Version 1.0.2

A Practical Guide for Developers, Managers, OS Experts, and Companies

Open Source License Compendium

How to Achieve Open Source License Compliance*

Karsten Reincke! Greg Sharpe!

June 14, 2018

*) This text is licensed under the Creative Commons Attribution-ShareAlike 3.0
Germany License (http://creativecommons.org/licenses/by-sa/3.0/de/): Feel free
“to share (to copy, distribute and transmit)” or “to remix (to adapt)” it, if you
“[...] distribute the resulting work under the same or similar license to this one”
and if you respect how “you must attribute the work in the manner specified by the
author(s) [...]”):

In an internet based reuse please mention the initial authors in a suitable manner,
name their sponsor Deutsche Telekom AG and link it to http://www.telekom. com.
In a paper-like reuse please insert a short hint to http://www.telekom. com, to the
initial authors, and to their sponsor Deutsche Telekom AG into your preface. For
normal citations please use the scientific standard.
[derived from myCsrf (= ’mind your Scholar Research Framework’) @K. Reincke CC BY 3.0 http://mycsrf.fodina.de/)]
) Deutsche Telekom AG, Products & Innovation, T-Online-Allee 1, 64295 Darmstadt
Y Deutsche Telekom AG, Telekom Deutschland GmbH, Landgrabenweg, Bonn

The Open Source Community is a swarm: it is more powerful
than a set of arbritarily selected experts. We are proud to have its
support. Gladly we thank (in alphabetical order):

Eitan Adler,

Stefan Altmeyer (Deutsche Telekom AG),
Ronald Dauster,

John Dobson,

Steffen Héartlein,

Ta’ld Holmes (Deutsche Telekom AG),

Michael Kern (Deutsche Telekom AG),

Michael Machado (Deutsche Telekom AG),
Thorsten Miiller (Deutsche Telekom AG),

Tanja Neske (Deutsche Telekom AG),

Oliver Podebradt (Deutsche Telekom AG),
Thomas Quiehl (Deutsche Telekom AG),

Peter Schichl (Deutsche Telekom AG),

Michael Schierl,

Helene Tamer (T-Systems Internationl AG),
Bernhard Tsai (Deutsche Telekom AG),

Thomas Weilschuh (Amadeus Germany GmbH),
...additionally all the feedback giving participants of the European
Legal & Licensing Workshop 2013 in Amstardam
and all the others. ..

Contents

1 Introduction

2 Open Source: The Same ldea, Different Licenses

The protecting power of the GNU Affero General Public License (AGPL) . . .
The protecting power of the Apache License (Apache-2.0)
The protecting power of the BSD licenses
The protecting power of the CDDL [thd]
The protecting power of the Eclipse Public License (EPL)
The protecting power of the European Union Public License (EUPL)
The protecting power of the GNU General Public License (GPL)

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.7.1 GPL-2.0 e e e e e e e e
2.7.2 GPL-3.0 e e e e e
The protecting power of the GNU Lesser General Public License (LGPL) . . .
2.8.1 LGPL-2.1 e e e e e
2.8.2 LGPL-3.0 e e e e e e

2.9 The protecting power of the MIT license
2.10 The protecting power of the Mozilla Public License (MPL)
2.11 The protecting power of the Microsoft Public License (MS-PL)
2.12 The protecting power of the Postgres License (PostgreSQL)
2.13 The protecting power of the PHP License
2.14 Summary L Lo o oo Lo e e e e e e e e e e e e e e

3 Open Source: About Some Side Effects
3.1 The problem of implicitly releasing patents

3.2
3.3
3.4

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

3.1.7

3.1.8
3.1.9

AGPL statements concerning patents
Apache-2.0 statements concerning patents
CDDL statements concerning patents
EPL statements concerning patents
EUPL statements concerning patents
GPL statements concerning patents
3.1.6.1 GPL-2.0. s
3.1.6.2 GPL-3.0. s
LGPL statements concerning patents
3.1.71 LGPL-2.1 o L
3.1.72 LGPL-3.0 oo
MPL statements concerning patents
MS-PL statements concerning patents

Excursion: Why linking is a secondary criterium
Excursion: What is a 'Derivative Work’ - the basic idea of open source
Excursion: Reverse Engineering and Open Source

3.4.1

Reverse Engineering in the LGPL-v2
3.4.1.1 Linguistical Clarification
3.4.1.2 Logical Clarification
3.4.1.3 Empirical Clarification

3.4.2 Reverse Engineering in the LGPL-v3

3.4.3 Reverse Engineering in the other Open Source Licenses

3.4.4 Reverse Engineering in Open Source Licenses: Summary
3.5 Excursion: The problem of license compatibility [tbd]
3.6 Excursion: open source software and money [tbd]

3.4.1.4 Final
3.4.1.4.1

3.4.1.4.2
3.4.1.4.3

3.4.14.4

3.4.1.4.5

3.4.1.4.6

3.4.1.5 Final

Contents

Conclusiono
Distributing works with manually copied portions of
the Library evokes the copyleft effect:
Distributing scripts does not need reverse engineering:
Distributing statically combined bytecode requires the
permission of reverse engineering:
Distributing statically combined binaries require the
permission of reverse engineering:
Distributing dynamically combinable bytecode and link-
able object code does not require the permission of
reverse engineering: oL . ..
LGPL-v2 compliance with or without permitting re-
verse engineering:

Securing oo o o e

Open Source Use Cases: Concept and Taxonomy

Open Source Use Cases: Find the License Fulfilling To-do Lists

5.1 A standard form for gathering the relevant information
5.2 The taxonomic Open Source Use Case Finder
5.3 The open source use cases and its to-do list references

Open Source License Compliance: To-Do Lists

6.1 Some general remarks on 'giving’ someone a file
6.2 AGPL licensed software

6.2.1

6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13

6.2.14
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

AGPL-3.0-C1:
restrictions
AGPL-3.0-C2:
AGPL-3.0-C3:
AGPL-3.0-C4:
AGPL-3.0-C5:
AGPL-3.0-C6:
AGPL-3.0-CT:
AGPL-3.0-C8:
AGPL-3.0-C9:
AGPL-3.0-CA:
AGPL-3.0-CB:
AGPL-3.0-CC:
AGPL-3.0-CD:

with network interaction
Discussions and Explanations
Apache-2.0 licensed software

Apache-2.0-C1:
Apache-2.0-C2:
Apache-2.0-C3:
Apache-2.0-C4:
Apache-2.0-C5:

Using the software only for yourself under additional
Passing the unmodified software as independent sources
Passing the unmodified software as independent binaries
Passing the unmodified library as embedded sources
Passing the unmodified library as embedded binaries . .
Passing a modified program as source code
Passing a modified program as binary
Passing a modified library as independent source code
Passing a modified library as independent binary
Passing a modified library as embedded source code
Passing a modified library as embedded binary
Executing a modified program with network interaction
Executing a (modified) library as embedded component

Using the software only for yourself
Passing the unmodified software as source code
Passing the unmodified software as binaries
Passing a modified program as source code
Passing a modified program as binary

83
85

110
112

127
127
128

128
129
130
131
132
133

136

6.4

6.5

6.6

6.7

6.3.6
6.3.7
6.3.8
6.3.9
6.3.10

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

EPL-1.0 licensed software

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9

6.7.1

Contents

Apache-2.0-C6: Passing a modified library as independent source code .
Apache-2.0-C7: Passing a modified library as independent binary .
Apache-2.0-C8: Passing a modified library as embedded source code . .
Apache-2.0-C9: Passing a modified library as embedded binary

Discussions and Explanations L.
BSD licensed software .

BSD-3-Clause-C1:
BSD-3-Clause-C2:
BSD-3-Clause-C3:
BSD-3-Clause-C4:
BSD-3-Clause-C5:
BSD-3-Clause-C6:
BSD-3-Clause-CT7:
BSD-3-Clause-CS8:
BSD-3-Clause-C9:
BSD-2-Clause-C1:
BSD-2-Clause-C2:
BSD-2-Clause-C3:
BSD-2-Clause-C4:
BSD-2-Clause-C5:
BSD-2-Clause-C6:
BSD-2-Clause-C7:
BSD-2-Clause-CS8:
BSD-2-Clause-C9:

Using the software only for yourself
Passing the unmodified software as source code . . .
Passing the unmodified software as binary
Passing a modified program as source code
Passing a modified program as binary
Passing a modified library as independent source code
Passing a modified library as independent binary . .
Passing a modified library as embedded source code
Passing a modified library as embedded binary . . .
Using the software only for yourself
Passing the unmodified software as source code . . .
Passing the unmodified software as binary
Passing a modified program as source code
Passing a modified program as binary
Passing a modified library as independent source code
Passing a modified library as independent binary . .
Passing a modified library as embedded source code
Passing a modified library as embedded binary . . .

Discussions and Explanations,
CDDL licensed software [thd]
CDDL-1: Using the software only for yourself
CDDL-2: Passing the unmodified software as source code
CDDL-3: Passing the unmodified software as binaries
CDDL-4: Passing a modified program as source code
CDDL-5: Passing a modified program as binary
CDDL-6: Passing a modified library as independent source code
CDDL-7: Passing a modified library as independent binary
CDDL-8: Passing a modified library as embedded source code
CDDL-9: Passing a modified library as embedded binary
6.5.10 Discussions and Explanations L.,

EPL-1.0-C1: Using the software only for yourself
EPL-1.0-C2: Passing the unmodified software as source code
EPL-1.0-C3: Passing the unmodified software as binaries
EPL-1.0-C4: Passing a modified program as source code
EPL-1.0-C5: Passing a modified program as binary
EPL-1.0-C6: Passing a modified library as independent source code
EPL-1.0-C7: Passing a modified library as independent binary
EPL-1.0-C8: Passing a modified library as embedded source code
EPL-1.0-C9: Passing a modified library as embedded binary
6.6.10 Discussions and Explanations L.
EUPL-1.1 licensed software
EUPL-1.1-C1: Using the software only for yourself
6.7.2 EUPL-1.1-C2: Passing the unmodified software as independent sources
6.7.3 EUPL-1.1-C3: Passing the unmodified software as independent binaries

155
155
156
158
159
160
161
162
162
163
164
164
165
166
167
168
168
169
169
170
171
171
172
173
174
176
176
177
177
177
178
178
178
179
179
180
180
181
182
183
184
185
186
188
189
190
192
194
196
197
197

