http://www.opensourcejahrbuch.de/ download/ jb2007/ Open Source Jahrbuch 2007_online.pdf
http://www.opensourcejahrbuch.de /download/ jb2008/ osjb08.pdf

Bibliography

Lutterbeck, Bernd a. Robert A. Gehring Matthias Bärwolff , editors: Open Source Jahrbuch;
Berlin: Lehmanns Media, 2005 ⟨URL: http://...mitaufnehmen..⟩

Maaß, C a. E. Schern: Softwarepatente; in: Das Wirtschaftsstudium, 33 (2004), No. 10,
pp. 1026–1028

Maaß, C. a. E. Schern: Software-Lizenzierung; in: Das Wirtschaftsstudium, 34 (2005), No. 2,
pp. 185–188

Maaß, Christian: Zur Bedeutung des Urheber- und Patanterechts in der quelloffenen Software-
entwicklung; In Asche et al.: Open Source. Kommerzialisierungsmöglichkeiten und Chancen
für die Zusammenarbeit von Hochschulen und Unternehmen, 2008, pp. 41–54, Print

MacCormack, A., Risnack J , a. C. Y. Baldwin: Exploring the Structure of Complex Software
Design: An Empricial Study of Open Source and Proprietary Code; in: Management Science,
52 (2006), pp. 1015–1030

Mahler, Marcus: Open Source Software: The Success of an Alterntaive Intellectual Property
Incentive Paradigm; in: Fordham Intellectual Property, Media & Entertainmeint Law Journal,
21 (2000), pp. 619–646

Maldonado, Edgar : The Process of Introducing FLOSS in the Public Administration: The Case
of Venezuela; in: JAIS, 11 (2010), No. 11, pp. 756–783, BibWeb/PDF

Manabe, Yuki , Yasuhiro Hayase, a. Katuro Inoue: Evolutional Analysis of Licenses in FOSS; in:
Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE); New York, NY, USA: ACM, 2010
(= IWPSE-EVOL ’10) ⟨URL: http://doi.acm.org/10.1145/1862372.1862391⟩ – reference
download: 2011-12-28, BibWeb/PDF, ISBN 978–1–4503–0128–2, pp. 83–87

Mancinelli, Fabio et al.: Managing the Complexity of Large Free and Open Source Package-Based
Software Distributions; in: Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering; Washington, DC, USA: IEEE Computer Society,
2006 ⟨URL: http://dl.acm.org/citation.cfm?id=1169218.1169319⟩, ISBN 0–7695–2579–
2, pp. 199–208

Mann, Florian et al.: Open Access Publishing In Science; in: Communications of the ACM, 52
March (2009), pp. 135–139 ⟨URL: http://doi.acm.org/10.1145/1467247.1467279⟩

Mannaert, Herwig a. Kris Ven: The Use of Open Source Software Platforms by Independent
Software Vendors: Issues and Opportunities; In Proceedings of the Fifth Workshop on
Open Source Software Engineering, 2005, pp. 7:1–7:4 ⟨URL: http://doi.acm.org/10.1145/
1082983.1083266⟩ – reference download: 2011-12.29, BibWeb/PDF

Marly, Jochen: Praxishandbuch Softwarerecht; 5th edition. München: Beck, 2009

Marmorstein, Robert : Open Source Contribution As An Effective Software Engineering Class
Project; in: Proceedings of the 16th Annual Joint Conference on Innovation and Technology
in Computer Science Education; New York, NY, USA: ACM, 2011 (= ITiCSE ’11)
⟨URL: http://doi.acm.org/10.1145/1999747.1999823⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–4503–0697–3, pp. 268–272

Martins Melo, Felipe a. Pereira, Jr.: A Component-Based Open-Source Framework for General-
Purpose Recommender Systems; in: Proceedings of the 14th international ACM Sigsoft
symposium on Component based software engineering; New York, NY, USA: ACM,
2011 (= CBSE ’11) ⟨URL: http://doi.acm.org/10.1145/2000229.2000239⟩ – reference
download: 2011-12-28, BibWeb/PDF, ISBN 978–1–4503–0723–9, pp. 67–72

McAllister, Neil : Licence to Profit [. Hybrid Open Source Licensing]; in: New Architect and
Web Techniques (www.newarchitectmag.com), 8 (2003), p. np., Copy

McGowan, D.: Legal Implications of Open Source Software; in: University Illinois Law Review,
(2001), pp. 241–304

McGowan, David : The Tory Anarchism of F/OSS Licensing; in: University of Chicago Law
Review, 78 (2011), pp. 207–223, BibWeb/PDF

352

http://...mitaufnehmen..
http://doi.acm.org/10.1145/1862372.1862391
http://dl.acm.org/citation.cfm?id=1169218.1169319
http://doi.acm.org/10.1145/1467247.1467279
http://doi.acm.org/10.1145/1082983.1083266
http://doi.acm.org/10.1145/1082983.1083266
http://doi.acm.org/10.1145/1999747.1999823
http://doi.acm.org/10.1145/2000229.2000239

Bibliography

McInerney, Paul-Brian: Technology Movements and the Politics of Free/Open Source Software;
in: Science, Technology & Human Values, 34 (2009), No. 2, pp. 206–233 ⟨URL: http:
//sth.sagepub.com/content/34/2/206.abstract⟩, BibWeb/PDF

Megias, David et al.: Free Technology Academy: a European initiative for distance education
about Free Software and Open Standards; in: Proceedings of the 14th annual ACM SIGCSE
conference on Innovation and technology in computer science education; New York, NY, USA:
ACM, 2009 (= ITiCSE ’09) ⟨URL: http://doi.acm.org/10.1145/1562877.1562904⟩ –
reference download: 2011-12-28, BibWeb/PDF, ISBN 978–1–60558–381–5, pp. 70–74

Meretz, Stefan: Linux & Co : freie Software - Ideen für eine andere Gesellschaft; Neu-Ulm:
???, 2000

Metzger, Axel : Frei ab 18 Jahre; in: Linux-Magazin, (2000), No. 11, pp. 52ff

Metzger, Axel : Anmerkungen zum Urteil vom 19.5.2004 des LG München I zur Wirksamkeit
einer GPL-Lizenz; in: CR [Computer und Recht], (2004), pp. 778–780

Michaelson, Jay : There’s no such thing as a Free (Software) Lunch; in: Queue, 2 May (2004),
pp. 40–47 ⟨URL: http://doi.acm.org/10.1145/1005062.1005066⟩ – reference download:
2011-12-29, BibWeb/PDF

Microsoft : Einige Fragen zur GNU General Public License (GPL), die sich jedes Unternehmen
stellen sollte; in: ??? (2001)

Mitre: Use of Free and Open Source Software (FOSS) in the U.S. Department of Defense; ⟨URL:
http://www.egovos.org/pdf/dodfoss.pdf⟩

MLA: MLA Handbook for Writers of Research Papers; 7th edition. New York: The Modern
Language Association of America, 2009, Print, ISBN 978–1–60329–024–1

Mockus, Audris, Roy T. Fielding , a. James Herbsleb: A Case Study of Open Source Software
Development: the Apache Server; in: Proceedings of the 22nd international conference
on Software engineering; New York, NY, USA: ACM, 2000 (= ICSE ’00) ⟨URL: http:
//doi.acm.org/10.1145/337180.337209⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 1–58113–206–9, pp. 263–272

Mockus, Audris, Roy T. Fielding , a. James D. Herbsleb: Two Case Studies of Open Source
Software Development: Apache and Mozilla; in: Transactions on Software Engineering
Methodology, 11 July (2002), No. 3, pp. 309–346 ⟨URL: http://doi.acm.org/10.1145/
567793.567795⟩

Moglen, Even a. Mishi Choudhary : Software Freedom Law Center Guide to GPL Com-
pliance, 2nd Edition; 2014, FreeWeb/HTML ⟨URL: https://www.softwarefreedom.

org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html⟩ – reference down-
load: 2014-12-15

Moglen, Peter : Anarchism triumphant: Free Software and the Death of Copyright; in: First
Monday, 48 (1999), p. o.A.

Monden, A. et al.: Guilty or Not Guilty: Using Clone Metrics to Determine Open Source
Licensing Violations; in: Software, IEEE, 28 march-april (2011), No. 2, pp. 42 –47, ISSN
0740–7459

Montante, Robert : A Survey of Portable Software; in: JCSC, 24 January (2009), No. 3, pp. 19–
24 ⟨URL: http://dl.acm.org/citation.cfm?id=1409873.1409879⟩ – reference download:
2011-12-29, BibWeb/PDF

Moody, Glyn: Die Software-Rebellen. Die Erfolgsstory von Linus Torvalds und Linux; transl.
from the American [edition, 2000] by Annemarie Pumpering; Landsberg am Lech: verlag
moderne industrie, 2001, Print, ISBN 3–478–38730–2

Moody, Glyn: Rebel Code: Linux And The Open Source Revolution; [New York]: Basic Books,
2002, Print, ISBN 978–0738206707

353

http://sth.sagepub.com/content/34/2/206.abstract
http://sth.sagepub.com/content/34/2/206.abstract
http://doi.acm.org/10.1145/1562877.1562904
http://doi.acm.org/10.1145/1005062.1005066
http://www.egovos.org/pdf/dodfoss.pdf
http://doi.acm.org/10.1145/337180.337209
http://doi.acm.org/10.1145/337180.337209
http://doi.acm.org/10.1145/567793.567795
http://doi.acm.org/10.1145/567793.567795
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
http://dl.acm.org/citation.cfm?id=1409873.1409879

Bibliography

Moody, Glyn: Interview with Eric Raymond; in: Linux Journal, 165 January (2008), p. 5:1 ⟨URL:
http://dl.acm.org/citation.cfm?id=1344189.1344194⟩ – reference download: 2011-12-
29, BibWeb/HTML

Morasca, Sandro, Davide Taibi , a. Davide Tosi : Towards Certifying the Testing Process of
Open-Source Software: New Challenges or Old Methodologies? In Proceedings of the 2009
ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, 2009, pp. 25–30 ⟨URL: http://dx.doi.org/10.1109/FLOSS.2009.5071356⟩ –
reference download: 2011-12-29, BibWeb/PDF

Morasca, Sandro, Davide Taibi , a. Davide Tosi : Towards certifying the testing process of
Open-Source Software: New challenges or old methodologies? in: Proceedings of the 2009
ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development; Washington, DC, USA: IEEE Computer Society, 2009 (= FLOSS ’09) ⟨URL:
http://dx.doi.org/10.1109/FLOSS.2009.5071356⟩, ISBN 978–1–4244–3720–7, pp. 25–30

Morelli, Ralph a. Trishan de Lanerolle: Foss 101: Engaging Introductory Students in the Open
Source Movement; in: Proceedings of the 40th ACM technical symposium on Computer
science education; New York, NY, USA: ACM, 2009 (= SIGCSE ’09) ⟨URL: http://
doi.acm.org/10.1145/1508865.1508977⟩ – reference download: 2011-12-28, BibWeb/PDF,
ISBN 978–1–60558–183–5, pp. 311–315

Morgan, Lorraine a. Patrick Finnegan: Open Innovation in Secondary Software Firms: An
Exploration of Managers’ Perceptions of open Source Software; in: SIGMIS Database, 41
February (2010), No. 1, pp. 76–95 ⟨URL: http://doi.acm.org/10.1145/1719051.1719056⟩,
BibWeb/PDF

Mozilla Foundation: Mozilla Public License 2.0 (MPL-2.0); 2012, FreeWeb/HTML ⟨URL:
http://www.mozilla.org/MPL/2.0/⟩ – reference download: 2013-03-05

Mozilla Foundation: About MPL 2.0: Revision Process and Changes FAQ; 2013 [n.y.],
FreeWeb/HTML ⟨URL: http://www.mozilla.org/MPL/1.1/⟩ – reference download: 2013-
03-05

Mozilla Foundation: Mozilla Public License Version 1.1; 2013 [n.y.], FreeWeb/HTML ⟨URL:
http://www.mozilla.org/MPL/1.1/⟩ – reference download: 2013-03-05

Mtsweni, Jabu a. Elmarie Biermann: An investigation into the implementation of open source
software within the SA government: an emerging expansion model; in: Proceedings of
the 2008 annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries: riding the wave of
technology; New York, NY, USA: ACM, 2008 (= SAICSIT ’08) ⟨URL: http://doi.acm.
org/10.1145/1456659.1456677⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN
978–1–60558–286–3, pp. 148–158

Müller Molina, Arnoldo José a. Takeshi Shinohara: On Approximate Matching of Programs for
Protecting Libre Software; in: Proceedings of the 2006 Conference of the Center for Advanced
Studies on Collaborative research; New York, NY, USA: ACM, 2006 (= CASCON ’06)
⟨URL: http://doi.acm.org/10.1145/1188966.1188994⟩ – reference download: 2011-12-29,
BibWeb/PDF, pp. 1–14

Mundhenke, Jens: Wettbewerbswirkungen von Open-Source-Software und offenen Standards
auf Softwaremärkten; Berlin, Heidelberg, and New York: Springer, 2007 (= Kiel Studies,
[Vol./No.] 338), Print, ISBN 978–540–71415–6

Munga, Neeshal , Thomas Fogwill , a. Quentin Williams : The Adoption of Open Source Software
in Business Models: A Red Hat and IBM Case Study; in: Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and Information
Technologists; New York, NY, USA: ACM, 2009 (= SAICSIT ’09) ⟨URL: http://doi.acm.
org/10.1145/1632149.1632165⟩ – reference download: 2011-12-28, BibWeb/PDF, ISBN
978–1–60558–643–4, pp. 112–121