6.8

6.9

Contents

6.7.4 EUPL-1.1-C4: Passing the unmodified library as embedded sources 199
6.7.5 EUPL-1.1-C5: Passing the unmodified library as embedded binaries . . 199
6.7.6 EUPL-1.1-C6: Passing a modified program as source code 201
6.7.7 EUPL-1.1-CT7: Passing a modified program as binary 202
6.7.8 EUPL-1.1-C8: Passing a modified library as independent source code 203
6.7.9 EUPL-1.1-C9: Passing a modified library as independent binary 204
6.7.10 EUPL-1.1-CA: Passing a modified library as embedded source code 205
6.7.11 EUPL-1.1-CB: Passing a modified library as embedded binary 207
6.7.12 Discussions and Explanations 208
GPL licensed software e 209
6.8.1 GPL-2.0-Cl: Using the software only for yourself 211
6.8.2 (GPL-2.0-C2: Passing the unmodified software as independent sources 212
6.8.3 GPL-2.0-C3: Passing the unmodified software as independent binaries . 212
6.8.4 GPL-2.0-C4: Passing the unmodified library as embedded sources . . . 214
6.8.5 GPL-2.0-C5: Passing the unmodified library as embedded binaries . . . 215
6.8.6 GPL-2.0-C6: Passing a modified program as source code 216
6.8.7 GPL-2.0-C7: Passing a modified program as binary 217
6.8.8 GPL-2.0-C8: Passing a modified library as independent source code . . 219
6.8.9 GPL-2.0-C9: Passing a modified library as independent binary 220
6.8.10 GPL-2.0-CA: Passing a modified library as embedded source code . . . 221
6.8.11 GPL-2.0-CB: Passing a modified library as embedded binary 222
6.8.12 GPL-3.0-C1: Using the software only for yourself 224
6.8.13 GPL-3.0-C2: Passing the unmodified software as independent sources 224
6.8.14 GPL-3.0-C3: Passing the unmodified software as independent binaries . 225
6.8.15 GPL-3.0-C4: Passing the unmodified library as embedded sources . . . 226
6.8.16 GPL-3.0-C5: Passing the unmodified library as embedded binaries . . . 227
6.8.17 GPL-3.0-C6: Passing a modified program as source code 228
6.8.18 GPL-3.0-CT7: Passing a modified program as binary 230
6.8.19 GPL-3.0-C8: Passing a modified library as independent source code . . 231
6.8.20 GPL-3.0-C9: Passing a modified library as independent binary 232
6.8.21 GPL-3.0-CA: Passing a modified library as embedded source code . . . 234
6.8.22 GPL-3.0-CB: Passing a modified library as embedded binary 235
6.8.23 Discussions and Explanations 236
LGPL licensed softwareo 241
6.9.1 LGPL-2.1-C1: Using the software only for yourself 243
6.9.2 LGPL-2.1-C2: Passing the unmodified software as independent source code244
6.9.3 LGPL-2.1-C3: Passing the unmodified software as independent binaries 244
6.9.4 LGPL-2.1-C4: Passing the unmodified library as embedded source code 246
6.9.5 LGPL-2.1-C5: Passing the unmodified library as embedded binaries . . 246
6.9.6 LGPL-2.1-C6: Passing a modified program as source code 248
6.9.7 LGPL-2.1-C7: Passing a modified program as binary 248
6.9.8 LGPL-2.1-C8: Passing a modified library as independent source code 249
6.9.9 LGPL-2.1-C9: Passing a modified library as independent binary 250
6.9.10 LGPL-2.1-CA: Passing a modified library as embedded source code 251
6.9.11 LGPL-2.1-CB: Passing a modified library as embedded binary 253
6.9.12 LGPL-3.0-C1: Using the software only for yourself 254
6.9.13 LGPL-3.0-C2: Passing the unmodified software as independent source code255
6.9.14 LGPL-3.0-C3: Passing the unmodified software as independent binaries 256
6.9.15 LGPL-3.0-C4: Passing the unmodified library as embedded source code 257
6.9.16 LGPL-3.0-C5: Passing the unmodified library as embedded binaries . . 258
6.9.17 LGPL-3.0-C6: Passing a modified program as source code 259

6.10

6.11

6.12

6.13

6.14

6.9.18
6.9.19
6.9.20
6.9.21
6.9.22
6.9.23

MIT licensed software
MIT-C1: Using the software only for yourself

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

MPL-2.0 licensed software
Using the software only for yourself
Passing the unmodified software as source code
Passing the unmodified software as binaries
Passing a modified program as source code

6.11.1
6.11.2
6.11.3
6.11.4
6.11.5
6.11.6
6.11.7
6.11.8
6.11.9

6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.12.6
6.12.7
6.12.8
6.12.9

PostgreSQL License

6.13.1
6.13.2
6.13.3
6.13.4
6.13.5
6.13.6

PHP-3.0 licensed software
Using the software only for yourself
Passing the unmodified software as source code

6.14.1
6.14.2
6.14.3
6.14.4
6.14.5
6.14.6
6.14.7
6.14.8
6.14.9

Contents

LGPL-3.0-C7: Passing a modified program as binary

LGPL-3.0-C8: Passing a modified library as independent source code
LGPL-3.0-C9: Passing a modified library as independent binary
LGPL-3.0-CA: Passing a modified library as embedded source code

LGPL-3.0-CB: Passing a modified library as embedded binary

Discussions and Explanations

MIT-C2: Passing the unmodified software
MIT-C3: Passing a modified program
MIT-C4: Passing a modified library independently

MIT-C5: Passing a modified library as embedded component

Discussions and Explanations

MPL-2.0-C1:
MPL-2.0-C2:
MPL-2.0-C3:
MPL-2.0-C4:
MPL-2.0-C5:
MPL-2.0-Cé6:
MPL-2.0-C7:
MPL-2.0-C8:
MPL-2.0-C9:

Passing a modified program as binary

MS-PL-C1:
MS-PL-C2:
MS-PL-C3:
MS-PL-C4:
MS-PL-C5:
MS-PL-C6:
MS-PL-CT7:
MS-PL-CS8:
Discussions and Explanations

Using the software only for yourself
Passing the unmodified software
Passing a modified program as source code
Passing a modified program as binary

PostgreSQL-C1:
PostgreSQL-C2:
PostgreSQL-C3:
PostgreSQL-C4:
PostgreSQL-C5:
Discussions and Explanations

Using the software only for yourself

PHP-3.0-C1:
PHP-3.0-C2:
PHP-3.0-C3:
PHP-3.0-C4:
PHP-3.0-C5:
PHP-3.0-Cé6:

Passing the unmodified software as binary

Passing the unmodified software
Passing a modified program
Passing a modified library independently

Passing a modified library as embedded component . .

Passing a modified program as source code
Passing a modified program as binary

Passing a modified library as independent source code . .
Passing a modified library as independent binary

Passing a modified library as embedded source code . . .
Passing a modified library as embedded binary
6.11.10 Discussions and Explanations
Microsoft Public License

Passing a modified library independently as source code . .
Passing a modified library independently as binary

Passing a modified library as embedded source code
Passing a modified library as embedded binary

PHP-3.0-CT:
PHP-3.0-C8:
PHP-3.0-C9:

Passing a modified library as independent binary

Passing a modified library as embedded binary

Passing a modified library as independent source code . .

Passing a modified library as embedded source code . . .

262
263
264
265
267
271
272
273
273
274
274
275
276
277
278
279
280
281
283
284
285
287
288
290
291
292
292
293
294
295
295
296
297
298
298
299
299
300
300
301
302
302
303
304
304
305
306
307
307

Contents

6.14.10 Discussions and Explanations

7 Conclusion

8 Appendices
8.1 Some Additional Remarks on the OSLiC Quotation Style
8.2 Some Widespread Open Source Myths

8.2.1 Why
8.2.2 What

Periodicals, Shortcuts, and Abbreviations

Bibliography

311

313
313
314
317
325

327
329

Backlog

e Insert task lists for AL, AFL, CDDL, MPL-1.[0—1], MS-RL, OSL

e Complete the concept of being a derivative work in the context of software development
e Explain how to deal with modifications transforming a proapse into a snimoli and v.v.
e Discuss license compatibility

e Explain the relationship between open source and earning money

e Enrich the literature list

Contents

Table 0.1: History of the Open Source License Compendium

2015-03-01

1.

0.0

Target Release

> Form expanded by a 6th AGPL relevant question

> Expanded OSUC-03 by AGPL subtypes L(ocal) & I(nternet)
> Added AGPL specific finder and license fulfilling to-do lists

2015-01-21

.99.9

> added solution for the reverse engineering challenge

2014-03-09

.99.1

> Generate data file for use in OSCAd from the ETEXsource
> Fixed Bug in LGPL C9 Case
> general copy-editing of chapter 6

2014-01-08

.98.2

> New section about the patent clauses in the CDDL
> hyperlinked PDF file (using hyperref and pdftex)
> general copy-editing of chapter 1 to 5

2013-11-27

.98.1

Korean FLOSS conference release

2013-08-19

.97.2

> incorpation of the typo fixes offered by M.Schierl
> some improvements concerning the derivative work
> enhancing that the OSLiC deals with prototypic cases

2013-07-28

.97.1

> indirectly used secondary literature added
> LGPL specific finder improved
> OSCAAJ aligned, interface improved

2013-05-20

.96.1

Linux Days release
> open source use cases and licenses specific usecase renamed
> version matches the content of OSCAd

2013-04-15

.95.2

FSFE LLW post release

> to-do lists for nearly all popular OSI licenses

> improved finder for GPL and EUPL

> simplified form and improved structure of the OSLiC finder

2013-04-05

.95.1

FSFE LLW pre release
> to-do lists for all permissive and all weak copyleft licenses

2013-03-15

.94.1

Chemnitzer Linux Day release
> to-do lists for all permissive and some weak copyleft licenses
> branches merged and new master published

2013-03-08

.90.1

CeBIT release
> to-do lists for the some important licenses added

2013-02-16

.8.90

> new arguing structure focused on the topic license fulfillment
> new classifying license review
> new top down introduction

2012-12-28

.8.0

internal EOQY release
> many distributed improvements unified in branch kreinck

2012-08-25

> MIT license fulfilling to-do lists
> using integrated Eclipse spell checking methods

2012-07-06

break through release

open source use case definition and taxonomy

open source use case based general finder

BSD specific mini finder & BSD fulfilling to-do lists

2012-03-22

framework published as first community edition

2012-01-31

renamed existing introduction as prolegomena
inserted a shorter top-down written introduction
added an OSLiC disclaimer & many bibliographic data

2011-09-29

document history integrated

2011-09-12

V|VIV V V|V|V V V

introduction completed: purpose and methods

10

Disclaimer

This book shall be thoroughly developed—together with the open source commu-
nity. At the end it shall deliver reliable information. But nevertheless, the OSLiC
can not offer more than the opinion(s) of its authors and contributors. It is only
one voice of the chorus discussing the open source licenses. For protecting the
authors and contributors from charges and claims of indemnification we adopt
the lightly modified GPL3 disclaimer:

THERE IS NO WARRANTY FOR THE OSLiC, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE TEXT “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE OSLiC IS WITH YOU.
SHOULD THE OSLiC PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS THE OSLiC AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE OSLiC (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE OSLiC TO COOPERATE WITH ANY OTHER TOOLS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Particularly, it must be highlighted that - referred to your solitary case - the OSLiC
can not and shall not replace a legal review or a legal advice by lawyers. The
OSLiC is only dealing with prototypic use cases. So, it may inspire developers,
managers, open source experts, and companies to find good solutions which they
finally should let be reviewed by legal counselors.!