354

http://dl.acm.org/citation.cfm?id=1344189.1344194
http://dx.doi.org/10.1109/FLOSS.2009.5071356
http://dx.doi.org/10.1109/FLOSS.2009.5071356
http://doi.acm.org/10.1145/1508865.1508977
http://doi.acm.org/10.1145/1508865.1508977
http://doi.acm.org/10.1145/1719051.1719056
http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/1.1/
http://www.mozilla.org/MPL/1.1/
http://doi.acm.org/10.1145/1456659.1456677
http://doi.acm.org/10.1145/1456659.1456677
http://doi.acm.org/10.1145/1188966.1188994
http://doi.acm.org/10.1145/1632149.1632165
http://doi.acm.org/10.1145/1632149.1632165

Bibliography

Mustaquim, Moyen Mohammad : A Systems Thinking Model for Open Source Software De-
velopment in Social Media; in: Proceedings of the International Workshop on Modeling
Social Media; New York, NY, USA: ACM, 2010 (= MSM ’10) ⟨URL: http://doi.acm.
org/10.1145/1835980.1835987⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN
978–1–4503–0229–6, pp. 7:1–7:2

Mustonen, Mikko: Copyleft - the economics of Linux and other open source software; in: Informa-
tion Economics and Policy, 15 (2003), No. 1, pp. 99–121 ⟨URL: http://www.sciencedirect.
com/science/article/pii/S0167624502000902⟩ – reference download: 2012-02-09, Bib-
Web/PDF & Copy

Mustonen, Mikko: Essays on the Economics of Information and Communication Technologies:
Copyleft, Networks and Compatibility; Ph.D thesis, University of Helsinki, Department of
Economics, Faculty of Social Sciences, 2003

Mustonen, Mikko: Why do firms support the development of substitute copyleft pro-
grams? Volume 15 of Mustonen: Copyleft - the economics of Linux and other
open source software, 2003⟨URL: http://www.sciencedirect.com/science/article/pii/
S0167624502000902⟩ – reference download: 2012-02-09, pp. ??–??, BibWeb/PDF & Copy

Mustonen, Mikko: When Does a Firm Support Substitute Open Source Programming? in:
Journal of Economics & Management Strategy, 14 (2005), No. 1, pp. 121–138

Müller, Martin: Open Source - kurz & gut; Köln, 1999 ⟨URL: http://www.oreilly.de/
german/freebooks/os_tb/toc.html⟩

Müller-Seitz, Gordon a. Guido Reger : Is open source software living up to its promises?
Insights for open innovation management from two open source software-inspired projects;
in: R&D Management, 39 (2009), No. 4, pp. 372–381 ⟨URL: http://dx.doi.org/10.1111/
j.1467-9310.2009.00565.x⟩ – reference download: 2012-02-09, BibWeb/PDF

Nadah, Nadia, Mélanie Dulong de Rosnay , a. Bruno Bachimont : Licensing Digital Content
With A Generic Ontology: Escaping From The Jungle of Rights Expression Languages; in:
Proceedings of the 11th International Conference on Artificial Intelligence and Law; New
York, NY, USA: ACM, 2007 (= ICAIL ’07) ⟨URL: http://doi.acm.org/10.1145/1276318.
1276330⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–59593–680–6, pp. 65–
69

Nagy, Del , Areej M. Yassin, a. Anol Bhattacherjee: Organizational adoption of open source
software: barriers and remedies; in: Communications of the ACM, 53 (2010), pp. 148–151
⟨URL: http://doi.acm.org/10.1145/1666420.1666457⟩, BibWeb/PDF

Nakakoji, Kumiyo et al.: Evolution Patterns of Open-Source Software Systems and Communities;
in: Proceedings of the International Workshop on Principles of Software Evolution; New
York, NY, USA: ACM, 2002 (= IWPSE ’02) ⟨URL: http://doi.acm.org/10.1145/512035.
512055⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–545–9, pp. 76–85

Netcraft : August 2011 Web Server Survey; 2011, FreeWeb/Html ⟨URL: http://news.netcraft.
com/archives/2011/08/05/august-2011-web-server-survey-3.html⟩ – reference down-
load: 2011-08-31

Neumann, Peter G.: Inside Risks: Robust Open-Source Software; in: Communications of
the ACM, 42 February (1999), No. 2, p. 128 ⟨URL: http://doi.acm.org/10.1145/293411.
293491⟩, BibWeb/PDF

Nilendu, P. a. T. R. Madanmohan: Competing on Open Source: Strategies and Practise; 2002
⟨URL: http://opensource.mit.edu/papers/madanmohan.pdf⟩

Noll, John a. Wei-Ming Liu: Requirements Elicitation in Open Source Software Development:
A Case Study; [General Chairs: Justin Erenkrantz and Hyrum K. Wright]; In Proceedings
of the 3rd International Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development, 2010, pp. 35–40 ⟨URL: http://doi.acm.org/10.1145/1833272.
1833279⟩ – reference download: 2011-12-28, BibWeb/PDF

355

http://doi.acm.org/10.1145/1835980.1835987
http://doi.acm.org/10.1145/1835980.1835987
http://www.sciencedirect.com/science/article/pii/S0167624502000902
http://www.sciencedirect.com/science/article/pii/S0167624502000902
http://www.sciencedirect.com/science/article/pii/S0167624502000902
http://www.sciencedirect.com/science/article/pii/S0167624502000902
http://www.oreilly.de/german/freebooks/os_tb/toc.html
http://www.oreilly.de/german/freebooks/os_tb/toc.html
http://dx.doi.org/10.1111/j.1467-9310.2009.00565.x
http://dx.doi.org/10.1111/j.1467-9310.2009.00565.x
http://doi.acm.org/10.1145/1276318.1276330
http://doi.acm.org/10.1145/1276318.1276330
http://doi.acm.org/10.1145/1666420.1666457
http://doi.acm.org/10.1145/512035.512055
http://doi.acm.org/10.1145/512035.512055
http://news.netcraft.com/archives/2011/08/05/august-2011-web-server-survey-3.html
http://news.netcraft.com/archives/2011/08/05/august-2011-web-server-survey-3.html
http://doi.acm.org/10.1145/293411.293491
http://doi.acm.org/10.1145/293411.293491
http://opensource.mit.edu/papers/madanmohan.pdf
http://doi.acm.org/10.1145/1833272.1833279
http://doi.acm.org/10.1145/1833272.1833279

Bibliography

Nordquist, Pete, Anna Petersen, a. Angelina Todorova: License Tracing in Free, Open,
and Proprietary Software; in: JCSC, 19 December (2003), No. 2, pp. 101–112 ⟨URL:
http://dl.acm.org/citation.cfm?id=948785.948802⟩ – reference download: 2011-12-28,
BibWeb/PDF

Nov, Oded a. George Kuk : Open source content contributors’ response to free-riding: The effect
of personality and context; in: Computers in Human Behavior, 24 (2008), pp. 2848–2861,
BibWeb/PDF

Oberhem, Carolina: Vertrags- und Haftungsfragen beim Vertrieb von Open Source Software;
Dissertation; Hamburg: Verlag Dr. Kovač, 2008 (= Recht der Neuen Medien, [Vol./No.] 50),
Print, ISBN 978–3–8300–4075–0

Oezbek, Christopher , Lutz Prechelt , a. Florian Thiel : The Onion has Cancer: Some Social
Network Analysis Visualizations of Open Source Project Communication; [General Chairs:
Justin Erenkrantz and Hyrum K. Wright]; In Proceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and Development, 2010,
pp. 5–10 ⟨URL: http://doi.acm.org/10.1145/1833272.1833274⟩ – reference download:
2012-02-01, BibWeb/PDF

O’Hara, Keith J. a. Jennifer S. Kay : Open source software and computer science education; in:
J. Comput. Small Coll. 18 February (2003), pp. 1–7 ⟨URL: http://dl.acm.org/citation.
cfm?id=771712.771716⟩, ISSN 1937–4771

Omsels, Hermann-Josef : Open Source und das deutsche Vertrags- und Urheberrecht; in:
Christian Schertz a. Herman-Josef Omsels, editors: Festschrift für Paul W. Hertin zum 60.
Geburtstag; 2000

Open Source Development Labs: OSDL announces patent common project; 2005 ⟨URL:
http://www.osdl.org/newsroo,/press_releases/2005/2005_08_09_beaverton.html⟩

Open Source Initiative: GNU General Public License, version 2 (GPL-2.0). Version 2, June
1991; 1991 [n.y. of the html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/
licenses/GPL-2.0⟩ – reference download: 2013-02-05

Open Source Initiative: The GNU Lesser General Public License, version 2.1 (LGPL-2.1); 1999
[n.y. of the html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/
LGPL-2.1⟩ – reference download: 2013-03-06

Open Source Initiative: Common Development and Distribution License (CDDL-1.0); 2004
[n.y. of the html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/
CDDL-1.0⟩ – reference download: 2013-04-19

Open Source Initiative: Apache License, Version 2.0; 2004 [n.y. of the page itself],
FreeWeb/HTML ⟨URL: http://opensource.org/licenses/Apache-2.0⟩ – reference down-
load: 2013-02-07

Open Source Initiative: Eclipse Public License, Version 1.0; 2005 [n.y. of the page itself],
FreeWeb/HTML ⟨URL: http://opensource.org/licenses/EPL-1.0⟩ – reference download:
2013-02-20

Open Source Initiative: European Union Public License, version 1.1 (EUPL-1.1; 2007 [n.y. of the
html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/EUPL-1.1⟩ –
reference download: 2013-03-04

Open Source Initiative: GNU Affero General Public License, Version 3 (AGPL-3.0); 2007
[n.y. of the html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/
AGPL-3.0⟩ – reference download: 2013-04-05

Open Source Initiative: GNU General Public License, version 3 (GPL-3.0); 2007 [n.y. of the
html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/GPL-3.0⟩ –
reference download: 2013-03-05

Open Source Initiative: The GNU Lesser General Public License, version 3.0 (LGPL-3.0); 2007

356

http://dl.acm.org/citation.cfm?id=948785.948802
http://doi.acm.org/10.1145/1833272.1833274
http://dl.acm.org/citation.cfm?id=771712.771716
http://dl.acm.org/citation.cfm?id=771712.771716
http://www.osdl.org/newsroo,/press_releases/2005/2005_08_09_beaverton.html
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/CDDL-1.0
http://opensource.org/licenses/CDDL-1.0
http://opensource.org/licenses/Apache-2.0
http://opensource.org/licenses/EPL-1.0
http://opensource.org/licenses/EUPL-1.1
http://opensource.org/licenses/AGPL-3.0
http://opensource.org/licenses/AGPL-3.0
http://opensource.org/licenses/GPL-3.0

Bibliography

[n.y. of the html page itself], FreeWeb/HTML ⟨URL: http://opensource.org/licenses/
LGPL-3.0⟩ – reference download: 2013-03-06

Open Source Initiative: The BSD 2-Clause License; 2012 [n.y.], FreeWeb/HTML ⟨URL:
http://www.opensource.org/licenses/BSD-2-Clause⟩ – reference download: 2012-07-03

Open Source Initiative: The BSD 3-Clause License; 2012 [n.y.], FreeWeb/HTML ⟨URL:
http://www.opensource.org/licenses/BSD-3-Clause⟩ – reference download: 2012-07-04

Open Source Initiative: The MIT License; 2012 [n.y.], FreeWeb/HTML ⟨URL: http:

//opensource.org/licenses/mit-license.php⟩ – reference download: 2012-08-24

Open Source Initiative: The Open Source Definition; 2012 [n.y.], FreeWeb ⟨URL: http:
//www.opensource.org/docs/osd⟩ – reference download: 2012-06-21

Open Source Initiative: The Open Source Initiative; 2012 [n.y.], FreeWeb ⟨URL: http://www.
opensource.org/about/⟩ – reference download: 2013-01-22

Open Source Initiative: The Open Source Licenses, alphabetically sorted; 2012 [n.y.], FreeWeb
⟨URL: http://opensource.org/licenses/alphabetical⟩ – reference download: 2013-01-
22

Open Source Initiative: The [OSI] Licence Review Process; 2012 [n.y.], FreeWeb ⟨URL:
http://www.opensource.org/approval⟩ – reference download: 2013-01-22

Open Source Initiative: OSI Mailing List. License-discuss. Draft of new OSI licenses landing
page; 2012 [n.y.], FreeWeb/HTML ⟨URL: http://projects.opensource.org/pipermail/
license-discuss/2012-April/000332.html⟩ – reference download: 2013-01-29

Open Source Initiative: Microsoft Public License (MS-PL); 2013 [n.y.], FreeWeb/HTML ⟨URL:
http://opensource.org/licenses/MS-PL⟩ – reference download: 2013-02-26

Open Source Initiative: Mozilla Public License 2.0 (MPL-2.0); 2013 [n.y.], FreeWeb/HTML
⟨URL: http://opensource.org/licenses/MPL-2.0⟩ – reference download: 2013-02-07

Open Source Initiative: Open Source Licenses by Category; 2013 [n.y.], FreeWeb ⟨URL:
http://opensource.org/licenses/category⟩ – reference download: 2013-01-29

Open Source Initiative: The PHP License 3.0 (PHP-3.0); 2013 [n.y.], FreeWeb/HTML ⟨URL:
http://opensource.org/licenses/PHP-3.0⟩ – reference download: 2013-02-27

Open Source Initiative: The PostgreSQL Licence (PostgreSQL); 2013 [n.y.], FreeWeb/HTML
⟨URL: http://opensource.org/licenses/PostgreSQL⟩ – reference download: 2013-02-27