U For German readers: The OSLiC naturally respects the German 'Rechtsdienstleistungsgesetz’.
It only contains legal reflections addressed to a general public. The OSLiC may only be read
as an “nur an die Allgemeinheit gerichtete Darstellung und Erorterung von Rechtsfragen.”

11

1 Introduction

This chapter briefly describes the idea behind the OSLiC, the way it should be used
and the way it can be read—which is indeed not quite the same.

This book focuses on just one issue: What needs to be done in order to act in
accordance with the licenses of those open source software we use? The Open
Source License Compendium aims at reliably answering this question—in a simple
and easy to understand manner. However, it is not just another book on open
source in general.” The intention is, rather, for it to be a tool for simplifying the
activities for achieving license conformity.

This compendium was created out of necessity at Deutsche Telekom AG to counter
a challenge some of its software developers and project managers were facing: Of
course, the company itself wants to behave as license compliantly as its employees,
but, unfortunately, they could not find a reference text which simply lists what
precisely must be done in order to comply with the license of that piece of open
source being used.

As some of these co-workers in Telekom projects, even we—the initial authors of
the OSLiC—did not want to become open source license experts only for being
able to use open source software in accordance with their respective licenses. We
did not want to become lawyers. We just wanted to do more efficiently, what
in those days claimed much time and many resources. We were searching for
clear guidance instead of having to determine a correct way through the jungle of
open source licenses—over and over again, project for project. We loved using the
high-quality open source software to improve our performance. We liked using

2) Meanwhile, there are tons of literature dealing with open source. Trying to expand your
knowledge by means of books and articles might let you get lost in literature: our list of
secondary literature may adumbrate this ‘danger of being overwhelmed’. But nevertheless,
our bibliography at the end of the OSLiC is not complete. Moreover, it is not intended to be
complete. It is only an extract representing the background information we did not directly
cite in the OSLiC. If we were forced to indicate two books for attaining a good overview
on the topic of open source (licenses) we would name (a) the ‘Rebel Code’ (for a German
version cf. Moody, Glyn: Die Software-Rebellen. Die Erfolgsstory von Linus Torvalds und
Linux; transl. from the American [edition, 2000] by Annemarie Pumpering; Landsberg
am Lech: verlag moderne industrie, 2001, ISBN 3-478-38730-2, passim—for an English
version cf. Moody, Glyn: Rebel Code: Linux And The Open Source Revolution; [New York]:
Basic Books, 2002, ISBN 978-0738206707, p. passim) and (b) the ‘legal basic conditions’ (cf.
Jaeger, Till a. Azel Metzger: Open Source Software. Rechtliche Rahmenbedingungen der
Freien Software; 3rd edition. Miinchen: Verlag C.H. Beck, 2011, passim). But fortunately,
we are not forced to do so.

12

1 Introduction

it legally. But we did not like to laboriously discuss the legal constraints of the
many and different open source licenses.

What we needed was an easy-to-use handout which would lead us without any
detours to executable lists of work items. We wished to obtain to-do lists, tailored
to our usecases and our licenses. We needed reliable lists of tasks we only had to
execute for being sure that we were acting in accordance with the open source
license. When we started out, such a compendium did not exist.

For solving this problem our company took three decisions:

The first decision our company arrived at was to support a small group of employees
to act as a board of open source license experts: They should offer a service for the
whole company. Projects, managers, and developers should be able to ask this
board what they have to do for complying with a specific open Source License
under specific circumstances. And this board should answer with authoritative
to-do lists whose executions would assure that the requestors are acting according
to the corresponding open source licenses. The idea behind this decision was
simple. It would save cost and increase quality if one had one central group of
experts instead of being obliged to select (and to train) developers—over and over
again, for every new project. So, the OSRB (the Telekom Open Source Review
Board) was founded as an internal expert group—as a self-organizing, bottom-up
driven community.

The second decision our company took was to allow this Telekom OSRB to collect
their results systematically—in the form of a reusable compendium. The idea
behind this decision was also simple: The more the internal service became known,
the more the workload would increase: the more work, the more resources, the
more costs. So, such a compendium should save costs and enable the requestors
to find answers by themselves without becoming license experts: For all default
cases, they should find an answer in the compendium instead of having to request
that their work is analyzed by the OSRB. Thus, the planned Telekom Open Source
License Compendium will prevent the need to increase the size of the OSRB in
the future.

The third decision our company reached was to allow the Telekom OSRB to create
the compendium in the same mode of cooperation that open source projects
usually use. Again, a simple reason evoked this ruling: If in the future—as
a rule—mnot a reviewing OSRB, but a simple manual should assure the open
source license compliant behavior of projects, programmers, and managers, this
book had of course to be particularly reliable. There is a known feature of the
open source working model: the ongoing review by the cooperating community
increases the quality. Therefore, the decision not only to write an internal ‘Telekom
handout,” but to enable the whole community to use, modify, and redistribute a
broader Open Source License Compendium was a decision for improving quality.
Consequently, the OSRB decided to publish the OSLiC as a set of IXTXsources,

13

1 Introduction

publicly available via the open repository GitHub.? And it licensed the OSLiC
under Creative Commons Attribution-ShareAlike 3.0 Germany License.*

But to publish the OSLiC as a free book has another important connotation—at
least for the Telekom OSRDB: It is also intended to be an appreciative giving back
to the open source community which has enriched and simplified the life of so
many employees and companies over so many years.

Altogether, the OSLiC follows five principles:

To-do lists as the core, discussions around them Based on a simple form for
gathering information concerning the use of a piece of open source software
and its license, the OSLiC shall offer an easy to use finder taking the requestor
to the respective to-do list for ensuring license conformity. In addition, all
these elements of the OSLiC should comprehensibly be introduced and
discussed without disturbing the usage itself.

Quotations with thoroughly specified sources The OSLiC shall be revisable
and reliable. It shall comprehensibly argue and explicitly specify why it
adopts which information, from whom, in which version, and why."

Not clearing the forest, but cutting a swath The OSLiC has to deal with li-
censes and their legal aspects, no doubt. But it shall not discuss all details of

3) Get the code by using the link https://github.com/dtag-dbu/oslic; get project informa-
tion by http://dtag-dbu.github.com/oslic/ or by http://www.oslic.org/.

4) This text is licensed under the Creative Commons Attribution-ShareAlike 3.0 Germany
License (http://creativecommons.org/licenses/by-sa/3.0/de/): Feel free “to share (to
copy, distribute and transmit)” or “to remix (to adapt)” it, if you “[...] distribute the
resulting work under the same or similar license to this one” and if you respect how “you
must attribute the work in the manner specified by the author(s) [...]”): In an internet based
reuse please mention the initial authors in a suitable manner, name their sponsor Deutsche
Telekom AG and link it to http://www.telekom.com. In a paper-like reuse please insert a
short hint to http://www.telekom. com, to the initial authors, and to their sponsor Deutsche
Telekom AG into your preface. For normal citations please use the scientific standard.

5 For that purpose, we are using an ‘old-fashioned’ bibliographic style with footnotes, instead
of endnotes or inline-hints. We want to enable the users to review or to ignore our comments
and hints just as they prefer—but on all accounts without being disturbed by large inline
comments or frequent page turnings. We know that modern writer guides prefer less ‘noisy’
styles (pars pro toto cf. MLA: MLA Handbook for Writers of Research Papers; 7th edition.
New York: The Modern Language Association of America, 2009, ISBN 978-1-60329-024-1,
passim). But for a reliable usage—challenged by the often modified internet sources—these
methods are still a little imprecise (for details — OSLiC, pp. 313. For a short motiva-
tion of the style used in the OSLiC cf. Reincke, Karsten: Classical Scholar Texts With
Footnotes based on LaTeX, BibTeX, Koma, jurabib and mykeds-CSR; 2012 (URL: http:
//www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html) — refer-
ence download: 2013-02-10, passim. For a more elaborated legitimizing version cf. Rein-
cke, Karsten: (Geistes-) Wissenschaftliche Texte mit jurabib. Dienst am Leser, Dienst
am Scholaren: Uber Anmerkungsapparate in Fufinoten - aber richtig. [n.l], 2012
(URL: http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf) — reference
download: 2013-02-10, passim).

14

http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://www.fodina.de/en/closedprojects/latex-addons/classical-scholar.html
http://download.fodina.de/fodinaClassicalScholarFoNoDe.pdf

1 Introduction

every aspect. It shall focus on one possible way to act according to a license
in a specific usecase—even if it is known that there might be alternatives.®

Take the license text seriously! The OSLiC shall not give general lectures on
legal discussions, much less shall it participate in them. It shall only find one
dependable way for each license and each usecase to comply with the license.
The main source for this analysis shall be the exact reading of the open
source licenses themselves—based on and supported by the interpretation of
benevolent lawyers and rationally arguing software developers. The OSLiC
shall respect that open source licenses are written for software developers
(and sometimes by developers).

Trust the swarm! The OSLiC shall be open for improvements and adjustments
encouraged and stimulated also by other people than employees of Deutsche

Telekom AG.

Based on these principles the OSLiC offers two methods for being used:

First and foremost the readers expect to simply and quickly find those to-do lists
fitting their needs. Here is the respective process:’

6) The OSLiC shall not counsel projects with respect to their specific needs. This must remain
the task for lawyers and legal experts. The OSLiC cannot and shall not replace a legal review
or a legal advice by lawyers. It shall inspire developers, managers, open source experts, and
companies to find good solutions, which they finally should have reviewed by legal counselors.
For the German readers let us repeat again: The OSLiC naturally respects the German
Rechtsdienstleistungsgesetz. It only contains legal reflections addressed to a general public.
Its content may only be read as a “nur an die Allgemeinheit gerichtete Darstellung und
Erorterung von Rechtsfragen”.

") For the well known ‘quick and dirty hackers’—as we tend to be, too—we have integrated a
shortcut: If you already know the license of the open source package you want to use and if
you are very familiar with the meaning of the open source use cases we defined, then you
might directly jump to the corresponding license specific chapter, without ‘struggling’” with
OSLiC 5 query form (— OSLiC p. 108), the taxonomic Open Source Use Case Finder (—
111) or the Open Source Use Case page (— 112ff.): Some of the chapters dedicated to
specific open source licenses start with a license specific finder offering a set of license specific
use cases—which, according to the complexity of the license, in some cases could be stripped
down. But the disadvantage of this method is that you have to apply your knowledge about
the use cases and their side effects by yourself without being systematically guided by the
OSLiC process.

15

1 Introduction

V open source
components

select next open
source component

!

analyze its role as part
of software system

!

determine usage of final
software product / service no

|

detect respective
open source license

!

fill in the 5 query
form (— p. 108)

—< success? yes

yes

traverse taxonomic Open
Source Use Case Finder (—
111) & jump to indicated Open
Source Use Case page (— 112ff.)

i

Determine page of license
and use case specific to-
do list being presented
in license specific chapter

Jump to indicated page &
. no
process license and use case more?

specific to-do list (— 128ff.)

Second, the readers might wish to comprehend the whole analysis. So, we
briefly discuss open source license taxonomies as the basis for a license compliant
behavior.® We consider some side effects of acting according to the open source
licenses.” Finally, we study the structure of open source use cases. '’

So, let us close our introduction by using, modifying, and (re)distributing a well
known wish of a well known man: Happy (Legally) Hacking.

8) - OSLIC “Open Source: The Same Idea, Different Licenses”, pp. 17
9 — OSLiC “Open Source: About Some Side Effects”, pp. 49
10) OSLiC “Open Source Use Cases: Concept and Taxonomy”, pp. 103

16

2 Open Source: The Same ldea, Different Licenses

This chapter describes different license models which follow the common idea of
free open source software. We want to discuss existing ways of grouping licenses
to underline the limits of building such clusters: These groups are often used as
‘virtual prototypical licenses’ which are supposed to provide simplified conditions
for acting according to the respective real license instances. But one has to meet
the requirements of a specific license, not one’s own generalized idea of a set of
licenses. Nonetheless, we, too, offer a new way of structuring the world of the open
source licenses. We will use a novel set of grouping criteria by referring to the
common intended purpose of licenses: each license is designed to protect something
or someone against something or someone. Following this pattern, we can indeed
summarize all Open Source Licenses in a comparable way.

Grouping open source licenses'! is commonly done. Even the set of the open source
licenses' itself is already a cluster being established by a set of grouping criteria:
The “distribution terms” of each software license that intends to become an open
source license “[...] must comply with the [...] criteria” of the Open Source
Definition,'® maintained by the Open Source Initiative'* and often abbreviated
as OSD. So, this OSD demarcates ‘the group of [potential] open source licenses’
against ‘the group of not open sources licenses.’*”

Another way to cluster the Free Software Licenses is specified by the “Free

1) Talking about licenses is sometimes a bit tricky: Normally, they have a longer official name
and a well known, often abbreviating inofficial nickname. But that’s not enough for talking
about a specific license adequately: one has additionally to refer to the version of the license
itself. The Linux Foundation offers a set of normalized names and identifiers, to minimize
the confusion how to denote a license correctly (cf. The Linux Foundation: SPDX License
List; 2013 (URL: http://spdx.org/licenses/) — reference download: 2014-03-14, wp).
The OSLiC tries to use these SPDX identifiers as far as possible. But sometimes the OSLiC
wants to group specific licenses by their authors without discriminating the release numbers.
Then, the OSLiC uses prefixes of the SPDX.

12) ¢f. Open Source Initiative: The Open Source Licenses, alphabetically sorted; 2012 [n.y.]
(URL: http://opensource.org/licenses/alphabetical) — reference download: 2013-01-
22, wp.

13) ¢f. Open Source Initiative: The Open Source Definition; 2012 [n.y.] (URL: http://www.
opensource.org/docs/osd) — reference download: 2012-06-21, wp.

1) of. Open Source Initiative: The Open Source Initiative; 2012 [n.y.] (URL: http://www.
opensource.org/about/) — reference download: 2013-01-22, wp.

15) More precisely: meeting the OSD is only a necessary condition for becoming an open
source license. The sufficient condition for becoming an open source license is the approval
by the OSI, which offers a process for the official approval of open source license (cf.
Open Source Initiative: The [OSI] Licence Review Process; 2012 [n.y.] (URL: http:
//www .opensource.org/approval) — reference download: 2013-01-22, wp).

17

http://spdx.org/licenses/
http://opensource.org/licenses/alphabetical
http://www.opensource.org/docs/osd
http://www.opensource.org/docs/osd
http://www.opensource.org/about/
http://www.opensource.org/about/
http://www.opensource.org/approval
http://www.opensource.org/approval

2 Open Source: The Same Idea, Different Licenses

Software Definition.” This F'SD contains four conditions which must be met by
any free software license: any FSD compliant license must grant “the freedom
to run a program, for any purpose |[...|”, “the freedom to study how it works,
and adapt it to (one’s) needs [...]”, “the freedom to redistribute copies [...]",
and finally “the freedom to improve the program, and release your improvements
[...]”'% Surprisingly this definition implies that the requirement the sourcecode
must be openly accessible is ‘only’ a derived condition. If the “freedom to make
changes and the freedom to publish improved versions” shall be “meaningful”,
then the “access to the source code of the program” is a prerequisite. “Therefore,
accessibility of source code is a necessary condition for free software.”!”

The difference between the OSD and the FSD has often been described as a
difference of emphasis:'® Although both definitions “[...] (cover) almost exactly
the same range of software”, the Free Software Foundation—as it is said— “prefers
[...] (to emphazise) the idea of freedom [...]” while the OSI wants to underline
the philosophically indifferent “development methodology.”!”

A third method to group of free software and free software licenses is specified
by the “Debian Free Software Guideline”, which is embedded into the “Debian
Social Contract”. This “DFSG” contains nine defining criteria, which-—as Debian
itself says—have been “[...] adopted by the free[sic!] software community as the
basis of the Open Source Definition.”?’

16) cf. Stallman, Richard M.: Free Software Definition; originally written in 1996; In Stallman:
Free Software, Free Society: Selected Essays, 2002, p.41.

17) ¢f. id., ibid.

18) This is also the viewpoint of Richard M. Stallman: On the one hand, he clearly states that

the “Free Software movement” and the “open source movement” generally “[...]| disagree
on the basic principles, but agree more or less on the practical recommendations” and that
he “[...] (does) not think of the open source movement as an enemy”. On the other hand,

he delineates the two movements by stating that “for the open source movement, the issue
of whether software should be open source is a practical question, not an ethical one”, while
“for the Free Software movement, non-free software is a social problem and free software is
the solution” (cf. Stallman, Richard M.: Why 'Free Software’ is Better than ’Open Software’;
originally written in 1998; In Stallman: Free Software, Free Society: Selected Essays, 2002,
p.55). Consequently, Richard M. Stallman summarizes the positions in a simple way: “[...]
‘open source’ was designed not to raise [...] the point that users deserve freedom”. But he
and his friends want “to spread the idea of freedom” and therefore “[...] stick to the term
‘free software™ (id., l.c., p.59). For a brush-up of this position, expressing again that “(o)pen
source is a development methodology [and that] free software is a social movement” with
an “ethical imparative” cf. Stallman, Richard: Viewpoint: Why ”Open Source” Misses the
Point of Free Software; in: Commununications of the ACM, 52 June (2009), No. 6 (URL:
http://doi.acm.org/10.1145/1516046.1516058) — reference download: 2011-12-29, p. 31

19) pars pro toto: cf. Fogel, Karl: Producing Open Source Software; How to Run a Successful
Free Software Project; Beijing, Cambridge, Koln [...]: O’Reilly, 2006, ISBN 978-0-596—
00759-1, p.232.

20) ¢f. Debian: The Debian Free Software Guidelines (DFSG); 2013 [n.y.] (URL: http://www.
debian.org/social_contract#guidelines) — reference download: 2013-01-22, p. wp.

18

http://doi.acm.org/10.1145/1516046.1516058
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines

2 Open Source: The Same Idea, Different Licenses

A rough understanding of these methods might result in the conclusion that these
three definitions are extensionally equal and only differ intensionally. But that
is not true. To unveil the differences, let us compare the clusters OSI approved
licenses, OSD compliant licenses, DFSG compliant licenses, and FSD compliant
licenses extensionally, by asking whether they could establish different sets of
licenses.?!

First, the difference most easy to determine is that of an unidirectional inclusion:
By definition, the OSI approved licenses and the OSD compliant licenses meet the
requirements of the OSD.?? But only the OSI approved licenses have successfully
passed the OSI process* and therefore are officially listed as open source licenses.**
Hence, on the one hand, OSI approved licenses are open source licenses and vice
versa. On the other hand, both—the OSI approved licenses and the open source
licenses—are OSD compliant licenses, but not vice versa.

Second, a similar argumentation allows us to distinguish the DFSG compliant
licenses from the OSI approved licenses. As it is stated, the OSD “[...] is based
on the Debian Free Software Guideline and any license that meets one definition
almost meets the other.”?” But then again, meeting the definition is not enough
for being an official open source license: the license has to be approved by the
OSI1.%% Thus, it follows that all OSI approved licenses are also DFSG compliant
licenses, but not vice versa.

Third, by ignoring the “few exceptions” which have appeared “over the years,”*"

it can be said that, because of their ‘kinsmanlike’ relation, at least the OSD
compliant licenses are also DFSG compliant licenses and vice versa.

Last but not least, it must be stated that the (potential) set of free software
licenses must be greater than all the other three sets: On the one side, the FSD
requires that a license of free software must not only allow to read the software,
but must also permit to use, to modify, and to distribute it.?* These conditions
are covered by at least the first three paragraphs of the OSD concerning the topics
“Free Redistribution,” “Source Code,” and “Derived Works.”?? On the other side,
the OSD contains at least some requirements which are not mentioned by the FSD
and which nevertheless must be met by a license in order to be qualified as an

21) Indeed, for analyzing the extensional power of the definition we have to regard all potentially
covered licenses, not only the already existing licenses, because the subset of really existing
licenses still could be expanded be developing new licenses which fit the definition.

22) ¢f. Open Source Initiative: The Open Source Definition, 2012, wp.

23) of. id., ibid.

24) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

25) ¢f. Fogel: Producing Open Source Software, 2006, p. 233.

26) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

27) ¢f. Fogel: Producing Open Source Software, 2006, p. 233.

28) of. Stallman: Free Software Definition, 1996, p.41.

29) ¢f. Open Source Initiative: The Open Source Definition, 2012, wp.

19

2 Open Source: The Same Idea, Different Licenses

OSD compliant license.?" Tt follows then that there may exist licenses which fulfill
all conditions of the FSD and nevertheless do not fulfill at least some conditions
of the OSD.?" So, the set of all (potential) Free Software Licenses must be greater
than the set of all (potential) open source licenses and greater than the set of
OSD compliant licenses.

All in all, we can visualize the situation as follows:

All Software Licenseg
FSD Compliant LicenSeS
0SD Compliant Lz‘cgnSeS

OSI approved licenses =
open source licenses

DFsq Compliant Licens€s

It should be clear without longer explanations that these clusters don’t allow
to extrapolate to the correct compliant behaviour according to the open source
licenses: On the one hand, all larger clusters do not talk about the open source
licenses. On the other hand, the open source license cluster itself only collects
its elements on the basis of the OSD which does not stipulate concrete license
fulfilling actions for the licensee.

The next level of clustering open source licenses concerns the inner structure of
these OSI approved licenses. Even the OSI itself has recently discussed whether
a different way of grouping the listed licenses would better fit the needs of the
visitors of the OSI site.** And finally the OSI came up with the categories “popular
and widely used (licenses) or with strong communities,” “special purpose licenses,’
“other /miscellaneous licenses,” “licenses that are redundant with more popular

Y

30) For example, see the condition that “the license must be technology-neutral” (cf. Open
Source Initiative: The Open Source Definition, 2012, wp).