Oreg, Shaul a. Oded Nov : Exploring motivations for contributing to open source initiatives:
The roles of contribution context and personal values; in: Computers in Human Behavior, 24
(2008), No. 5, pp. 2055–2073 ⟨URL: http://www.sciencedirect.com/science/article/
pii/S0747563207001537⟩ – reference download: 2012-02-01, BibWeb/PDF

O’Reilly, Tim: Lessons from Open-Source Software Development; in: Communications of the
ACM, 42 (1999), No. 4, pp. 32–37 ⟨URL: http://doi.acm.org/10.1145/299157.299164⟩ –
reference download: 2011-12-28, BibWeb/PDF

O’Reilly, Tim, editor : Open Source: kurz und gut; 1999

Orsila, Heikki et al.: Trust Issues in Open Source Software Development; in: Proceedings
of the Warm Up Workshop for ACM/IEEE ICSE 2010; New York, NY, USA: ACM,
2009 (= WUP ’09) ⟨URL: http://doi.acm.org/10.1145/1527033.1527037⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–60558–565–9, pp. 9–12

Osterloh, M., S. Rota, a. M. von Wartburg : Open Source - New Rules in Software Develope-
ment; Zürich, 2001, working paper ⟨URL: http://www.iou.unizh,ch/orga/downloads/
OpenSourceAoM.pdf⟩

Osterloh, Margit a. Sandra Rota: - Just another case of collective invention? in: Research Policy,
36 (2007), No. 2, pp. 157–171 ⟨URL: http://www.sciencedirect.com/science/article/
pii/S0048733306001983⟩ – reference download: 2012-02-01, BibWeb/PDF

357

http://opensource.org/licenses/LGPL-3.0
http://opensource.org/licenses/LGPL-3.0
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd
http://www.opensource.org/about/
http://www.opensource.org/about/
http://opensource.org/licenses/alphabetical
http://www.opensource.org/approval
http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html
http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html
http://opensource.org/licenses/MS-PL
http://opensource.org/licenses/MPL-2.0
http://opensource.org/licenses/category
http://opensource.org/licenses/PHP-3.0
http://opensource.org/licenses/PostgreSQL
http://www.sciencedirect.com/science/article/pii/S0747563207001537
http://www.sciencedirect.com/science/article/pii/S0747563207001537
http://doi.acm.org/10.1145/299157.299164
http://doi.acm.org/10.1145/1527033.1527037
http://www.iou.unizh,ch/orga/downloads/OpenSourceAoM.pdf
http://www.iou.unizh,ch/orga/downloads/OpenSourceAoM.pdf
http://www.sciencedirect.com/science/article/pii/S0048733306001983
http://www.sciencedirect.com/science/article/pii/S0048733306001983

Bibliography

Osterloh, Margit , Sandra Rota, a. Bernhard Kuster : Open Source Software Production:
Climbing on the Shoulders of Giants; 2002 ⟨URL: http://opensource.mit.edu/papers/
osterlohrotakuster.pdf⟩

Osterloh, Margit , Sandra Rota, a. Roger Lüthi : ’Collective Invention’ als neues Innovationsmo-
dell; In Drossou, Krempl, a. Poltmann: Die wunderbare Wissensvermehrung, 2006, pp. 65–76,
Print

O’Sullivan, Maureen: Eof[:] Free Software Licenses; in: Linux Journal, 122 June (2004),
pp.Article No. 11 ⟨URL: http://dl.acm.org/citation.cfm?id=993247.993258⟩ – refer-
ence download: 2011-12-28, BibWeb/HTML

O’Mahony, Siobhán: Guarding the commons: how community managed software projects pro-
tect their work; in: RP, 32 (2003), No. 7, pp. 1179–1198 ⟨URL: http://www.sciencedirect.
com/science/article/pii/S0048733303000489⟩ – reference download: 2012-02-09, Bib-
Web/PDF

Patterson, Chip: Copyright Misuse and Modified Copyleft: New Solutions to the Challenges of
Internet; in: Michigan Law Review, 98 (2000), No. 5, pp. 1351–1383, BibWeb/PDF

Pelizza, Annalisa: Openness as an Asset: A Classification System for Online Communities
Based on Actor-Network Theory; in: Proceedings of the 6th International Symposium
on Wikis and Open Collaboration; New York, NY, USA: ACM, 2010 (= WikiSym ’10)
⟨URL: http://doi.acm.org/10.1145/1832772.1832784⟩ – reference download: 2011-12-29,
BibWeb/PDF, ISBN 978–1–4503–0056–8, pp. 8:1–8:10

Perens, Bruce: The Open Source Definition; In DiBona, Ockman, a. Stone: Open Sources,
1999, pp. 171–188

Perens, Bruce: Combining GPL and Proprietary Software; in: Datamation, 9
(2009), pp. wp. [3 pages] ⟨URL: http://www.datamation.com/osrc/article.php/3801396/
Bruce-Perens-Combining-GPL-and-Proprietary-Software.htm⟩ – reference download:
2012-03-09, FreeWeb/HTML

Perr, Jon, Melissa M. Appleyard , a. Patrick Sullivan: Open for business: emerging business
models in open source software; in: INTERNATIONAL JOURNAL OF TECHNOLOGY
MANAGEMENT, 52 (2010), pp. 432–456

Peters, Stormy : Open Source Is Changing the Way Work Gets Done; conference contribution;
In Boldyreff et al.: Open Source Ecosystems, 2009, p. 1, BibWeb/PDF

Petreley, Nicholas: /var/opinion: The GPLv2 vs. GPLv3 Debate; in: Linux Journal, 153
January (2007), p. 17 ⟨URL: http://dl.acm.org/citation.cfm?id=1194955.1194972⟩ –
reference download: 2011-12-28, BibWeb/HTML

Phillips, Douglas E.: The Software License Unveiled. How Legislation by License Controls
Software Access; Oxford, New York, Auckland [etc. ...]: Oxford University Press, 2009,
ISBN 978–0–19–534187–4

Piller, Frank T.: User Innovation: der Kunde kann’s besser; In Drossou, Krempl, a. Poltmann:
Die wunderbare Wissensvermehrung, 2006, pp. 85–97, Print

Piller, Harald : Von Open Source zu Open Innovation; in: Harvard Business Manager, 25
(2003), No. 12, p. 114

Pisano, G.: Profiting from Innovation and the Intellectual Property Revolution; in: Research
Policy, 35 (2006), No. 8, pp. 1122–1130

Plaß, Gunda: Open Contents im deutschen Urheberrecht; in: GRUR, (2002), pp. 670ff

Polanski, Arnold : Is the General Public Licence a Rational Choice? in: Journal of Industrial
Economics, 55 (2007), pp. 691–714, BibWeb/PDF

Prechelt, Lutz : Some Non-Usage Data for a Distributed Editor: the Saros Outreach; in:
Proceedings of the 4th International Workshop on Cooperative and Human Aspects of
Software Engineering; New York, NY, USA: ACM, 2011 (= CHASE ’11) ⟨URL: http://

358

http://opensource.mit.edu/papers/osterlohrotakuster.pdf
http://opensource.mit.edu/papers/osterlohrotakuster.pdf
http://dl.acm.org/citation.cfm?id=993247.993258
http://www.sciencedirect.com/science/article/pii/S0048733303000489
http://www.sciencedirect.com/science/article/pii/S0048733303000489
http://doi.acm.org/10.1145/1832772.1832784
http://www.datamation.com/osrc/article.php/3801396/Bruce-Perens-Combining-GPL-and-Proprietary-Software.htm
http://www.datamation.com/osrc/article.php/3801396/Bruce-Perens-Combining-GPL-and-Proprietary-Software.htm
http://dl.acm.org/citation.cfm?id=1194955.1194972
http://doi.acm.org/10.1145/1984642.1984651
http://doi.acm.org/10.1145/1984642.1984651

Bibliography

doi.acm.org/10.1145/1984642.1984651⟩ – reference download: 2012-02-01, BibWeb/PDF,
ISBN 978–1–4503–0576–1, p. 48

Proceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development; (= FLOSS ’09) Washington, DC, USA: IEEE Computer
Society, 2009 ⟨URL: http://dl.acm.org/citation.cfm?id=1572192⟩ – reference download:
2012-01-25, BibWeb/PDF, ISBN 978–1–4244–3720–7

Proceedings of the 3rd International Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development; [General Chairs: Justin Erenkrantz and Hyrum K.
Wright]; (= FLOSS ’10) New York, NY, USA: ACM, 2010 ⟨URL: http://dl.acm.org/
citation.cfm?id=1833272⟩ – reference download: 2012-01-25, BibWeb/PDF, ISBN 978–1–
60558–978–7

Proceedings of the Fifth Workshop on Open Source Software Engineering; (= 5-WOSSE) New
York, NY, USA: ACM, 2005 ⟨URL: http://doi.acm.org/10.1145/1082983.1083260⟩ –
reference download: 2011-12-29, BibWeb/PDF, ISBN 1–59593–127–9

Qureshi, Israr a. Yulin Fang : Socialization in Open Source Software Projects: A Growth Mixture
Modeling Approach; in: Organizational Research Methods, 14 (2011), No. 1, pp. 208–238,
BibWeb/PDF

Rafiq, Muhammad : LIS community’s perceptions towards open source software adoption in
libraries; in: International Information & Library Review (2009) 41, 137e145, 41 (2009),
pp. 137–145, BIbWeb/PDF

Raja, Uzma a. Evelyn Barry : Investigating quality in large-scale Open Source Software; In
Proceedings of the Fifth Workshop on Open Source Software Engineering, 2005, pp. 1–4
⟨URL: http://doi.acm.org/10.1145/1082983.1083268⟩ – reference download: 2012-02-01,
BibWeb/PDF

Raymond, Eric: A Brief History of Hackerdom, revised version; 2000 ⟨URL: http://www.catb.
org/~esr/writings/hacker-history/hacker-history.html⟩

Raymond, Eric S.: How To Become A Hacker; ⟨URL: http://www.catb.org/esr/faqs/
hacker-howto.html⟩

Raymond, Eric S.: The Cathedral and the Bazaar; in: First Monday, 3 March (1998), No. 3,
p. o.A.

Raymond, Eric S.: Homesteading the Noosphere: An Introductory Contradiction; in: First
Monday, 3 (1999), No. 10, p. o.A.

Raymond, Eric S.: The cathedral and the bazaar : musings on Linux and open source by an
accidental revolutionary; Peking [...]: ???, 2001

Reed, Matthew W. et al.: Developing and Learning Web Services with Open Source Software:
An Experience Report; in: JCSC, 22 April (2007), No. 4, pp. 93–100 ⟨URL: http://dl.acm.
org/citation.cfm?id=1229637.1229654⟩ – reference download: 2011-12-29, BibWeb/PDF

Reese, Björn a. Daniel Sternberg : Working without Copyleft; 2001 ⟨URL: http://www.
oreillynet.com/lpt/a/1403⟩

Reincke, Karsten: Classical Scholar Texts With Footnotes based on LaTeX, BibTeX,
Koma, jurabib and mykeds-CSR; 2012, FreeWeb/Html ⟨URL: http://www.fodina.de/en/
closedprojects/latex-addons/classical-scholar.html⟩ – reference download: 2013-02-
10

Reincke, Karsten: (Geistes-) Wissenschaftliche Texte mit jurabib. Dienst am Leser, Dienst
am Scholaren: Über Anmerkungsapparate in Fußnoten - aber richtig. [n.l.], 2012 ⟨URL:
http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf⟩ – reference download:
2013-02-10, FreeWeb/PDF

Reincke, Karsten, Greg Sharpe, a. contributors: Open Source License Compendium. How to
Achieve Open Source License Compliance; 2015, FreeWeb/PDF ⟨URL: http://www.oslic.
org/releases/oslic.pdf⟩ – reference download: 2015-01-20

359

http://doi.acm.org/10.1145/1984642.1984651
http://doi.acm.org/10.1145/1984642.1984651
http://doi.acm.org/10.1145/1984642.1984651
http://dl.acm.org/citation.cfm?id=1572192
http://dl.acm.org/citation.cfm?id=1833272
http://dl.acm.org/citation.cfm?id=1833272
http://doi.acm.org/10.1145/1082983.1083260
http://doi.acm.org/10.1145/1082983.1083268
http://www.catb.org/~esr/writings/hacker-history/hacker-history.html
http://www.catb.org/~esr/writings/hacker-history/hacker-history.html
http://www.catb.org/esr/faqs/hacker-howto.html
http://www.catb.org/esr/faqs/hacker-howto.html
http://dl.acm.org/citation.cfm?id=1229637.1229654
http://dl.acm.org/citation.cfm?id=1229637.1229654
http://www.oreillynet.com/lpt/a/1403
http://www.oreillynet.com/lpt/a/1403
http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf
http://www.oslic.org/releases/oslic.pdf
http://www.oslic.org/releases/oslic.pdf

Bibliography

Reitmayr, Gerhard a. Dieter Schmalstieg : An Open Software Architecture for Virtual Reality
Interaction; in: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology; New York, NY, USA: ACM, 2001 (= VRST ’01) ⟨URL: http://doi.acm.org/
10.1145/505008.505018⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–
427–4, pp. 47–54

Renner, Thomas et al.: Open Source Software. Einsatzpotentiale und Wirtschaftlichkeit; eine
Studien der Fraunhofer Gesellschaft; Stuttgart: Fraunhofer IRB Verlag, 2005, Print, ISBN
3–8167–7008–8

Reynolds, Carl J a. Jeremy C Wyatt : Open Source, Open Standards, and Health Care
Information Systems; in: JMIR, 13 (2011), No. 1, p.wp ⟨URL: http://www.jmir.org/
2011/1/e24/⟩, BibWeb/HTML

Rigby, Peter C., Daniel M. German, a. Margaret-Anne Storey : Open Source Software Peer
Review Practices: A Case Study of the Apache Server; in: Proceedings of the 30th Interna-
tional Conference on Software Engineering; New York, NY, USA: ACM, 2008 (= ICSE ’08)
⟨URL: http://doi.acm.org/10.1145/1368088.1368162⟩ – reference download: 2012-02-01,
BibWeb/PDF, ISBN 978–1–60558–079–1, pp. 541–550

Rigby, Peter C. a. Margaret-Anne Storey : Understanding Broadcast Based Peer Review on
Open Source Software Projects; in: Proceedings of the 33rd International Conference on
Software Engineering; New York, NY, USA: ACM, 2011 (= ICSE ’11) ⟨URL: http://
doi.acm.org/10.1145/1985793.1985867⟩ – reference download: 2011-12-29, BibWen/PDF,
ISBN 978–1–4503–0445–0, pp. 541–550

Rivlin, Gary : Linus Torvalds - Leader of the Free World; in: Wired Magazin, (2003), No. 11,
pp. 152ff

Robbins, Arnold : What’s GNU? in: Linux Journal, 1 March (1994), p. 9:1 ⟨URL: http://dl.acm.
org/citation.cfm?id=328204.328213⟩ – reference download: 2011-12-28, BibWeb/HTML

Robert W, Guomulkiewics: How Copyleft uses License Right to succeed in the OPen Source
Software Revolution and the Implications fpr Article 2b; in: Houston Law Review, 36 (???),
pp. 179ff

Roberts, Keith A.: Generic Methodology for Open Source Software Development; in: SIGSOFT
Software Engineering Notes, 30 March (2005), No. 2, pp. 1–5 ⟨URL: http://doi.acm.org/
10.1145/1050849.1050863⟩ – reference download: 2011-12-29, BibWeb/PDF

Rose, Marshall T.: The Open Book, A Practical Perspective on OSI; Englewood Cliffs NJ:
Prentice Hall, 1990, Print, ISBN 0–13–643016–3

Rosen, Lawrence: Geek Law[:] A Question of Licenses; in: Linux Journal, 89 September (2001),
p. 14 ⟨URL: http://dl.acm.org/citation.cfm?id=509824.509838⟩ – reference download:
2011-12-28, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Copyright Questions; in: Linux Journal, 88 August (2001),
p. 13 ⟨URL: http://dl.acm.org/citation.cfm?id=509800.509813⟩ – reference download:
2011-12-28, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] License FUD; in: Linux Journal, 92 December (2001), p. 14 ⟨URL:
http://dl.acm.org/citation.cfm?id=512620.512634⟩ – reference download: 2011-12-29,
BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Naming Open-Source Software; in: Linux Journal, 90 Octo-
ber (2001), p. 11 ⟨URL: http://dl.acm.org/citation.cfm?id=509852.509863⟩ – reference
download: 2011-12-28, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Allocation of the Risks; in: Linux Jo, 101 September (2002),
p. 17 ⟨URL: http://dl.acm.org/citation.cfm?id=566949.566966⟩ – reference download:
2011-12-29, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Bad Law; in: Linux Journal, 98 June (2002), p. 13 ⟨URL:

360

http://doi.acm.org/10.1145/505008.505018
http://doi.acm.org/10.1145/505008.505018
http://www.jmir.org/2011/1/e24/
http://www.jmir.org/2011/1/e24/
http://doi.acm.org/10.1145/1368088.1368162
http://doi.acm.org/10.1145/1985793.1985867
http://doi.acm.org/10.1145/1985793.1985867
http://dl.acm.org/citation.cfm?id=328204.328213
http://dl.acm.org/citation.cfm?id=328204.328213
http://doi.acm.org/10.1145/1050849.1050863
http://doi.acm.org/10.1145/1050849.1050863
http://dl.acm.org/citation.cfm?id=509824.509838
http://dl.acm.org/citation.cfm?id=509800.509813
http://dl.acm.org/citation.cfm?id=512620.512634
http://dl.acm.org/citation.cfm?id=509852.509863
http://dl.acm.org/citation.cfm?id=566949.566966

Bibliography

http://dl.acm.org/citation.cfm?id=513489.513502⟩ – reference download: 2011-12-29,
BibWeb/PDF

Rosen, Lawrence: Geek Law[:] Dealing with Patents in Softwar Licences; in: Linux Journal,
93 January (2002), p. 14 ⟨URL: http://dl.acm.org/citation.cfm?id=512788.512802⟩ –
reference download: 2011-12-29, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Dealing With Patents in Software Licenses, Part II; in: Linux
Journal, 94 February (2002), p. 15 ⟨URL: http://dl.acm.org/citation.cfm?id=513039.
513054⟩ – reference download: 2011-12-28, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Fair Use; in: Linux Journal, 100 August (2002), p. 18 ⟨URL:
http://dl.acm.org/citation.cfm?id=563953.563971⟩ – reference download: 2011-12-28,
BibWeb/HTML

Rosen, Lawrence: Geek Law[:] License Defamation; in: Linux Journal, 99 July (2002), p. 15
⟨URL: http://dl.acm.org/citation.cfm?id=513581.513596⟩ – reference download: 2011-
12-29, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Unbiased License FUD; in: Linux Journal, 95 March (2002),
p. 15 ⟨URL: http://dl.acm.org/citation.cfm?id=513085.513100⟩ – reference download:
2011-12-29, BibWeb/HTML

Rosen, Lawrence: Geek Law[:] Why the Public Domain Isn’t a License; in: Linux Journal,
102 October (2002), p. 12 ⟨URL: http://dl.acm.org/citation.cfm?id=571785.571797⟩ –
reference download: 2011-12-29, BibWeb/HTML

Rosen, Lawrence: IAAL[:] Derivative Works; in: Linux Journal, 105 January (2003), p. 13 ⟨URL:
http://dl.acm.org/citation.cfm?id=603771.603784⟩ – reference download: 2011-12-28,
BibWeb/HTML

Rosen, Lawrence: Open Source Licensing. Software Freedom and Intellectual Property Law;
Upper Saddle River, New Jersey: Prentice Hall PTr, 2005, ISBN 0–13–148787–6

Rosen, Lawrence: OSL 3.0: A Better License for Open Source Software; in: CRi, 6 (2007),
pp. 166–171, Copy

Rosenberg, D. K.: Open source - The unauthorized white papers; Chicago, 2000

Rossi, Christina a. Andrea Bonaccorsi : Intrinsic motivations and preit-oriented firms supplying
Open Source products and services; in: First Monday, 10 May (2005), No. 5, p. o.a.

Rossi, Cristina a. Andrea Bonaccorsi : Why profit-oriented companies enter the OS field?:
Intrinsic vs. extrinsic incentives; In Proceedings of the Fifth Workshop on Open Source
Software Engineering, 2005, pp. 12:1–12:5 ⟨URL: http://doi.acm.org/10.1145/1082983.
1083269⟩ – reference download: 2011-12-29, BibWeb/PDF

Rossi, Naria Alessandra: Decoding the ”Fre/Open Sour ce(F/OSS) Software Puzzle”: a survey of
theoretical and empirical contributions; 2004 ⟨URL: http://opensource.mit.edu/papers/
rossi.pdf⟩

Ruffin, M. a. C. Ebert : Using Open Source Software in Product Development: A primer; in:
IEEE SOFTWARE, 21 (2004), No. 1, pp. 82–86

Sabin, Mihaela: Free and Open Source Software Development of IT Systems; in: Proceedings
of the 2011 Conference on Information Technology Education; New York, NY, USA: ACM,
2011 (= SIGITE ’11) ⟨URL: http://doi.acm.org/10.1145/2047594.2047601⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–1017–8, pp. 27–32

Sakurai, Cledson Akio a. Moacyr Martucci Junior : An Open System Architecture for Opera-
tion Support System at Telecommunications Service Providers; in: Proceedings of the 1st
International Symposium on Information and Communication Technologies; o.O.: Trin-
ity College Dublin, 2003 (= (ISICT ’03)) ⟨URL: http://dl.acm.org/citation.cfm?id=
963600.963705⟩ – reference download: 2012-02-01, BibWeb/PDF, pp. 524–529

Samoladas, Ioannis et al.: Open Source Software Development Should Strive for Even Greater
Code Maintainability; in: Communications of the ACM, 47 October (2004), No. 10, pp. 83–87

361

http://dl.acm.org/citation.cfm?id=513489.513502
http://dl.acm.org/citation.cfm?id=512788.512802
http://dl.acm.org/citation.cfm?id=513039.513054
http://dl.acm.org/citation.cfm?id=513039.513054
http://dl.acm.org/citation.cfm?id=563953.563971
http://dl.acm.org/citation.cfm?id=513581.513596
http://dl.acm.org/citation.cfm?id=513085.513100
http://dl.acm.org/citation.cfm?id=571785.571797
http://dl.acm.org/citation.cfm?id=603771.603784
http://doi.acm.org/10.1145/1082983.1083269
http://doi.acm.org/10.1145/1082983.1083269
http://opensource.mit.edu/papers/rossi.pdf
http://opensource.mit.edu/papers/rossi.pdf
http://doi.acm.org/10.1145/2047594.2047601
http://dl.acm.org/citation.cfm?id=963600.963705
http://dl.acm.org/citation.cfm?id=963600.963705

Bibliography

⟨URL: http://doi.acm.org/10.1145/1022594.1022598⟩ – reference download: 2011-12-29,
BibWeb/PDF

Samuelson, Pamela: IBM’s Pragmatic Embrace of Open Source; in: Communications of
the ACM, 49 (2006), No. 10, pp. 21–25 ⟨URL: http://doi.acm.org/10.1145/1164394.
1164412⟩ – reference download: 2011-12-28, BibWeb/PDF

Samuelson, Pamela: Legally Speaking[:] When is a ”License” Really a Sale? in: Communications
of the ACM, 52 March (2009), No. 3, pp. 27–29 ⟨URL: http://doi.acm.org/10.1145/
1467247.1467258⟩ – reference download: 2011-12-29, BibWeb/PDF

Sandred, J.: Managing open source projects; New York, 2001

Santos Jr., Carlos Denner et al.: Intellectual Property Policy and Attractiveness: A Longitudinal
Study of Free and Open Source Software Projects; in: Proceedings of the ACM 2011 conference
on Computer supported cooperative work; New York, NY, USA: ACM, 2011 (= CSCW ’11)
⟨URL: http://doi.acm.org/10.1145/1958824.1958950⟩ – reference download: 2011-12-28,
BibWeb/PDF, ISBN 978–1–4503–0556–3, pp. 705–708

Sauer, Robert M.: Why develop open-source software? The role of non-pecuniary benefits,
monetary rewards, and open-source licence type; in: Oxford Review of Economic Policy, 23
(2007), No. 4, pp. 605–619, BibWeb/PDF

Sauerburger, Heinz , editor : Open Source Software; dpunkt.verlag, 2004

Savage, S. S.: Conquering Open Source Fears; in: Linux Executive Report, (2006) ⟨URL:
http://www.ibm.com/linux/⟩

Scacchi, W.: Understanding the Requirements for Developing Open Source Software Systems;
in: IEEE Procedings Software, 149 (2002), pp. 24–39

Scacchi, Walt : OpenEC/B: Electronic Commerce and Free/Open Source Software Development;
In Proceedings of the Fifth Workshop on Open Source Software Engineering, 2005, pp. 8:1–8:5
⟨URL: http://doi.acm.org/10.1145/1082983.1083270⟩ – reference download: 2011-12-29,
BibWeb/PDF

Scacchi, Walt : Free/Open Source Software Development: Recent Research Results and Emerging
Opportunities; in: The 6th Joint Meeting on European software engineering conference
and the ACM SIGSOFT symposium on the foundations of software engineering: companion
papers; New York, NY, USA: ACM, 2007 (= ESEC-FSE companion ’07) ⟨URL: http://
doi.acm.org/10.1145/1295014.1295019⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 978–1–59593–812–1, pp. 459–468

Scacchi, Walt : The Future of Research in Free/Open Source Software Development; in:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research; New
York, NY, USA: ACM, 2010 (= FoSER ’10) ⟨URL: http://doi.acm.org/10.1145/1882362.
1882427⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0427–6, pp. 315–
320

Schiff, Aaron: The economics of open source software: A survey of the early literature; in: The
Review of Network Economics, 1 March (2002), No. 1, pp. 66–74

Schiffner, Thomas: Open Source Software - Freie Software im deutschen Urheber- und Ver-
tragsrecht; München, 2002

Schlesinger, David : Working with Open Source: A Practical Guide; in: interactions, 14 Novem-
ber/December (2007), pp. 35–37 ⟨URL: http://doi.acm.org/10.1145/1300655.1300678⟩ –
reference download: 2011-12-29, BibWeb/PDF

Schmitz, L.: Linuxworld: Debatte um Pool für Open-Source-Patente; in: Computerwoche,
(2005) ⟨URL: http://www.computerwoche.de/index.cfm?pageid=254\&artid=79815⟩

Schneider, Jochen: Handbuch des EDV-Rechts; 4th edition. Köln: Dr. Otto Schmidt, 2009

Schricker a. Ulrich Loewenheim, editors: Urheberrecht; Kommentar; 4th edition. München:
Beck, 2010