31) Again: we must consider the extensional potential of the definitions, not the set of really
existing licenses. In this context, it is irrelevant that actually all existing Free Software
Licenses like GPL, LGPL or AGPL indeed are also classfied as open source licenses. We are
referring to the fact that there might be generated licenses which fulfill the FSD, but not
the OSD.

32) ¢f. Open Source Initiative: OSI Mailing List. License-discuss. Draft of new OSI li-
censes landing page; 2012 [n.y.] (URL: http://projects.opensource.org/pipermail/
license-discuss/2012-April/000332.html) — reference download: 2013-01-29, wp.

20

http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html
http://projects.opensource.org/pipermail/license-discuss/2012-April/000332.html

2 Open Source: The Same Idea, Different Licenses

bR 2«

superseded licenses,” “licenses that have been
» 33

licenses,” “non-reusable licenses,
voluntarily retired,” and “ uncategorized licenses.

Another way to structure the field of open source licenses is to think in “types of
open source licenses” by grouping the academic licenses, “named as such because
they were originally created by academic institutions,”** the reciprocal licenses,
named as such because they “[...] require the distributors of derivative works
to distribute those works under same license including the requirement that the
source code of those derivative works be published,”?" the standard licenses, named
as such because they refer to the reusability of “industry standards,”*® and the
content licenses, named as such because they refer to “[...] other than software,
such as music art, film, literary works” and so on.*’

Both kinds of taxonomies directly help to find the relevant licenses that should be
used for new (software) projects. But again: none of these categories allows us to
infer license compliant behaviour, because the categories are mostly defined based
on license external criteria: whether a license is published by a specific kind of
organization or whether a license deals with industry standards or other kind of
works than software inherently does not determine a license fulfilling behaviour.

Only the act of grouping into academic licenses and reciprocal licenses touches
the idea of license fulfillment tasks, if one—as it has been done—expands the
definition of the academic licenses by the specification that these licenses “[...]
allow the software to be used for any purpose whatsoever with no obligation on
the part of the licensee to distribute the source code of derivative works.”*® With
respect to this additional specification, the clusters academic licenses and the
reciprocal licenses indeed might be referred as the “main categories” of (open
source) licenses:* By definition, they are constituting not only a contrary, but
contradictory opposite. However, it must be kept in mind that they constitute an
inherent antagonism, an antinomy inside of the set of open source licenses.*’

33) cf. Open Source Initiative: Open Source Licenses by Category; 2013 [n.y.] (URL: http:

//opensource.org/licenses/category) — reference download: 2013-01-29, wp.

cf. Rosen, Lawrence: Open Source Licensing. Software Freedom and Intellectual Property

Law; Upper Saddle River, New Jersey: Prentice Hall PTr, 2005, ISBN 0-13-148787-6,

p- 69.

35) ¢f. id., L.c., p. 70.

36) ¢f. id., ibid.

37) ¢f. id., Lc., p. 71.

38) cf. id., ibid.

39) ¢f. id., Lc., p. 179.

40) Hence, it is at least a little confusing to say that “the open source license (OSL) is a
reciprocal license” and “the Academic Free License (AFL) is the exact same license without
the reciprocity provisions” (cf. id., l.c., p.180): If the BSD license is an AFL and if an
AFL is not an OSL and if the OSI approves only OSLs, then the BSD license can not be an
approved open source license. But in fact, it still is (cf. Open Source Initiative: The Open
Source Licenses, alphabetically sorted, 2012, wp).

34)

21

http://opensource.org/licenses/category
http://opensource.org/licenses/category

2 Open Source: The Same Idea, Different Licenses

Similiar in nature to the clustering into academic licenses and reciprocal licenses
is the grouping into permissive licenses, weak copyleft licenses, and strong copyleft
licenses: Even Wikipedia uses the term “permissive free software licence” in the
meaning of “a class of free software licence[s] with minimal requirements about
how the software can be redistributed” and “contrasts” them with the “copyleft
licences” as those with “reciprocity / share-alike requirements.”*!

Some other authors name the set of academic licenses the “permissive licenses”
and specify the reciprocal licenses as “restrictive licenses”, because in this case—
as a consequence of the embedded “copyleft” effect—the source code must be
published in case of modifications. They also introduce the subset of “strong
restrictive licenses” which additionally require that an (overarching) derivative
work must be published under the same license.*” The next refinement of such
clustering concepts directly uses the categories “[open source] licenses with a strict
copyleft clause,”*® “[open source] licenses with a restricted copyleft clause,”** and
“lopen source] licenses without any copyleft clause.”*® Finally, this viewpoint can
directly be mapped to the categories strong copyleft and weak copyleft: While on
the one hand, “only changes to the weak-copylefted software itself become subject
to the copyleft provisions of such a license, [and] not changes to the software
that links to it”, on the other hand, the “strong copyleft” states “[...]| that the
copyleft provisions can be efficiently imposed on all kinds of derived works.”*°

Based on this approach to an adequate clustering and labeling,*” we can develop

4 of. Wikipedia (en): Permissive free software licence; n.l., 2013 [n.y.] (URL: http:
//en.wikipedia.org/wiki/Permissive_free_software_licence) — reference download:
2013-02-02, wp.

42) pars pro toto cf. Buchtala, Rouven: Determinanten der Open Source Software-Lizenzwahl.
Eine spieltheoretische Analyse; Frankfurt am Main, Berlin, Bern [... etc.]: Peter Lang, 2007
(= Informationsmanagement und strategische Unternehmensfithrung), [Vol./No.] 12), ISBN
978-3-631-57114-9, p. 57.

43) Originally stated as “Lizenzen mit einer strengen Copyleft-Klausel.” Cf. Jaeger a. Metzger:
Open Source Software. Rechtliche Rahmenbedingungen der Freien Software, 2011, p. 24.

44) Originally stated as “Lizenzen mit einer beschrénkten Copyleft-Klausel.” Cf. id., l.c., p. 71.

45) Originally stated as “Lizenzen ohne Copyleft-Klausel.” Cf. id., Lc., p. 83.

46) cf. Wikipedia (en): Copyleft; n.l., 2013 [n.y.] (URL: http://en.wikipedia.org/wiki/
Copyleft) — reference download: 2013-02-02, wp.

47) Finally, we should also mention that there exists still other classifications which might become
important in other contexts. For example, the ifross license subsumes under the main category
“Open Source Licenses” the subcategories “Licenses without Copyleft Effect,” “Licenses
with Strong Copyleft,” “Licenses with Restricted Copyleft,” “Licenses with Restricted
Choice,” or “Licenses with Privileges”—and lets finally denote these categories also licenses
which are not listed by the OSI (cf. ifross: License Center; 2011 [n.y.] (URL: http:
//vww.ifross.org/ifross_html/lizenzcenter-en.html) — reference download: 2013-02-
26, wp). This is reasonable if one refers to the meaning of the OSD (cf. Open Source
Initiative: The Open Source Definition, 2012, wp). The OSLiC wants to simplify its object
of study by referring to the approved open source licenses (cf. Open Source Initiative: The
[OSI] Licence Review Process, 2012, wp) listed by the OSI (cf. Open Source Initiative: The

22

http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Permissive_free_software_licence
http://en.wikipedia.org/wiki/Copyleft
http://en.wikipedia.org/wiki/Copyleft
http://www.ifross.org/ifross_html/lizenzcenter-en.html
http://www.ifross.org/ifross_html/lizenzcenter-en.html

2 Open Source: The Same Idea, Different Licenses

the following picture:

0SI approved Zz'cens%,

15810€ Jy
q}(m’l,s /ZCG

s>
9 %

Apache- || BSD-X-
2.0

Clause

MIT MS-PL

Post- PHP-
greSQL 3.X

open source licenses

This extensionally based clarification of a possible open source license taxon-
omy is probably well-known and often—more or less explicitly—referred to.*®
Unfortunately, this taxonomy still contains some misleading underlying messages:

Permissive has a very positive connotation. So, the antinomy of permissive licenses
versus copyleft licenses implicitly signals, that the permissive licenses are in some
sense better than the copyleft licenses. Naturally, this ‘conclusion’ is evoked by
confusing the extensional definition and the intensional power of the labels. But
that is the way we—the human beings—Ilike to think.

Anyway, this underlying message is not necessarily ‘wrong.” It might be convenient
for those people or companies who only want to use open source software without
being restricted by the obligation to give something back as it has been introduced
by the ‘copyleft.”*” But there might be other people and companies who emphasize

Open Source Licenses, alphabetically sorted, 2012, wp).

48) Even the FSF itself uses the term ‘permissive non-copyleft free software license’ (pars pro
toto: cf. Free Software Foundation: Various Licenses and Comments about Them; 2013
[n.y.] (URL: http://www.gnu.org/licenses/license-1list.html) — reference download:
2013-02-08, wp/section ‘Original BSD license’) and contrasts it with the terms ‘weak copyleft’
and ‘strong copyleft’ (pars pro toto: cf. id., l.c., wp/section ‘European Union Public License’)

49) De facto, copyleft is not copyleft. Apart from the definition, its effect depends on the
particuar licenses which determine the conditions for applying the copyleft ‘method.” For
example, in the GPL, the copyleft effect is bound to the criteria of ‘being distributed.” Later

23

http://www.gnu.org/licenses/license-list.html

2 Open Source: The Same Idea, Different Licenses

the protecting effect of the copyleft licenses. And, indeed, at least the open source
license® GPL°! has initially been developed to protect the freedom, to enable the
developers to help their “neighbours”, and to get the modifications back:** So,
“Copyleft” is defined as a “[...] method for making a program free software and
requiring all modified and extended versions of the program to be free software as
well.”%® Tt is a method®® by which “[...] the code and the freedoms become legally
inseparable”.”® Because of these disparate interests of hoping not to be restricted
and hoping to be protected, it could be helpful to find a better label—an impartial
name for the cluster of permissive licenses. But until that time, we should at least
know that this taxonomy still contains an underlying declassing message.

The other misleading interpretation is—counter-intuitively—prompted by using
the concept of ‘copyleft licenses.” By referring to a cluster of copyleft licenses as
the opposite of the permissive licenses, one implicitly also sends two messages:
First, that republishing one’s own modifications is sufficient to comply with the
copyleft licenses. And, second, that the permissive licenses do not require anything
to be done for obtaining the right to use the software. Even if one does not wish
to evoke such an interpretation, we—the human beings—tend to take the things

on, we will collect these conditions systematically (see chapter Open Source Use Cases:
Concept and Taxonomy, pp. 103). Therefore, here we still permit ourselves to use a somewhat
‘generalizing’ mode of speaking.