362

http://doi.acm.org/10.1145/1022594.1022598
http://doi.acm.org/10.1145/1164394.1164412
http://doi.acm.org/10.1145/1164394.1164412
http://doi.acm.org/10.1145/1467247.1467258
http://doi.acm.org/10.1145/1467247.1467258
http://doi.acm.org/10.1145/1958824.1958950
http://www.ibm.com/linux/
http://doi.acm.org/10.1145/1082983.1083270
http://doi.acm.org/10.1145/1295014.1295019
http://doi.acm.org/10.1145/1295014.1295019
http://doi.acm.org/10.1145/1882362.1882427
http://doi.acm.org/10.1145/1882362.1882427
http://doi.acm.org/10.1145/1300655.1300678
http://www.computerwoche.de/index.cfm?pageid=254\&artid=79815

Bibliography

Schryen, Guido: Is open source security a myth? in: Commununications of the ACM, 54 (2011),
pp. 130–140 ⟨URL: http://doi.acm.org/10.1145/1941487.1941516⟩, BibWeb/PDF

Schryen, Guido a. Rouven Kadura: Open source vs. closed source software: towards measuring
security; in: Sung Y. Shin a. Sascha Ossowski, editors: Proceedings of the 2009 ACM
symposium on Applied Computing; New York, NY, USA: ACM, 2009 (= SAC ’09)
⟨URL: http://doi.acm.org/10.1145/1529282.1529731⟩ – reference download: 2012-01-06,
BibWeb/PDF, ISBN 978–1–60558–166–8, pp. 2016–2023

Schulz, Carsten: VSI-Gutachten zu Open-Source-Software. Die scharfe Klinge des Gesetzes? in:
Linux-Magazin, (2003), pp. 68ff

Schulz, Carsten: Dezentrale Softwareentwicklungs- und Softwarevermarktungskonzepte. Ver-
tragsstrukturen in Open Source Modellen; Köln, 2005

Schäfer, Fabian: Der virale Effekt. Entwicklungsrisiken im Umfeld von Open Source Software;
Karlsruhe: Universitätsverlag Karlsruhe, 2007, BibWeb/PDF, ISBN 978–3–86644–141–5

Searls, Doc: Linux for Suits: Linus Takes a Pass on the New GPL Draft; in: Linux Journal,
145 May (2006), p. 15 ⟨URL: http://dl.acm.org/citation.cfm?id=1134160.1134175⟩ –
reference download: 2011-12-28, BibWeb/HTML

Searls, Doc: Eof[:] Why to Build on Foss in the First Place; in: Linux Journal, 165
January (2008), pp.Article No. 16 ⟨URL: http://dl.acm.org/citation.cfm?id=1344189.
1344205⟩ – reference download: 2011-12-29, BibWeb/HTML

Searls, Doc: Eof[:] The Power of Definitions; in: Linux Journal, 177 January (2009), pp.Article
No. 15 ⟨URL: http://dl.acm.org/citation.cfm?id=1502508.1502523⟩ – reference down-
load: 2011-12-28, BibWeb/HTML

Sebald, Gerd : Offene Wissensökonomie. Analysen zur Wissenssoziologie der Free/Open Source
Softwareentwicklung; Dissertation; Wiesbaden: VS Verlag für Sozialwissenschaften, 2008,
Print a. BibWeb/PDF, ISBN 978–3–531–15705–4

Seel, Bernd a. Miriam Kraft : Einführung in das Prinzip Open Source; In Asche et al.:
Open Source. Kommerzialisierungsmöglichkeiten und Chancen für die Zusammenarbeit von
Hochschulen und Unternehmen, 2008, pp. 9–19, Print

Seemayer, Walter a. Jason Matusow : Das Microsoft-Shared-Source-Programm aus der Business-
Perspektive; In Lutterbeck a. Bärwolff : Open Source Jahrbuch, 2005, pp. 185–200 ⟨URL:
http://...mitaufnehmen..⟩

Sen, Ravi , Chandrasekar Subramaniam, a. Matthew Nelson: Determinants of the Choice of
Open Source Software License; in: J. Manage. Inf. Syst. 25 December (2008), pp. 207–240
⟨URL: http://dl.acm.org/citation.cfm?id=1554453.1554460⟩, ISSN 0742–1222

Sen, Ravi , Chandrasekar Subramaniam, a. Matthew L. Nelson: Open source software licenses:
Strong-copyleft, non-copyleft, or somewhere in between? in: Decision Support Systems, 52
(2011), No. 1, pp. 199–206 ⟨URL: http://www.sciencedirect.com/science/article/pii/
S0167923611001242⟩ – reference download: 2012-02-01, BibWeb/PDF

Sester, Peter : Open-Source-Software: Vertragsrecht, Haftungsrisiken und IPR-Fragen; in: CR
[Computer und Recht], (2000), pp. 797ff

Sethanandha, Bhuricha Deen: Improving Open Source Software Patch Contribution Process:
Methods and Tools; in: Proceedings of the 33rd International Conference on Software
Engineering; New York, NY, USA: ACM, 2011 (= ICSE ’11) ⟨URL: http://doi.acm.
org/10.1145/1985793.1986018⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN
978–1–4503–0445–0, pp. 1134–1135

Shibuya, Bianca a. Tetsuo Tamai : Understanding the Process of Participating in Open
Source Communities; In Proceedings of the 2009 ICSE Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, 2009, pp. 1–6 ⟨URL:
http://dx.doi.org/10.1109/FLOSS.2009.5071352⟩ – reference download: 2012-02-01, Bib-
Web/PDF

363

http://doi.acm.org/10.1145/1941487.1941516
http://doi.acm.org/10.1145/1529282.1529731
http://dl.acm.org/citation.cfm?id=1134160.1134175
http://dl.acm.org/citation.cfm?id=1344189.1344205
http://dl.acm.org/citation.cfm?id=1344189.1344205
http://dl.acm.org/citation.cfm?id=1502508.1502523
http://...mitaufnehmen..
http://dl.acm.org/citation.cfm?id=1554453.1554460
http://www.sciencedirect.com/science/article/pii/S0167923611001242
http://www.sciencedirect.com/science/article/pii/S0167923611001242
http://doi.acm.org/10.1145/1985793.1986018
http://doi.acm.org/10.1145/1985793.1986018
http://dx.doi.org/10.1109/FLOSS.2009.5071352

Bibliography

Siepmann, Jürgen: Lizenz- und haftungsrechtliche Fragen bei der kommerziellen Nutzung Freier
Software; in: JurPC Web-Dok, (1999), p. 163

Siepmann, Jürgen: Freie Software - Rechtfreier Raum? Rechtssicherheit im Umgang mit Open
Source Software; München, 2000

Singh, Param Vir : The Small-World Effect: The Influence of Macro-Level Properties of
Developer Collaboration Networks on Open-Source Project Cuccess; in: Transactions on
Software Engineering Methodology, 20 (2010), No. 2, pp. 6:1–6:27 ⟨URL: http://doi.acm.
org/10.1145/1824760.1824763⟩ – reference download: 2011-12-29, BibWeb/PDF

Siponen, Mikko: A Justification for Software Rights; in: SIGCAS, 36 September (2006),
No. 3, pp. 11–20 ⟨URL: http://dl.acm.org/citation.cfm?id=1195716.1195718⟩ – refer-
ence download: 2011-12-29, BibWeb/PDF

Sirkkala, Petri , Timo Aaltonen, a. Imed Hammouda: Opening Industrial Software: Planting
an Onion; conference contribution; In Boldyreff et al.: Open Source Ecosystems, 2009,
pp. 57–69, BibWeb/PDF

Smith, Bradford L.: The Future of Software: Enabling the Marketplace to Decide; In Hahn:
Government Policy toward Open Source Software, 2002

Sojer, Manuel : Reusing Open Source Code. Value Creation and Value Appropriation. Perspec-
tives on Knowledge Reuse; wuth a Foreword by Univ.-Prof. Dr. Joachim Henkel; Wiesbaden:
Gabler, 2011 (= Gabler Research[:] Innovation und Entrepreneurship), BibWEB/PDF, ISBN
978–8349–2668–5

Sojer, Manuel a. Joachim Henkel : License Risks from Ad Hoc Reuse of Code from the Internet;
in: Communications of the ACM, 54 December (2011), No. 12, pp. 74–81 ⟨URL: http://doi.
acm.org/10.1145/2043174.2043193⟩ – reference download: 2011-12-28, BibWeb/PDF

Soto, Martin a. Marcus Ciolkowski : The QualOSS Open Source Assessment Model Measuring
the Performance of Open Source Communities; in: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement; Washington, DC, USA:
IEEE Computer Society, 2009 (= ESEM ’09) ⟨URL: http://dx.doi.org/10.1109/ESEM.
2009.5314237⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 978–1–4244–4842–5,
pp. 498–501

Sowe, Sulayman K., Ioannis Stamelos , a. Lefteris Angelis : Understanding knowledge sharing ac-
tivities in free/open source software projects: An empirical study; in: Journal of Systems and
Software, 81 (2008), No. 3, pp. 431–446 ⟨URL: http://www.sciencedirect.com/science/
article/pii/S0164121207000842⟩ – reference download: 2012-02-03, BibWeb/PDF

Spielkamp, Mathias : Creative Commons[:] Andere Zeiten, andere Lizenzen; In Djordjevic et al.:
Urheberrecht im Alltag, 2008, pp. 219–221, Print

Spielkamp, Mathias: Lessigletters-Remix[:] Die Creative-Commons-Initiative; In Djordje-
vic et al.: Urheberrecht im Alltag, 2008, pp. 223–230, Print

Spindler, Gerald : Rechtsfragen der Open Source Software. Gutachten im Auftrags des VSI;
München, 2003

Spindler, Gerald : Stellungnahme [zum Gutachten der VSI]; in: Linux-Magazin, (2003), No. 9,
p. 70

Spindler, Gerald : Ausgewählte urheberrechtliche Problem von Open Source Software unter der
GPL; in: Alfread Büllesbacg a. Thomas Dreier, editors: Wem gehört die Information im 21.
Jahrhundert; 2004

Spindler, Gerald : Open Source Software auf dem gerichtlichen Prüfstand - Dingliche Qualifikation
und Inhaltskontrolle; in: Kommunikation und Recht, (2004), pp. 528–524

Spindler, Gerald; Spindler, Gerald, editor : Rechtsfragen bei Open Source Software; Köln:
Verlag Dr. Otto Schmidt KG, 2004, Print, ISBN 3–504–56080–0

Spindler, Gerald a. Andreas Wiebe: Open Source-Vertrieb - Rechteeinräumung und Nutzungs-
berechtigung; in: Computerrecht, (2003), pp. 873–879

364

http://doi.acm.org/10.1145/1824760.1824763
http://doi.acm.org/10.1145/1824760.1824763
http://dl.acm.org/citation.cfm?id=1195716.1195718
http://doi.acm.org/10.1145/2043174.2043193
http://doi.acm.org/10.1145/2043174.2043193
http://dx.doi.org/10.1109/ESEM.2009.5314237
http://dx.doi.org/10.1109/ESEM.2009.5314237
http://www.sciencedirect.com/science/article/pii/S0164121207000842
http://www.sciencedirect.com/science/article/pii/S0164121207000842

Bibliography

Splittgerber, Andrea; Schröder, Georg F., editor : Lizenzen und Open Source rechtlicht ein-
wandfrei nutzen. Eine klare Darstellung der Lizenzierung, Nutzungsrechtseinräumung und
deren Auswirkung auf Vertragsgestaltung; Kissing: Weka Media, 2005, Print, ISBN
3–8245–1286–3

St. Laurent, Andrew N.: Understanding open source and free software licensing: guide to
navigating licensing issues in existing & new software; Beijing and Köln: O’Reilly, 2004

Staff, CACM : True seeds of open source software; in: Commun. ACM, 52 January (2009),
pp. 6–6 ⟨URL: http://doi.acm.org/10.1145/1435417.1435420⟩, ISSN 0001–0782

Stahl, Matthew T.: Open-source software: not quite endsville; in: Drug Discovery Today, 10
(2005), No. 3, pp. 219–222 ⟨URL: http://www.sciencedirect.com/science/article/pii/
S1359644604033641⟩ – reference download: 2012-02-09, BibWeb/PDF

Stallman, Richard : Viewpoint: Why We Must Fight UCITA; in: Communications of the ACM,
43 June (2000), No. 6, pp. 27–28 ⟨URL: http://doi.acm.org/10.1145/336460.336470⟩ –
reference download: 2011-12-29, BibWeb/PDF

Stallman, Richard : Can Freedom Withstand E-Books? in: Communications of the ACM,
44 March (2001), No. 3, p. 111 ⟨URL: http://doi.acm.org/10.1145/365181.365227⟩ –
reference download: 2011-12-29, BibWeb/PDF

Stallman, Richard : Viewpoint: Why ”Open Source” Misses the Point of Free Software; in:
Commununications of the ACM, 52 June (2009), No. 6, pp. 31–33 ⟨URL: http://doi.acm.
org/10.1145/1516046.1516058⟩ – reference download: 2011-12-29, BibRef/PDF

Stallman, Richard M.: The Danger of Software Patents; 2001, FreeWeb/HTML ⟨URL: http:
//www.gnu.org/philosophy/stallman-mec-india.html⟩ – reference download: 2013-02-18

Stallman, Richard M.: Can You Trust Your Computer? [originally written in 2002]; In Stallman:
Free Software, Free Society: Selected Essays, 2002, pp. 115–117, Print

Stallman, Richard M.: The Danger of Software Patents; transcript of a speech given at
University of Cambridge, London on the 25th of March 2002; In Stallman: Free Software,
Free Society: Selected Essays, 2002, pp. 95–111, Print

Stallman, Richard M.: Free Software Definition; originally written in 1996; In Stallman: Free
Software, Free Society: Selected Essays, 2002, pp. 41–43, Print