50) Although RMS naturally prefers to call it a Free Software License (s. p. 18)

51) As the original source cf. Free Software Foundation: GNU General Public License, version 2;
1991 [n.y. of the html page itself] (URL: http://www.gnu.org/licenses/gpl-2.0.html) —
reference download: 2013-02-05, wp. Inside of the OSLiC, we constantly refer to the license
versions which are published by the OSI, because we are dealing with officially approved
open source licenses. For the ‘OSI-GPL’ cf. Open Source Initiative: GNU General Public
License, version 2 (GPL-2.0). Version 2, June 1991; 1991 [n.y. of the html page itself] (URL:
http://opensource.org/licenses/GPL-2.0) — reference download: 2013-02-05, wp

52) The history of the GNU project is multiply told. For the GNU project and its initiator cf.
pars pro toto Williams, Sam: Free as in Freedom. Richard Stallman’s Crusade for Free
Software; Beijing [... etc.]: O'Reilly, 2002, ISBN 0-596-00287-4, passim. For a broader
survey cf. pars pro toto Moody: Die Software-Rebellen, 2001, passim. A very short version
is delivered by Richard M. Stallman himself where he states that—in the years when the
early free community was destroyed—he saw the “nondisclosure agreement” which must
be signed , “[...] even to get an executable copy” as a clear “[...] promise not to help
your neighbour”: “A cooperating community was forbidden.” (cf. Stallman, Richard M.:
The GNU Project; originally published in ’Open Sources: Voices from the Open Source
Revolution, O’Reilly, 1999’; In Stallman: Free Software, Free Society: Selected Essays, 2002,
p. 16).

53) cf. Stallman, Richard M.: What is Copyleft? originally written in 1996; In Stallman: Free
Software, Free Society: Selected Essays, 2002, p. 89.

54) Based on the American legal copyright system, this method uses two steps: first one states,
“l...] that it is copyrighted [...]” and second one adds those “[...] distribution terms,
which are a legal instrument that gives everyone the rights to use, modify, and redistribute
the program’s code or any program derived from it but only if the distribution terms are
unchanged” (cf. id., ibid.).

55) ¢f. id., ibid.

24

http://www.gnu.org/licenses/gpl-2.0.html
http://opensource.org/licenses/GPL-2.0

2 Open Source: The Same Idea, Different Licenses

as simple as possible.”® But because of several aspects, this understanding of the
antinomy of copyleft licenses and permissive licenses is too misleading for taking
it as a serious generalization:

On the one hand, even the ‘strongly copylefted” GPL imposes other obligations in
addtion to republishing derivative works. For example, it also requires giving “[. ..]
any other recipients of the [GPL licensed] Program a copy of this License along
with the Program.”®” Furthermore, the ‘weakly copylefted’ licenses require also
more and different criteria to be fulfilled for acting in accordance with these licenses.
For example, the EUPL requires that the licensor, who does not directly deliver
the binaries together with the sourcecode, must offer a sourcecode version of his
work free of charge,”® while the MPL requires that under the same circumstances
a recipient “[...] can obtain a copy of such Source Code Form [...] at a charge no
more than the cost of distribution to the recipient [...]"*? And last but not least,
also the permissive licenses require tasks to be fulfilled for a license compliant
usage—moreover, they also require different things. For example, the BSD license
demands that “the (re)distributions [...| must (retain [and/or|) reproduce the
above copyright notice [...]”. Because of the structure of the “copyright notice”,
this compulsory notice implies that the authors / copyright holders of the software
must be publicly named.®® As opposed to this, the Apache License requires
that “if the Work includes a ‘NOTICE’ text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file” which often means that
you have to present central parts of such files publicly®’—parts which can contain

56) And indeed, in the experience of the authors sometimes such simplifications gain their
independent existence and determine decisions at the management level. But that is not the
fault of the managers. It is their job to aggregate, generalize and simplify information. It
is the job of the experts to offer better viewpoints without overwhelming the others with
details.

57) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §1.

58) The German version of the EUPL uses the phrase “problemlos und unentgeltlich(sic!)
auf den Quellcode (zugreifen konnen)” (cf. Furopdische Gemeinschaft a. European com-
mission Joinup: Open-Source-Lizenz fiir die Europiische Union; 2007 (URL: http://
joinup.ec.europa.eu/system/files/DE/EUPL),20v.1.1%20-%20Lizenz.pdf) — reference
download: 2013-02-08, pp.3, section 3) while the English version contains the specifi-
cation “the Source Code is easily and freely accessible” (cf. FEuropean Community a.
European commission Joinup: European Union Public Licence v. 1.1. 2007 (URL:
http://joinup.ec.europa.eu/system/files/EN/EUPLY%20v.1.1%20-%20Licence.pdf) —
reference download: 2013-02-08, pp. 2, section 3)

59) cf. Open Source Initiative: Mozilla Public License 2.0 (MPL-2.0); 2013 [n.y.] (URL:
http://opensource.org/licenses/MPL-2.0) — reference download: 2013-02-07, section
3.2.a.

60) ¢f. Open Source Initiative: The BSD 2-Clause License; 2012 [n.y.] (URL: http://www.

opensource.org/licenses/BSD-2-Clause) — reference download: 2012-07-03, wp.

cf. Open Source Initiative: Apache License, Version 2.0; 2004 [n.y. of the page itself]

(URL: http://opensource.org/licenses/Apache-2.0) — reference download: 2013-02-07,

61)

25

http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://joinup.ec.europa.eu/system/files/DE/EUPL%20v.1.1%20-%20Lizenz.pdf
http://joinup.ec.europa.eu/system/files/EN/EUPL%20v.1.1%20-%20Licence.pdf
http://opensource.org/licenses/MPL-2.0
http://www.opensource.org/licenses/BSD-2-Clause
http://www.opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/Apache-2.0

2 Open Source: The Same Idea, Different Licenses

much more information than only the names of the authors or copyright holders.

So, no doubt—and contrary to the intuitive interpretation of this taxonomy—each
open source license must be fulfilled by some actions, even the most permissive one.
And for ascertaining these tasks, one has to look into these licenses themselves,
not the generalized concepts of licenses taxonomies. Hence again, we have to
state that even this well known type of grouping of open source licenses does not
allow to derive a specific license compliant behavior: The taxonomy might be
appropriate, if one wants to live with the implicit messages and generalizations of
some of its concepts. But the taxonomy is not an adequate tool to determine, what
one has to do for fulfilling an open source license. A license compliant behaviour
for obtaining the right to use a specific piece of open source software must be
based on the concrete open source license by which the licensor has licensed the
software. There is no shortcut.

Nevertheless, human beings need generalizing and structuring viewpoints for
enabling themselves to talk about a domain—even if they finally have to regard
the single objects of the domain for specific purposes. We think that there is a
subtler method to regard and to structure the domain of open source licenses. So,

we want to offer this other possibility to cluster the open source licenses:%?

We think that, in general, licenses have a common purpose: they should protect
someone or something against something. The structure of this task is based
on the nature of the word ‘protect’ which is a trivalent verb: it links someone
or something who protects, to someone or something who is protected and both
combined to something against which the protector protects and against the other
one is protected. Licenses in general do that. Moreover, to “protect” the “rights”
of the licensees is explicitly mentioned in the GPL-2.0,°® in the LGPL-2.1,°* and
the GPL-3.0%—by which the LGPL-3.0 inherits this purpose.®® Following this
viewpoint, we want to generally assume that open source licenses are designed
to protect: They can protect the user (recipient) of the software, its contributor
resp. developer and/or distributor, and the software itself. And they can protect
them against different threats:

wp. section 4.4.

62) even if we also have to concede that, ultimately, one has to always look into the license itself

63) cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. Preamble.

64) cf. Open Source Initiative: The GNU Lesser General Public License, version 2.1 (LGPL-2.1);
1999 [n.y. of the html page itself] (URL: http://opensource.org/licenses/LGPL-2.1) —
reference download: 2013-03-06, wp. Preamble.

65) cf. Open Source Initiative: GNU General Public License, version 3 (GPL-3.0); 2007 [n.y.
of the html page itself] (URL: http://opensource.org/licenses/GPL-3.0) — reference
download: 2013-03-05, wp. Preamble.

66) cf. Open Source Initiative: The GNU Lesser General Public License, version 3.0 (LGPL-3.0);
2007 [n.y. of the html page itself] (URL: http://opensource.org/licenses/LGPL-3.0) —
reference download: 2013-03-06, wp. prefix.

26

http://opensource.org/licenses/LGPL-2.1
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/LGPL-3.0

2 Open Source: The Same Idea, Different Licenses

e First, we assume, that—in the context of open source software—the user
can be protected against the loss of the right to use it, to modify it, and to
redistribute it. Additionally, he can be protected against patent disputes.

e Second, we assume, that open source contributors and distributors can be
protected against the loss of feedback in the form of code improvements and
derivatives, against warranty claims, and against patent disputes.

e Third, we assume, that the open source programs and their specific forms—
may they be distributed or not, may they be modified or not, may they be
distributed as binaries or as sources—can be protected against the re-closing
resp. against the re-privatization of their further development.

e Fourth, we want to assume that new on-top developments being based
on open source components can be protected against the privatization for
enlarging the world of freely usable software.®”

With respect to these viewpoints, one gets a subtler picture of the license specific
protecting power. Thus, we are going to describe and deduce the protecting power
of each of the open source licenses on the following pages. Table 2.1 summarizes
the results as a quick reference."®

2.1 The protecting power of the GNU Affero General Public
License (AGPL)

[TODO..]

67) Tn a more rigid version, this capability of a license could also be identified as the power to
protect the community against a stagnation of the set of open source software—but this
description is at least a little to long to be used by the following pages

68) — table 2.1 on p. 28. In February 2014, the Black Duck list of the “Top 20 Open Source
Licenses” additionally mentions the Artistic License (AL), the Code Open Project License,
the Common Public License, the zlib/png License, the Academic Free License (AFL), the
Microsoft Reciprocal License (MS-RL) and the Open Software License (OSL) (cf. Black
Duck: Top 20 Open Source Licenses; 2014 [n.y] (URL: http://www.blackducksoftware.
com/resources/data/top-20-open-source-licenses) — reference download: 2014-02-11,
wp.). The Code Open Project License and Common Public License are still not OSI approved
open source licenses. (cf. Open Source Initiative: The Open Source Licenses, alphabetically
sorted, 2012, wp.). Thus, finally the OSLiC should additionally analyze not only the AGPL
and the CDDL, but also the AL, the AFL, the MS-RL, the OSL and the zlib/png License
for being able to justiufiably say, that the OSLiC covers the most important open source
licenses.

27

http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

2 Open Source: The Same Idea, Different Licenses

Table 2.1: Open Source Licenses as Protectors

Open are protecting
Source Users Contributors Open Source Software
Licenses® (Distributors) not distributed as ?
who have already got who spread open dis- unmodified | modified OH
. . . Lo
sources or binaries source software tribu- % - % g g
ted = = = | B g
@ & » 8 | T
against
the loss of o | = -

the right to | & | g § =1 Re-Closings / Re-Privatization
= g 5 = of already opened software ::U
g 1B |3 oA B - s
A IR 5
= @ w0 7] N
TlE 52 &l al < 24
-l T 2 | T B =1 =
12| g |28 e =

o) =~ 1)

Apache 2.0 VI IvVI|IvI] Y - |V v - v - v - -
3Cl|| v | vV |V - - |V - - v - v - -
BSD e v v = = v = v = v = =
MIT ViV v - -V - - v - v - -
MS-PL vVIiv|v v - |V v - v - v - -
PostgreSQL VIV v] - - |V - - v - v - -
PHP 3.0 VIiv|v - - |V - - v - v - -
CDDL 1.0 VIiv|v - - | - - - - — - — -
EPL 1.0 vVIiv|v v v |V v - v v v v -
EUPL 1.1 VIiv|v v vV |V v - v v v v -
2.1 vVIiv|v - v |V - - v v v v -
LWPL v v v v vV v | = (v v (v 7=
1.0 - = | - - - | - - - - - — - -
MPL 1.1 - - | - — - | - — - - — — - —
2.0 vVIiv|v v v |V v - v v v -
MS-RL VIiv|v - - | - - - - — - — -
AGPL 3.0 vVIiv|v v v |V v v v v v v v
GPL 2.1 VIiv|v - v |V - - v v v v v
3.0 vVIiv|v v v |V v - v v v v v

@) > indicates that the license protects with respect to the meaning of the column, ‘~’ indicates
that the license does not protect with regard to the meaning of the column, and ‘-’ indicates,
that the corresponding statement must still be evaluated. Slanted names of licenses indicate
that these licenses are only listed in this table while the corresponding mindmap (— p. 48)
does not cover them

28

2 Open Source: The Same Idea, Different Licenses
2.2 The protecting power of the Apache License (Apache-2.0)

As an approved open source license,’ the Apache License™ protects the user
against the loss of the right to use, to modify and/or to distribute the received copy
of the source code or the binaries.”" Furthermore, based on its patent clause,” the
Apache-2.0 protects the users against patent disputes.” Because of this patent
clause and the “disclaimer of warranty” together with the “limitation of liability,”
the Apache license also protects the contributors and distributors against patent
disputes and warranty claims.”™ Finally, the Apache-2.0 protects the distributed
sources themselves against a change of the license which would convert the work
to closed software, because, first, one “[...] must give any other recipients of the
Work or Derivative Works a copy of (the Apache) license,” second, “in the Source
form of any Derivative Works that (one) distributes”, one has “[...] to retain
[...] all copyright, patent, trademark, and attribution notices |[...],” and third,
one must “[...] include a readable copy [...of the] NOTICE file” being supplied
by the original package one has received.”

But the Apache License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: the Apache license does not
contain any sentence requiring that one has also to publish the source code. In
the same spirit, the Apache-2.0 does not protect the undistributed software or
the distributed binaries against re-closing (neither in unmodified nor in modified
form) because the Apache License allows to (re)distribute the binaries without
also supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, the Apache-2.0 does not protect the on-top developments
against privatization.

69) ¢f. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

70) The Apache License, version 2.0 is maintained by the Apache Software Foundation (cf. Apache
Software Foundation: Apache License, Version 2.0; 2004 (URL: http://www.apache.org/
licenses/LICENSE-2.0) — reference download: 2011-08-31, wp). Of course, the OSI is
hosting a duplicate of the Apache license (cf. Open Source Initiative: APL-2.0, 2004, wp)
and is listing it as an officially approved open source license (cf. Open Source Initiative: The
Open Source Licenses, alphabetically sorted, 2012, wp). The Apache license 1.1 is classified
by the OSI as “superseded license” (cf. Open Source Initiative: The Open Source Licenses
by Category, 2013, wp). In the same spirit, the Apache Software Foundation itself classifies
the releases 1.0 and 1.1 as “historic” (cf. Apache Software Foundation: Licenses; 2013 [n.y]
(URL: http://www.apache.org/licenses/) — reference download: 2013-02-25, wp). Thus,
the OSLiC only focuses on the most recent license Apache-2.0 version. For those who have
to fulfill these earlier Apache licenses it could be helpful to read them as siblings of the
BSD-2-Clause and BSD-3-Clause licenses.

™) ¢f. Open Source Initiative: APL-2.0, 2004, wp. §2.

72) — OSLiC pp. 54

™) cf. id., Le., wp. §3.

™) cf. id., Lc., wp. §3, §7, §8.

) ¢f. id., Le., wp. §4.

29

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

2 Open Source: The Same Idea, Different Licenses
2.3 The protecting power of the BSD licenses

As approved open source licenses,”® the BSD Licenses’” protect the user against
the loss of the right to use, to modify and/or to distribute the received copy of the
source code or the binaries.” Additionally, they protect the contributors and/or
distributors against warranty claims of the software users, because these licenses
contain a ‘No Warranty Clause.”™ And finally they protect the distributed sources
against a change of the license which closes the sources, because each modification
and “redistributions of [the] source code must retain the [...] copyright notice,
this list of conditions and the [...] disclaimer”:*" Therefore it is incorrect to
distribute BSD licensed code under another license—regardless of whether it closes
the sources or not.*!

But the BSD Licenses protect neither the users nor the contributors and/or dis-
tributors against patent disputes (because they do not contain any patent clause).
They do not protect the contributors against the loss of feedback (because they
do not ‘copyleft’ the software). Moreover, they do not protect the undistributed
software or the distributed binaries against re-closing—mneither in unmodified nor
in modified form—because they allow to redistribute only the binaries without
also supplying the source code.®? Finally, the BSD licenses do not protect the
on-top developments against privatization.

6) ¢f. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

77 BSD has to be resolved as Berkely Software Distribution. For details of the BSD license
release and namings cf. Open Source Initiative: The BSD 3-Clause License; 2012 [n.y.] (URL:
http://www.opensource.org/licenses/BSD-3-Clause) — reference download: 2012-07-04,
wp. editorial

™) ¢f. Open Source Initiative: The Open Source Definition, 2012, wp. §1fF.

) one for all version cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

80) ¢f. id., ibid.

81) Tn common sense based discussions you may have heard that BSD licenses allow to republish
the work under another, an own license. Taking the words of the BSD License seriously that
is not valid under all circumstances: Yes, it is true, you are not required to redistribute the
sourcecode of a modified (derivative) work. You are allowed to modify a received version and
to distribute the results only as binary code and to keep your improvements closed. But if
you distribute the source code of your modifications, you have retain the licensing, because
“Redistribution [...] in source [...], with or without modification, are permitted provided
that [...] (the) redistributions of source code [...] retain the above copyright notice, this
list of conditions and the following disclaimer” (cf. id., ibid.)

82) see both, the BSD-2-Clause License (cf. id., ibid.), and the BSD-3Clause License (cf. Open
Source Initiative: The BSD 3-Clause License, 2012, wp)

30

http://www.opensource.org/licenses/BSD-3-Clause

2 Open Source: The Same Idea, Different Licenses

2.4 The protecting power of the CDDL [tbd]

As an approved open source license,*® the Common Develop and Distribution
License protects the user against the loss of the right to use, to modify and/or to
distribute the received copy of the source code or the binaries®*

]

2.5 The protecting power of the Eclipse Public License (EPL)

As an approved open source license,® the Eclipse Public License® protects the
user against the loss of the right to use, to modify and/or to distribute the
received copy of the source code or the binaries®”. Furthermore, based on its
patent clause,®® the EPL protects the users also against patent disputes.®” Besides
this patent clause, the EPL contains the sections “no warranty” and “disclaimer of
liability.”?" These three elements together protect the contributors / distributors
against patents disputes and warranty claims. Finally, the EPL protects the
distributed sources themselves against a change of the license which would reset
the work as closed software: First, the Eclipse Public Licenses requires that if
a work—released under the EPL—“[...] is made available in source code form
[...] (then) it must be made available under this (EPL) agreement, too” while
this act of ‘making avalaible’ “must” incorporate a “copy” of the EPL into “each
copy of the [distributed] program” or program package.”’ But in opposite to the
permissive licenses, the EPL does not only protect the distributed source code—
regardless whether it is modified or not. The EPL also protects the distributed
modified or unmodified binaries: The EPL allows each modifying “contributor”

and distributor “[...] to distribute the Program in object code form under (one’s)
own license agreement [...]” provided this license clearly states that the “source
83)

cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

cf. Open Source Initiative: Common Development and Distribution License (CDDL-1.0);

2004 [n.y. of the html page itself] (URL: http://opensource.org/licenses/CDDL-1.0) —

reference download: 2013-04-19, wp. §7.

cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

86) The Eclipse Public License, version 1.0 is maintained by the Eclipse Software Foundation (cf.
Eclipse Foundation: Eclipse Public License, Version 1.0; 2005 [n.y. of the page itself] (URL:
http://www.eclipse.org/org/documents/epl-v10.php) — reference download: 2013-02-
20, wp). Of course, also the OSI is hosting a duplicate (cf. Open Source Initiative: Eclipse
Public License, Version 1.0; 2005 [n.y. of the page itself] (URL: http://opensource.org/
licenses/EPL-1.0) — reference download: 2013-02-20, wp).

87) ¢f. id., Lc., wp §2a.

88) _ OSLiC pp. 56

89) ¢f. id., Lc., wp §2b & §2c.

90) ¢f. id., L.c., wp §5 & §6.

9 ¢f. id., Lc., wp §3.

84)

85)

31

http://opensource.org/licenses/CDDL-1.0
http://www.eclipse.org/org/documents/epl-v10.php
http://opensource.org/licenses/EPL-1.0
http://opensource.org/licenses/EPL-1.0

2 Open Source: The Same Idea, Different Licenses

code for the Program is available” and where the “licensees” can “[...]| obtain it
in a reasonable manner on or through a medium customarily used for software
exchange.””” Thus, one has to conclude that the EPL is a copyleft license.

But the Eclipse Public License is not a license with strong copyleft; the EPL
uses ‘only’ a weak copyleft effect:”® Indeed, the EPL says that for each EPL
licensed “program”—distributed in object form—a place must be made known
where one can get the corresponding source code.”® The term ‘Program’ is defined
as any “Contribution distributed in accordance with [...] (the EPL)” while the
term ‘Contribution’ refers—besides other elements—to “changes to the Program,
and additions to the Program.”” Unfortunately, this is a circular definition:
‘Program’ is defined by ‘Contribution’; and ‘Contribution’ is defined by ‘Program.’
Nevertheless, one has to read the license benevolently. Uncontroversial should
be this: If one distributes any modified EPL licensed program, library, module,
or plugin, then one has to publish the modified source code, too. If one “adds”
some own plugins or additional libraries which are used by an EPL licensed
program (which on behalf of this use must have been modified by adding [sic!]
procedure calls) then one has to publish the code of both parts: that of the
program and that of the added elements. In this sense, the EPL clearly protects
the binaries against re-closings like other weak copyleft using licenses. But if
one distributes only an EPL licensed library which is used as a component by
another not EPL licensed on-top program, then this library does not depend on
the top development—provided that the library itself does not call any (program)
functions or procedures delivered by the overarching on-top development. Hence,
nothing is added to the library; and hence, no other code than that of the library
must be published. Therefore, the EPL does not use the strong copyleft effect in
the meaning of—for example — the GPL.