Stallman, Richard M.; Gay, Joshua, editor : Free Software, Free Society: Selected Essays of
Richard M. Stallman; [with an] Introduction by Lawrence Lessig; Boston, MA USA: GNU
Press, 2002, Print, ISBN 1–882114–98–1

Stallman, Richard M.: Free Software: Freedom and Cooperation; transcript of a speech given
at New York University on 29 May 2001; In Stallman: Free Software, Free Society: Selected
Essays, 2002, pp. 155–186, Print

Stallman, Richard M.: Free Software Needs Free Documentation; originally written in 2000; In
Stallman: Free Software, Free Society: Selected Essays, 2002, pp. 67–68, Print

Stallman, Richard M.: The GNU Manifesto; originally written in 1984; In Stallman: Free
Software, Free Society: Selected Essays, 2002, pp. 31–39, Print

Stallman, Richard M.: The GNU Project; originally published in ’Open Sources: Voices from
the Open Source Revolution, O’Reilly, 1999’; In Stallman: Free Software, Free Society:
Selected Essays, 2002, pp. 15–30, Print

Stallman, Richard M.: The Right to Read; originally written in 1997; In Stallman: Free
Software, Free Society: Selected Essays, 2002, pp. 73–77, Print

Stallman, Richard M.: Selling Free Software; originally written in 1996; In Stallman: Free
Software, Free Society: Selected Essays, 2002, pp. 63–65, Print

Stallman, Richard M.: What is Copyleft? originally written in 1996; In Stallman: Free Software,
Free Society: Selected Essays, 2002, pp. 89–90, Print

Stallman, Richard M.: What’s in a Name? originally written in 2000; In Stallman: Free
Software, Free Society: Selected Essays, 2002, pp. 51–53, Print

365

http://doi.acm.org/10.1145/1435417.1435420
http://www.sciencedirect.com/science/article/pii/S1359644604033641
http://www.sciencedirect.com/science/article/pii/S1359644604033641
http://doi.acm.org/10.1145/336460.336470
http://doi.acm.org/10.1145/365181.365227
http://doi.acm.org/10.1145/1516046.1516058
http://doi.acm.org/10.1145/1516046.1516058
http://www.gnu.org/philosophy/stallman-mec-india.html
http://www.gnu.org/philosophy/stallman-mec-india.html

Bibliography

Stallman, Richard M.: Why ’Free Software’ is Better than ’Open Software’; originally written
in 1998; In Stallman: Free Software, Free Society: Selected Essays, 2002, pp. 55–60, Print

Stallman, Richard M.: Why Software Should Not Have Owners; originally written in 1994; In
Stallman: Free Software, Free Society: Selected Essays, 2002, pp. 45–49, Print

Stallman, Richard M.: Let’s Limit the Effect of Software Patents, Since We Can’t Elim-
inate Them; in: Wired, n.st. January (2012), p. wp ⟨URL: http://www.wired.com/

opinion/2012/11/richard-stallman-software-patents/⟩ – reference download: 2013-
02-18, FreeWeb/HTML, ISSN n.st.

Stallman, Richard M.: Fighting Software Patents - Singly and Together; n.st. [2004],
FreeWeb/HTML ⟨URL: http://www.gnu.org/philosophy/fighting-software-patents.
html⟩ – reference download: 2013-02-18

Steinbring, Marc a. Thorsten Hampel : Connecting Babbling Bazaars - Der Open-Source-Gedanke
im Wandel zum offenen Service; In Asche et al.: Open Source. Kommerzialisierungsmöglich-
keiten und Chancen für die Zusammenarbeit von Hochschulen und Unternehmen, 2008,
pp. 73–97, Print

Stewart, Katherine J., Anthony P. Ammeter , a. Likoebe M. Maruping : Impacts of License
Choice and Organizational Sponsorship on User Interest and Development Activity in Open
Source Software Projects; in: Informations Systems Research, 17 (2006), No. 2, pp. 126–144,
BibWeb/PDF

Stewart, Katherine J., David P. Darcy , a. Sherae L. Daniel : Observations on Patterns of
Development in Open Source Software Projects; In Proceedings of the Fifth Workshop on
Open Source Software Engineering, 2005, pp. 1–5 ⟨URL: http://doi.acm.org/10.1145/
1082983.1083272⟩ – reference download: 2011-12-29, BibWeb/PDF

Stol, Klaas-Jan a. Muhammad Ali Babar : Challenges in Using Open Source Software in
Product Development: A Review of the Literature; [General Chairs: Justin Erenkrantz
and Hyrum K. Wright]; In Proceedings of the 3rd International Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development, 2010, pp. 17–22
⟨URL: http://doi.acm.org/10.1145/1833272.1833276⟩ – reference download: 2011-12-29,
BibWeb/PDF

Stol, Klaas-Jan et al.: The Use of Empirical Methods in Open Source Software Research: Facts,
Trends and Future Directions; In Proceedings of the 2009 ICSE Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development, 2009, pp. 19–24
⟨URL: http://dx.doi.org/10.1109/FLOSS.2009.5071355⟩ – reference download: 2012-02-
01, BibWeb/PDF

Subramaniam, Chandrasekar , Ravi Sen, a. Matthew L. Nelson: Determinants of open source
software project success: A longitudinal study; in: Decision Support System, 46 (2009),
pp. 576–585, BibWeb/PDF

Subramanyam, Ramanath a. Mu Xia: Free/Libre Open Source Software development in de-
veloping and developed countries: A conceptual framework with an exploratory study; in:
Decision Support Systems, 46 (2008), No. 1, pp. 173–186 ⟨URL: http://www.sciencedirect.
com/science/article/pii/S016792360800119X⟩ – reference download: 2012-02-03, Bib-
Web/PDF

Suchomski, Bernd : Proprietäres Patentrecht beim Einsatz von Open Source Software. Eine
rechtliche Analyse aus unternehmerischer Sicht; Bonn: Tgramedia, 2011 (= Medien Internet
und Recht, [Vol./No.] 3), Print, ISBN 978–3–941192–03–4

Sujecki, Bartosz : Open Source Software im deutschen Vetrags- und Urheberrecht; in: Medien
und Recht, (2005), pp. 40–48

Sweet, David : Andamooka: Open Support for Open Content; in: Linux Journal, 82 February
(2001), pp.Article No. 13 ⟨URL: http://dl.acm.org/citation.cfm?id=364716.364729⟩ –
reference download: 2011-12-28, BibWeb/HTML

366

http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/
http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/
http://www.gnu.org/philosophy/fighting-software-patents.html
http://www.gnu.org/philosophy/fighting-software-patents.html
http://doi.acm.org/10.1145/1082983.1083272
http://doi.acm.org/10.1145/1082983.1083272
http://doi.acm.org/10.1145/1833272.1833276
http://dx.doi.org/10.1109/FLOSS.2009.5071355
http://www.sciencedirect.com/science/article/pii/S016792360800119X
http://www.sciencedirect.com/science/article/pii/S016792360800119X
http://dl.acm.org/citation.cfm?id=364716.364729

Bibliography

Syme, Serena a. L. Jean Camp: The Governance of Code: Open Land vs. UCITA Land; in:
SIGCAS, 32 (2002), No. 3, p. 2 ⟨URL: http://doi.acm.org/10.1145/644618.644623⟩ –
reference download: 2011-12-29, BibWeb/HTML

Taubert, Niels C.: Produktive Anarchie? Netzwerke freier Softwareentwicklung; Bielefeld:
transcript, 2006 (= Science Studies), Print, ISBN 3–89942–418–2

Terry, Michael , Matthew Kay , a. Ben Lafreniere: Perceptions and Practices of Usability in the
Free/Open Source Software (FoSS) Community; in: Proceedings of the 28th International
Conference on Human Factors in Computing Systems; New York, NY, USA: ACM, 2010
(= CHI ’10) ⟨URL: http://doi.acm.org/10.1145/1753326.1753476⟩ – reference download:
2011-12-29, BibWeb/PDF, ISBN 978–1–60558–929–9, pp. 999–1008

Terry, Michael et al.: ingimp: Introducing Instrumentation to an End-User Open Source
Application; in: Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human
Factors in Computing Systems; New York, NY, USA: ACM, 2008 (= CHI ’08) ⟨URL: http://
doi.acm.org/10.1145/1357054.1357152⟩ – reference download: 2012-02-01, BibWeb/PDF,
ISBN 978–1–60558–011–1, pp. 607–616

Teupen, Christian: ’Copyleft’ im deutschen Urheberrecht; Implikationen von Open Source
Software im Urhebergesetz; Berlin: Duncker & Humblot, 2007 (= Schriften zum Bürgerlichen
Recht, [Vol./No.] 367), Print, ISBN 978–3–428–12325–4

The Linux Foundation: SPDX License List; 2013, FreeWeb/HTML ⟨URL: http://spdx.org/
licenses/⟩ – reference download: 2014-03-14

Themelidis, Markos: Open Source : die Freiheitsvision der Hacker; Frankfurt a.M.: ???, 2004

Theunissen, W. H. Morkel , Andrew Boake, a. Derrick G. Kourie: In Search of the Sweet
Spot: Agile Open Collaborative Corporate Software Development; in: Proceedings of
the 2005 annual research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries; Republic of South
Africa: South African Institute for Computer Scientists and Information Technologists,
2005 (= SAICSIT ’05) ⟨URL: http://dl.acm.org/citation.cfm?id=1145675.1145705⟩ –
reference download: 2011-12-28, BibWeb/PDF, ISBN 1–59593–258–5, pp. 268–277

Thorvalds, Linus : Just for fun : wie ein Freak die Computerwelt revolutionierte; die Biographie
des Linux-Erfinders; München: ???, 2004

Torkar, Richard , Pau Minoves , a. Janina Garrigós: Adopting Free/Libre/Open Source Software.
Practices, Techniques and Methods for Industrial Use; in: JAIS, 12 (2011), No. 1, pp. 88–122,
BibWeb/PDF

Torvald, Linus: Just for Fun: wie ... [Biographie]; ???, 2004

Tsai, John: For Better or Worse: Introducing the GNU General Public License Version 3; in:
Berkeley Technology Law Review, 23 (2008), pp. 547–581, Copy

Tsunoda, Masateru et al.: Analyzing OSS Developers’ Working Time Using Mailing Lists
Archives; in: Proceedings of the 2006 International Workshop on Mining Software Repositories;
New York, NY, USA: ACM, 2006 (= MSR ’06) ⟨URL: http://doi.acm.org/10.1145/
1137983.1138031⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 1–59593–397–2,
pp. 181–182

Turner, David : Anatomy of GPL Violations; in: Free Software Foundation Bulletin, (2002),
No. 1, pp. 2–3

Turner, David : The LGPL and Java; 2004, FreeWeb/HTML ⟨URL: http://www.gnu.org/
licenses/lgpl-java.en.html⟩ – reference download: 2015-02-09

Tuunanen, Timo, Jussi Koskinen, a. Tommi Kärkkäinen: Automated software license analysis;
in: Automated Software Engineering, 16 (2009), pp. 455–490, BibWeb/PDF

Twidale, Michael : Silver Bullet or Fool’s Gold: Supporting Usability in Open Source Software
Development; in: Proceedings of the 27th International Conference on Software Engineering;

367

http://doi.acm.org/10.1145/644618.644623
http://doi.acm.org/10.1145/1753326.1753476
http://doi.acm.org/10.1145/1357054.1357152
http://doi.acm.org/10.1145/1357054.1357152
http://spdx.org/licenses/
http://spdx.org/licenses/
http://dl.acm.org/citation.cfm?id=1145675.1145705
http://doi.acm.org/10.1145/1137983.1138031
http://doi.acm.org/10.1145/1137983.1138031
http://www.gnu.org/licenses/lgpl-java.en.html
http://www.gnu.org/licenses/lgpl-java.en.html

Bibliography

New York, NY, USA: ACM, 2005 (= ICSE ’05) ⟨URL: http://doi.acm.org/10.1145/
1062455.1062468⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 1–58113–963–2,
p. 35

Uhr, Wolfrgang , Werner Esswein, a. Eric Schoop, editors : Wirtschaftsinformatik 2003 / Band
II. Medien - Märkte - Mobilität; Heidelberg: Physica-Verlag, 2003

Välimäki, Mikko: Copyleft Licensing and EC Competition Law; in: E.C.L.R, 27 (2006), No. 3,
pp. 130–136, Copy

Välimäki, Mikko, Ville Oksanen, a. Juha Laine: An Empirical Look at the Problems of
Open Source Adoption in Finnish Municipalities; in: Proceedings of the 7th International
Conference on Electronic Commerce; New York, NY, USA: ACM, 2005 (= ICEC ’05) ⟨URL:
http://doi.acm.org/10.1145/1089551.1089643⟩ – reference download: 2011-12-29, ISBN
1–59593–112–0, pp. 514–520

Valkov, Svilen: Innovative Concept of Open Source Enterprise Resource Planning (ERP) System;
in: Proceedings of the 9th International Conference on Computer Systems and Technologies
and Workshop for PhD Students in Computing; New York, NY, USA: ACM, 2008
(= CompSysTech ’08) ⟨URL: http://doi.acm.org/10.1145/1500879.1500893⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–954–9641–52–3, pp. 11.6.1–11.6.7

Vamplew, Peter a. Julian Dermoudy : An Anti-Plagiarism Editor for Software Development
Courses; in: Alison Young a. Denis Tolhurst, editors: Australasian Computing Education
Conference; Necastle (Australia), 2005 (= Australia. Conferences in Researhc an Practice
in Information Technology, [Vol./No.] 42), BibWeb/PDF, pp. 83–90

Van den Brande, Ywain, Shane Coughlan, a. Till Jaeger, editors: The International Free and
Open Source Software Law Book; Munich (Germany): Open Source Press, 2011, Print,
ISBN 978–3–941841–49–9

van Wendel de Joode, R., J. A. de Bruijn, a. M. J. G. van Eeten: Protecting the Virtual
Commons. Self-Organizing Open Source and Free Software Communities and Innovative
Intellectual Property Regimes; The Hague: T.M.C. Asser Press, 2003 (= Information
Technology & Law Series, [Vol./No.] 3), Print, ISBN 90–6704–159–9

Ven, Kris a. Jan Verelst : The Importance of External Support in the Adoption of Open Source
Server Software; conference contribution; In Boldyreff et al.: Open Source Ecosystems, 2009,
pp. 116–128, BibWeb/PDF

Vetter, Greg R.: ’Infectious’ Open Source Software: Spreading Incentives or Promoting Resis-
tance? in: Rutgers Law Journal, 36:53 (2005), pp. 53–162

Viesel, Edward : Freiheit statt Freibier. Geschichte und Praxis der freien digitalen Welt - mit
einer Einführung in Linux; Münster: Unrast-Verlag, 2006, Print, ISBN 3–897771–450–7

von Hippel, Eric a. Georg von Krogh: Open source software and the private-collective innovation
model: Issues for organization science; in: Organization Science, 14 (2002), No. 2, pp. 209–223

von Hippel, Eric a. Georg von Krogh: The Promise of Research on Open Source Software; in:
Management Science, 52 (2006), No. 7, pp. 975–983

von Krogh, G. a. E. von Hippel : The Promise of Research on Open Source Software; in:
Management Science, 2006 (52), pp. 975–983

von Krogh, Georg a. Sebastian Spaeth: The open source software phenomenon: Characteristics
that promote research; in: Journal of Strategic Information Systems, 16 (2007), p. 236–253,
BibWeb/PDF

Välimäki, Mikko: The Rise of Open Source Licensing; A Challenge to the Use of Intellectual
Property in the Software Industry;, PhD thesis ⟨URL: http://pub.turre.com⟩

Välimäki, Mikko: Dual Licensing in Open Source Software Industry; 2003 ⟨URL: http:
//opensource.mit.edu/papers/valimaki.pdf⟩

Wang, Yi , Defeng Guo, a. Huihui Shi : Measuring the Evolution of Open Source Software
Systems with their Communities; in: SIGSOFT Software Engineering Notes, 32 November

368

http://doi.acm.org/10.1145/1062455.1062468
http://doi.acm.org/10.1145/1062455.1062468
http://doi.acm.org/10.1145/1089551.1089643
http://doi.acm.org/10.1145/1500879.1500893
http://pub.turre.com
http://opensource.mit.edu/papers/valimaki.pdf
http://opensource.mit.edu/papers/valimaki.pdf

Bibliography

(2007), No. 6, pp. 1–7 ⟨URL: http://doi.acm.org/10.1145/1317471.1317479⟩ – reference
download: 2011-12-29, BibWeb/PDF

Watson, Richard T. et al.: The Business of Open Source; in: Communications of the ACM, 51
(2008), No. 4, pp. 41–46 ⟨URL: http://doi.acm.org/10.1145/1330311.1330321⟩

Weber, S.: The Success of Open Source; Cambridge MA: Harvard University Press, 2004

Weiss, Aaron: The Politics of Free (Software); in: netWorker, 5 September (2001), pp. 26–31
⟨URL: http://doi.acm.org/10.1145/383719.383727⟩

Weiss, Michael : Economics of Collectives; in: Proceedings of the 15th International Software
Product Line Conference; Volume 2, New York, NY, USA: ACM, 2011 ⟨URL: http://
doi.acm.org/10.1145/2019136.2019181⟩ – reference download: 2011-12-29, BibWeb/PDF,
ISBN 978–1–4503–0789–5, pp. 39:1–39:8

West, Joel : How open is open enough? Melding proprietary and open source platform strategies;
in: Research Policy, 32 (2003), pp. 1259–1285

Wheeler, David A.: Why Open Source Software / Free Software (OSS/FS)? Look at the
Numbers! 2002 ⟨URL: http://www.dwheeler.com/oss_fs_why.html⟩

Wichmann, Thorsten: Linux- und Open-Source-Strategien; Berlin, Heidelberg and New York:
Springer, 2005, BibWeb/PDF, ISBN 3–540–22810–1

Widmer, Mike J.: Open Source Software - Urheberrechtliche Aspekte freier Software; Disserta-
tion; Bern: Stämpfli Verlag, 2003, Print

Wiebe, A.: Softwarepatente und Open Source; in: CR [Computer und Recht], 20 (2004), No. 12,
pp. 881–888

Wikipedia (de): Microsoft Public License; n.l, 2013 [n.y.], FreeWeb/HTML ⟨URL: http:
//de.wikipedia.org/wiki/Microsoft_Public_License⟩ – reference download: 2013-02-26

Wikipedia (de): Microsoft Reciprocal License; n.l, 2013 [n.y.], FreeWeb/HTML ⟨URL: http:
//de.wikipedia.org/wiki/Ms-RL⟩ – reference download: 2013-02-26

Wikipedia (en): Free and open source software; n.l., 2011, FreeWeb/HTML (German Version
unter http://de.wikipedia.org/wiki/FLOSS) ⟨URL: http://en.wikipedia.org/wiki/Free_
and_open_source_software⟩ – reference download: 2011-09-08

Wikipedia (en): MIT License; n.l, 2011, FreeWeb/HTML ⟨URL: http://en.wikipedia.org/
wiki/MIT_License⟩ – reference download: 2011-09-20

Wikipedia (en): Copyleft; n.l., 2013 [n.y.], FreeWeb/HTML ⟨URL: http://en.wikipedia.
org/wiki/Copyleft⟩ – reference download: 2013-02-02

Wikipedia (en): Permissive free software licence; n.l., 2013 [n.y.], FreeWeb/HTML ⟨URL: http:
//en.wikipedia.org/wiki/Permissive_free_software_licence⟩ – reference download:
2013-02-02

Wikipedia (en): Shared source; n.l, 2013 [n.y.], FreeWeb/HTML ⟨URL: http://en.wikipedia.
org/wiki/Shared_source⟩ – reference download: 2013-02-26

Williams, Sam: Free as in Freedom. Richard Stallman’s Crusade for Free Software; Beijing [...
etc.]: O’Reilly, 2002, Print, ISBN 0–596–00287–4

Witzel, Michaela: AGB-Recht und Open Source Lizenzmodelle; in: ITRB (IT-Rechtsberater),
(2003), pp. 175ff

Wolf, M., K. Miller , a. F. Grodzinsky : On the meaning of free software; in: Ethics
and Information Technology, 11 (2009), pp. 279–286 ⟨URL: http://dx.doi.org/10.1007/
s10676-009-9207-9⟩ – reference download: 2012-02-03, BibWeb/PDF

Wolf, Marty J. et al.: Open Source Software: Intellectual Challenges to the Status Quo; in:
Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education;
New York, NY, USA: ACM, 2002 (= SIGCSE ’02) ⟨URL: http://doi.acm.org/10.1145/
563340.563464⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN 1–58113–473–8,
pp. 317–318

369

http://doi.acm.org/10.1145/1317471.1317479
http://doi.acm.org/10.1145/1330311.1330321
http://doi.acm.org/10.1145/383719.383727
http://doi.acm.org/10.1145/2019136.2019181
http://doi.acm.org/10.1145/2019136.2019181
http://www.dwheeler.com/oss_fs_why.html
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Shared_source
http://en.wikipedia.org/wiki/Shared_source
http://dx.doi.org/10.1007/s10676-009-9207-9
http://dx.doi.org/10.1007/s10676-009-9207-9
http://doi.acm.org/10.1145/563340.563464
http://doi.acm.org/10.1145/563340.563464

Bibliography

Wolf, Marty J., Keith W. Miller , a. Frances S. Grodzinsky : Free, Source-Code-Available, or
Proprietary: An Ethically Charged, Context-Sensitive Choice; in: SIGCAS, 39 June (2009),
No. 1, pp. 15–26 ⟨URL: http://doi.acm.org/10.1145/1565795.1565797⟩

Wolfe, Alexander : Toolkit: GNU Tools: Still Relevant? in: Queue, 1 December / January
(2003/2004), pp. 14–17 ⟨URL: http://doi.acm.org/10.1145/966789.966795⟩ – reference
download: 2011-12-29, BibWeb/PDF

Wuermeling, Ulrich a. Thies Deike: Open Source Software: Eine juristische Risikoanalyse; in:
CR [Computer und Recht], (2003), pp. 87ff

Wynants, Marleen a. Jan Cornelius, editors: How Open is the Future? Economic, Social
& Cultural Scenarios inspired by Free & Open-Source Software; Brüssel: VUB Brussels
University Press, 2005

Xing, Guangming : Teaching Software Engineering Using Open Source Software; in: Pro-
ceedings of the 48th Annual Southeast Regional Conference; New York, NY, USA: ACM,
2010 (= ACM SE ’10) ⟨URL: http://doi.acm.org/10.1145/1900008.1900085⟩ – reference
download: 2011-12-29, BibWeb/PDF, ISBN 978–1–4503–0064–3, pp. 57:1–57:3

Xu, Bo, Donald R. Jones , a. Bingjia Shao: Volunteers’ involvement in online community based
software development; in: Information & Management, 46 (2009), pp. 151–158, BibWeb/PDF

Yamakami, Toshihiko: Foundation-based Mobile Platform Software Engineering: Implications to
Convergence to Open Source Software; in: Proceedings of the 2nd International Conference
on Interaction Sciences: Information Technology, Culture and Human; New York, NY,
USA: ACM, 2009 (= ICIS ’09) ⟨URL: http://doi.acm.org/10.1145/1655925.1655962⟩ –
reference download: 2011-12-29, BibWeb/PDF, ISBN 978–1–60558–710–3, pp. 206–211

Yamakami, Toshihiko: OSS as a digital ecosystem: A Reference Model for Digital Ecosystem of
OSS; in: Proceedings of the International Conference on Management of Emergent Digital
EcoSystems; New York, NY, USA: ACM, 2010 (= MEDES ’10) ⟨URL: http://doi.acm.
org/10.1145/1936254.1936291⟩ – reference download: 2011-12-29, BibWeb/PDF, ISBN
978–1–4503–0047–6, pp. 207–208

Yatani, Koji et al.: Understanding How and Why Open Source Contributors Use Diagrams
in the Development of Ubuntu; in: Proceedings of the 27th International Conference on
Human Factors in Computing Systems; New York, NY, USA: ACM, 2009 (= CHI ’09)
⟨URL: http://doi.acm.org/10.1145/1518701.1518853⟩ – reference download: 2012-02-01,
BibWeb/PDF, ISBN 978–1–60558–246–7, pp. 995–1004

Ye, Yunwen a. Kouichi Kishida: Toward An Understanding of the Motivation of Open
Source Software Developers; in: Proceedings of the 25th International Conference on
Software Engineering; Washington, DC, USA: IEEE Computer Society, 2003 (= ICSE
’03) ⟨URL: http://dl.acm.org/citation.cfm?id=776816.776867⟩, ISBN 0–7695–1877–X,
pp. 419–429

Yildirim, Nihan a. Hacer Ansal : Foresighting FLOSS (free/libre/open source software) from a de-
veloping country perspective: The case of Turkey; in: Technovation, 31 (2011), No. 12, pp. 666 –
678 ⟨URL: http://www.sciencedirect.com/science/article/pii/S0166497211001052⟩,
ISSN 0166–4972

Yue, Kwok-Bun et al.: The Use of Free and Open Source Software in Real-World Capstone
Projects; in: JCSC, 26 April (2011), No. 4, pp. 85–92 ⟨URL: http://dl.acm.org/citation.
cfm?id=1953573.1953587⟩ – reference download: 2011-12-29, BibWeb/PDF

Yue, Kwok-Bun et al.: Open Courseware and Computer Science Education; in: JCSC, 20
October (2004), No. 1, pp. 178–186 ⟨URL: http://dl.acm.org/citation.cfm?id=1040231.
1040255⟩

Zacchiroli, Stefano: Debian: 18 years of free software, do-ocracy, and democracy; in: Proceedings
of the 2011 Workshop on Open Source and Design of Communication; New York, NY, USA:

370

http://doi.acm.org/10.1145/1565795.1565797
http://doi.acm.org/10.1145/966789.966795
http://doi.acm.org/10.1145/1900008.1900085
http://doi.acm.org/10.1145/1655925.1655962
http://doi.acm.org/10.1145/1936254.1936291
http://doi.acm.org/10.1145/1936254.1936291
http://doi.acm.org/10.1145/1518701.1518853
http://dl.acm.org/citation.cfm?id=776816.776867
http://www.sciencedirect.com/science/article/pii/S0166497211001052
http://dl.acm.org/citation.cfm?id=1953573.1953587
http://dl.acm.org/citation.cfm?id=1953573.1953587
http://dl.acm.org/citation.cfm?id=1040231.1040255
http://dl.acm.org/citation.cfm?id=1040231.1040255

Bibliography

ACM, 2011 (= OSDOC ’11) ⟨URL: http://doi.acm.org/10.1145/2016716.2016740⟩,
ISBN 978–1–4503–0873–1, pp. 87–87

Zhang, Wen, Ye Yang , a. Qing Wang : Network Analysis of OSS Evolution: An Empirical Study
on ArgoUML Project; in: Proceedings of the 12th International Workshop on Principles
of Software Evolution and the 7th annual ERCIM Workshop on Software Evolution; New
York, NY, USA: ACM, 2011 (= IWPSE-EVOL ’11) ⟨URL: http://doi.acm.org/10.1145/
2024445.2024459⟩ – reference download: 2012-02-01, BibWeb/PDF, ISBN 978–1–4503–0848–
9, pp. 71–80

Zhou, Ying a. Joseph Davis: Open source software reliability model: an empirical approach;
in: Proceedings of the fifth workshop on Open source software engineering; New York, NY,
USA: ACM, 2005 (= 5-WOSSE) ⟨URL: http://doi.acm.org/10.1145/1082983.1083273⟩,
ISBN 1–59593–127–9, pp. 1–6

Zittrain, Jonathan: Normative Principles for Evaluating Free and Proprietary Software; in:
University of Chicago Law Review, 71 (2004), No. 1, pp. 265–287, BibWeb/PDF

Zucker, William A.: Intellectual Property and Open Source: Copyright, Copyleft, and Other
Issues for the User Community; in: Cutter IT Journal, 16 (2003), No. 5, pp. 27–34, Copy

371

http://doi.acm.org/10.1145/2016716.2016740
http://doi.acm.org/10.1145/2024445.2024459
http://doi.acm.org/10.1145/2024445.2024459
http://doi.acm.org/10.1145/1082983.1083273

	Introduction
	Open Source: The Same Idea, Different Licenses
	The GNU Affero General Public License (AGPL)
	The Apache License (Apache-2.0)
	The BSD licenses
	The CDDL [tbd]
	The Eclipse Public License (EPL)
	The European Union Public License (EUPL)
	The GNU General Public License (GPL)
	GPL-2.0
	GPL-3.0

	The GNU Lesser General Public License (LGPL)
	LGPL-2.1
	LGPL-3.0

	The MIT license
	The Mozilla Public License (MPL)
	The Microsoft Public License (MS-PL)
	The Postgres License (PostgreSQL)
	The PHP License
	Summary

	Open Source: About Some Side Effects
	The problem of implicitly releasing patents
	AGPL statements concerning patents
	Apache-2.0 statements concerning patents
	CDDL statements concerning patents
	EPL statements concerning patents
	EUPL statements concerning patents
	GPL statements concerning patents
	GPL-2.0
	GPL-3.0

	LGPL statements concerning patents
	LGPL-2.1
	LGPL-3.0

	MPL statements concerning patents
	MS-PL statements concerning patents

	Excursion: Why linking is a secondary criterium
	Excursion: What is a 'Derivative Work' - the basic idea of open source
	Excursion: Reverse Engineering and Open Source
	Reverse Engineering in the LGPL-v2
	Linguistical Clarification
	Logical Clarification
	Empirical Clarification
	Final Conclusion
	Distributing works with manually copied portions of the Library evokes the copyleft effect:
	Distributing scripts does not need reverse engineering:
	Distributing statically combined bytecode requires the permission of reverse engineering:
	Distributing statically combined binaries require the permission of reverse engineering:
	Distributing dynamically combinable bytecode and linkable object code does not require the permission of reverse engineering:
	LGPL-v2 compliance with or without permitting reverse engineering:

	Final Securing

	Reverse Engineering in the LGPL-v3
	Reverse Engineering in the other Open Source Licenses
	Reverse Engineering in Open Source Licenses: Summary

	Excursion: The problem of license compatibility [tbd]
	Excursion: open source software and money [tbd]

	Open Source Use Cases: Concept and Taxonomy
	Open Source Use Cases: Find the License Fulfilling To-do Lists
	A standard form for gathering the relevant information
	The taxonomic Open Source Use Case Finder
	The open source use cases and its to-do list references

	Open Source License Compliance: To-Do Lists
	Some general remarks on 'giving' someone a file
	AGPL licensed software
	AGPL-3.0-C1: Using the software only for yourself under additional restrictions
	AGPL-3.0-C2: Passing the unmodified software as independent sources
	AGPL-3.0-C3: Passing the unmodified software as independent binaries
	AGPL-3.0-C4: Passing the unmodified library as embedded sources
	AGPL-3.0-C5: Passing the unmodified library as embedded binaries
	AGPL-3.0-C6: Passing a modified program as source code
	AGPL-3.0-C7: Passing a modified program as binary
	AGPL-3.0-C8: Passing a modified library as independent source code
	AGPL-3.0-C9: Passing a modified library as independent binary
	AGPL-3.0-CA: Passing a modified library as embedded source code
	AGPL-3.0-CB: Passing a modified library as embedded binary
	AGPL-3.0-CC: Executing a modified program with network interaction
	AGPL-3.0-CD: Executing a (modified) library as embedded component with network interaction
	Discussions and Explanations

	Apache-2.0 licensed software
	Apache-2.0-C1: Using the software only for yourself
	Apache-2.0-C2: Passing the unmodified software as source code
	Apache-2.0-C3: Passing the unmodified software as binaries
	Apache-2.0-C4: Passing a modified program as source code
	Apache-2.0-C5: Passing a modified program as binary
	Apache-2.0-C6: Passing a modified library as independent source code
	Apache-2.0-C7: Passing a modified library as independent binary
	Apache-2.0-C8: Passing a modified library as embedded source code
	Apache-2.0-C9: Passing a modified library as embedded binary
	Discussions and Explanations

	BSD licensed software
	BSD-3-Clause-C1: Using the software only for yourself
	BSD-3-Clause-C2: Passing the unmodified software as source code
	BSD-3-Clause-C3: Passing the unmodified software as binary
	BSD-3-Clause-C4: Passing a modified program as source code
	BSD-3-Clause-C5: Passing a modified program as binary
	BSD-3-Clause-C6: Passing a modified library as independent source code
	BSD-3-Clause-C7: Passing a modified library as independent binary
	BSD-3-Clause-C8: Passing a modified library as embedded source code
	BSD-3-Clause-C9: Passing a modified library as embedded binary
	BSD-2-Clause-C1: Using the software only for yourself
	BSD-2-Clause-C2: Passing the unmodified software as source code
	BSD-2-Clause-C3: Passing the unmodified software as binary
	BSD-2-Clause-C4: Passing a modified program as source code
	BSD-2-Clause-C5: Passing a modified program as binary
	BSD-2-Clause-C6: Passing a modified library as independent source code
	BSD-2-Clause-C7: Passing a modified library as independent binary
	BSD-2-Clause-C8: Passing a modified library as embedded source code
	BSD-2-Clause-C9: Passing a modified library as embedded binary
	Discussions and Explanations

	CDDL licensed software [tbd]
	CDDL-1: Using the software only for yourself
	CDDL-2: Passing the unmodified software as source code
	CDDL-3: Passing the unmodified software as binaries
	CDDL-4: Passing a modified program as source code
	CDDL-5: Passing a modified program as binary
	CDDL-6: Passing a modified library as independent source code
	CDDL-7: Passing a modified library as independent binary
	CDDL-8: Passing a modified library as embedded source code
	CDDL-9: Passing a modified library as embedded binary
	Discussions and Explanations

	EPL-1.0 licensed software
	EPL-1.0-C1: Using the software only for yourself
	EPL-1.0-C2: Passing the unmodified software as source code
	EPL-1.0-C3: Passing the unmodified software as binaries
	EPL-1.0-C4: Passing a modified program as source code
	EPL-1.0-C5: Passing a modified program as binary
	EPL-1.0-C6: Passing a modified library as independent source code
	EPL-1.0-C7: Passing a modified library as independent binary
	EPL-1.0-C8: Passing a modified library as embedded source code
	EPL-1.0-C9: Passing a modified library as embedded binary
	Discussions and Explanations

	EUPL-1.1 licensed software
	EUPL-1.1-C1: Using the software only for yourself
	EUPL-1.1-C2: Passing the unmodified software as independent sources
	EUPL-1.1-C3: Passing the unmodified software as independent binaries
	EUPL-1.1-C4: Passing the unmodified library as embedded sources
	EUPL-1.1-C5: Passing the unmodified library as embedded binaries
	EUPL-1.1-C6: Passing a modified program as source code
	EUPL-1.1-C7: Passing a modified program as binary
	EUPL-1.1-C8: Passing a modified library as independent source code
	EUPL-1.1-C9: Passing a modified library as independent binary
	EUPL-1.1-CA: Passing a modified library as embedded source code
	EUPL-1.1-CB: Passing a modified library as embedded binary
	Discussions and Explanations

	GPL licensed software
	GPL-2.0-C1: Using the software only for yourself
	GPL-2.0-C2: Passing the unmodified software as independent sources
	GPL-2.0-C3: Passing the unmodified software as independent binaries
	GPL-2.0-C4: Passing the unmodified library as embedded sources
	GPL-2.0-C5: Passing the unmodified library as embedded binaries
	GPL-2.0-C6: Passing a modified program as source code
	GPL-2.0-C7: Passing a modified program as binary
	GPL-2.0-C8: Passing a modified library as independent source code
	GPL-2.0-C9: Passing a modified library as independent binary
	GPL-2.0-CA: Passing a modified library as embedded source code
	GPL-2.0-CB: Passing a modified library as embedded binary
	GPL-3.0-C1: Using the software only for yourself
	GPL-3.0-C2: Passing the unmodified software as independent sources
	GPL-3.0-C3: Passing the unmodified software as independent binaries
	GPL-3.0-C4: Passing the unmodified library as embedded sources
	GPL-3.0-C5: Passing the unmodified library as embedded binaries
	GPL-3.0-C6: Passing a modified program as source code
	GPL-3.0-C7: Passing a modified program as binary
	GPL-3.0-C8: Passing a modified library as independent source code
	GPL-3.0-C9: Passing a modified library as independent binary
	GPL-3.0-CA: Passing a modified library as embedded source code
	GPL-3.0-CB: Passing a modified library as embedded binary
	Discussions and Explanations

	LGPL licensed software
	LGPL-2.1-C1: Using the software only for yourself
	LGPL-2.1-C2: Passing the unmodified software as independent source code
	LGPL-2.1-C3: Passing the unmodified software as independent binaries
	LGPL-2.1-C4: Passing the unmodified library as embedded source code
	LGPL-2.1-C5: Passing the unmodified library as embedded binaries
	LGPL-2.1-C6: Passing a modified program as source code
	LGPL-2.1-C7: Passing a modified program as binary
	LGPL-2.1-C8: Passing a modified library as independent source code
	LGPL-2.1-C9: Passing a modified library as independent binary
	LGPL-2.1-CA: Passing a modified library as embedded source code
	LGPL-2.1-CB: Passing a modified library as embedded binary
	LGPL-3.0-C1: Using the software only for yourself
	LGPL-3.0-C2: Passing the unmodified software as independent source code
	LGPL-3.0-C3: Passing the unmodified software as independent binaries
	LGPL-3.0-C4: Passing the unmodified library as embedded source code
	LGPL-3.0-C5: Passing the unmodified library as embedded binaries
	LGPL-3.0-C6: Passing a modified program as source code
	LGPL-3.0-C7: Passing a modified program as binary
	LGPL-3.0-C8: Passing a modified library as independent source code
	LGPL-3.0-C9: Passing a modified library as independent binary
	LGPL-3.0-CA: Passing a modified library as embedded source code
	LGPL-3.0-CB: Passing a modified library as embedded binary
	Discussions and Explanations

	MIT licensed software
	MIT-C1: Using the software only for yourself
	MIT-C2: Passing the unmodified software
	MIT-C3: Passing a modified program
	MIT-C4: Passing a modified library independently
	MIT-C5: Passing a modified library as embedded component
	Discussions and Explanations

	MPL-2.0 licensed software
	MPL-2.0-C1: Using the software only for yourself
	MPL-2.0-C2: Passing the unmodified software as source code
	MPL-2.0-C3: Passing the unmodified software as binaries
	MPL-2.0-C4: Passing a modified program as source code
	MPL-2.0-C5: Passing a modified program as binary
	MPL-2.0-C6: Passing a modified library as independent source code
	MPL-2.0-C7: Passing a modified library as independent binary
	MPL-2.0-C8: Passing a modified library as embedded source code
	MPL-2.0-C9: Passing a modified library as embedded binary
	Discussions and Explanations

	Microsoft Public License
	MS-PL-C1: Using the software only for yourself
	MS-PL-C2: Passing the unmodified software
	MS-PL-C3: Passing a modified program as source code
	MS-PL-C4: Passing a modified program as binary
	MS-PL-C5: Passing a modified library independently as source code
	MS-PL-C6: Passing a modified library independently as binary
	MS-PL-C7: Passing a modified library as embedded source code
	MS-PL-C8: Passing a modified library as embedded binary
	Discussions and Explanations

	PostgreSQL License
	PostgreSQL-C1: Using the software only for yourself
	PostgreSQL-C2: Passing the unmodified software
	PostgreSQL-C3: Passing a modified program
	PostgreSQL-C4: Passing a modified library independently
	PostgreSQL-C5: Passing a modified library as embedded component
	Discussions and Explanations

	PHP-3.0 licensed software
	PHP-3.0-C1: Using the software only for yourself
	PHP-3.0-C2: Passing the unmodified software as source code
	PHP-3.0-C3: Passing the unmodified software as binary
	PHP-3.0-C4: Passing a modified program as source code
	PHP-3.0-C5: Passing a modified program as binary
	PHP-3.0-C6: Passing a modified library as independent source code
	PHP-3.0-C7: Passing a modified library as independent binary
	PHP-3.0-C8: Passing a modified library as embedded source code
	PHP-3.0-C9: Passing a modified library as embedded binary
	Discussions and Explanations

	Conclusion
	Appendices
	Some Additional Remarks on the OSLiC Quotation Style
	Some Widespread Open Source Myths
	Why
	What

	Periodicals, Shortcuts, and Abbreviations
	Bibliography