92) ¢f. Open Source Initiative: EPL-1.0, 2005, wp §3, esp. §3.b.iv.

93) Even if one can find contrary specifications in the internet. Pars pro toto cf. ifross: ifross
Lizenz-Center, 2011, wp: This page is listing the EPL in the section “Other Licenses with
strong Copyleft Effect”

94) ¢f. Open Source Initiative: EPL-1.0, 2005, wp §3, esp. §3.b.iv.

95) ¢f. id., Lc., wp §1.

32

2 Open Source: The Same Idea, Different Licenses

2.6 The protecting power of the European Union Public
License (EUPL)

As an approved open source license,”® the European Union Public License’”

protects the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries.”® Furthermore, based on
its patent clause”, the EUPL protects the users against patent disputes.'"’
Besides this patent clause, the EUPL additionally contains a “Disclaimer of
Warranty” and a “Disclaimer of Liability.”'"! These three elements together
protect the contributors / distributors against patents disputes and warranty
claims. Finally, the EUPL also protects the distributed sources against a re-
closing / re-privatization and the contributors against the loss of feedback. This
protection is based on two steps: First, the European Public License contains
a particular paragraph titled “Copyleft clause” which stipulates that “copies of
the Original Work or Derivative Works based upon the Original Work” must
be distributed “under the terms of (the European Union Public) License.” '
Second, the EUPL requires that each licensee—as long as he “[...] continues
to distribute and/or communicate the Work” —has also to “[...] provide [...]
the Source Code”, either directly or by “[...] (indicating) a repository where
this Source will be easily and freely available [...]”!%® This condition seems to
be so important for the EUPL that the license repeats its message: in another
paragraph the EUPL requires again that “if the Work is provided as Executable
Code, the Licensor provides in addition a machine-readable copy of the Source
Code of the Work along with each copy of the Work [...] or indicates, in a notice
[...], a repository where the Source Code is easily and freely accessible for as
long as the Licensor continues to distribute [...] the Work.”!"* Based on the
meaning of “Work” which is defined by the EUPL as “the Original Work and/or

96) ¢f. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

97) The European Union Public License, version 1.1 is maintained by the European Union and
hosted under the label “Joinup” (cf. European Community a. European commission Joinup:
EUPL-1.1/EN, 2007, wp). This EUPL has officially been translated into many languages,
among others into German (cf. Europdische Gemeinschaft a. European commission Joinup:
EUPL-1.1/DE, 2007, wp). Because of this multi lingual instances, the OSI does not offer
its own version, but just a landing page linked to the lading page of the European host
“Joinup” (cf. Open Source Initiative: European Union Public License, version 1.1 (EUPL-1.1;
2007 [n.y. of the html page itself] (URL: http://opensource.org/licenses/EUPL-1.1) —
reference download: 2013-03-04, wp).

98) ¢f. id., l.c., wp §2.

99) — OSLiC pp. 57

100) ¢f, id., Lc., wp §2, at its end.
100 ¢f. id., Lc., wp §7 & §8.

102) ¢f. id., Lc., wp §5.

103) ¢f. id., ibid.

104) ¢f id., L.c., wp §3.

33

http://opensource.org/licenses/EUPL-1.1

2 Open Source: The Same Idea, Different Licenses

its Derivative Works”!'% it must be concluded that the EUPL is a copyleft license.

But nevertheless, the European Union Public License is not a license with strong
copyleft: On the one hand, if one takes the core of the EUPL then the license seems
to protect not only the modifications of the original work against re-closings and
(re-)privatization, but also the on-top developments because normally you have to
publish the source code in both cases. Understood in this way, the EUPL would be
a ‘strong copyleft license.” But on the other hand, the EUPL additionally contains
a “Compatibility clause” stating that “if the Licensee Distributes [...]| Derivative
Works or copies thereof based upon both the Original Work and another work
licensed under a Compatible Licence, this Distribution [...] can be done under
the terms of this Compatible Licence” !"*—while the term “Compatible Licence”
is explicitly defined by a list of compatible licenses, for example the Eclipse Public
License.'’". Based on this compatibility clause the obligation to publish the code
of an on-top development can be subverted: As first step, you could release a
little, more or less futile on-top application licensed under the Eclipse Public
License'”® which uses a library licensed under the EUPL. As second step, you add
this ‘EUPL library’ which you now may also distribute under the EPL instead
of retaining the EUPL licensing. So, finally you obtain the same work under the
Eclipse Public License which is a weak copyleft license!’”. Hence the protection
of the EUPL-1.1 is not as comprehensive as one might assume on the basis of
the license text itself,''” it can at most be a weak copyleft license—even if the
reader might get the impression that the authors of the EUPL wished to write a
strong copyleft license. Howsoever, the EUPL license does not protect the on-top
developments against a privatization.

105) ¢f. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §1.

106) ¢f id., L.c., wp §5.

107) ¢f. id., L.c., wp Appendix.

108) Taking the license text very seriously, it is not even necessary that this little futile application
must depend on the EUPL library by calling functions of EUPL library. The license text only
says that “another [any other] work licensed under a Compatible Licence” can be distributed
together with “derivative works”. By this wording, the license itself is establishing a contrast
between the derivative work and the other work—what indicates that the other work has
not necessarily also to be a derivative work.

109) — OSLiC, p. 31

110) This kind of specifiying the protective power of the EUPL is initially presented by the FSF
(cf. Free Software Foundation: Various Licenses and Comments about Them, 2013, pp. wp.
section ‘European Union Public License’). The EU answers that publishing such a trick
will comprise its user in the eyes of the open source community (cf. European Community
a. Furopean commission Joinup: New FSF statements on the EUPL are a step in the
right direction; 2013 [n.y] (URL: https://joinup.ec.europa.eu/community/eupl/news/
new-fsf-statements-eupl-are-step-right-direction) — reference download: 2013-03-
05, p.wp). That is undoubtely true. But unfortunately, this argument does not close the
hole in the protecting shield put up by the EUPL.

34

https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction
https://joinup.ec.europa.eu/community/eupl/news/new-fsf-statements-eupl-are-step-right-direction

2 Open Source: The Same Idea, Different Licenses

2.7 The protecting power of the GNU General Public License
(GPL)

The GNU General Public License—also known as GPL—is maintained and offered
by the Free Software Foundation and hosted as part of the well known “GNU
operating system homepage.”!''! Currently, there are two versions of the GPL
which are classified as OSI approved open source licenses''?, the GPL-2.0'"* and
the GPL-3.0. ''* Although both versions of the GPL aim for the same results
and the same spirit, they differ with respect to textual and arguing structure.
Therefore, it is helpful to treat these two licenses separately.

2.7.1 GPL-2.0

The protecting power of the GPL-2.0 can easily be determined: First, the license
allows the users of a received software to “copy and distribute” unmodified “copies
of the [...] source code”'™ as well as to “[...] modify [...] copies [...] or
any portion of it, [...] and (to) distribute such modifications [...]"''%—mnot only
in the form of source code, but also in the form of binaries.!'” Thus—and in
accordance of being an approved open source license''®—the GPL-2.0 protects
the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries. Second, it protects the
contributors against warranty claims''” and—based on its copyleft effect'?°—also
against the loss of feedback. Third, the GPL-2.0 protects the source code itself
in a nearly complete mode against privatization: even if one initially distributes
only the binary version of a modification which one has generated (as a “work
based on the” original) by “copying” any portion of the original work into this
new derivative work,'?! then one has nevertheless to offer a possibility to get the

1 ¢f. Free Software Foundation: GNU Operating System[:] Licenses; 2011 (URL: http:

//www.gnu.org/licenses/) — reference download: 2013-03-25, wp.

cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

113) For the original version, offered by the FSF cf. Free Software Foundation: The GPL-2.0
License (FSF), 1991, wp. For the version, offered by the OSI cf. Open Source Initiative: The
GPL-2.0 License (OSI), 1991, wp.

114) For the original version, offered by the FSF cf. Free Software Foundation: GNU General
Public License [version 3]; 2007 [n.y. of the html page itself] (URL: http://www.gnu.org/
licenses/gpl.html) — reference download: 2013-03-06, wp. For the version, offered by the
OSI cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp.

115) ¢f. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1.

16) ¢f id., L.c., wp §2.

17 ¢f. id., Le., wp §3.

118) ¢f. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

119) ¢f. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §11, §12.

120) ¢f. id., l.c., wp §3.

121) ¢f id., Lc., wp §2.

112)

35

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

2 Open Source: The Same Idea, Different Licenses
source code'?>—namely for “the modified work as whole.”'?® This modified “work
based on the [original] Program” has to be read in a very broad sense; it “[...]
means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language.”'* Hence, in the context
of software distribution, the GPL-2.0 does not only protect the software against
re-privatization, but also possible on-top developments against privatization.

But the GPL-2.0 does not protect against patent disputes'?”—mneither the users,
nor the contributors or distributors—and it does not protect the (modified)
software which is not distributed against (re-)privatization.'?

2.7.2 GPL-3.0

An important modification of the GPL-3.0 is evoked by the use of the new wording
to “propagate” or to “convey” a “covered work”: On the one hand a “covered
work” denotes “either the unmodified Program or a work based on the Program”.
This “work based on the Program” is defined as a “modified version” of an
“earlier” instance of the program which has been derived from this earlier instance
by “(copying it) from or (adapting) all or part of it” in way other than exactly
copying the earlier instance.'?” On the other hand, “to propagate a work” denotes
“copying, distribution (with or without modification), making available to the
public” and any other kind of treating the work “[...] except executing it on a
computer or modifying a private copy.”'* Third, the GPL 3.0 specifies that to
“convey” a work “[...] means any kind of propagation that enables other parties
to make or receive copies.”'? This specification shall later on help to clarify that
it is an act of distribution if the recipient himself actively copies or fetches a

122) ¢f. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §4.

123) ¢f id., L.c., wp §3.

124) ¢f. id., Lc., wp §0.

125) 5 OSLiC, p. 58

126) This is a ‘lack’ in the GPL which the AGPL wants to close: you are indeed allowed to modify
and install a GPL-2.0 licensed server software on your own machine for offering a service
based on this modified software without being obliged to give your improvements back to
the community. But—at least in Germany—this viewpoint seems to have to respect rigorous
limits. Sometimes, it is said that even distributing software over the parts of a holding is
already a distribution which—in the case of GPL-2.0 licensed software—would evoke the
obligation to distribute the source code, too. [IMPORTANT: citation still needed!]

127) ¢f. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §0.

128) ¢f. id., l.c., wp. §0. The GPL 3.0 wants to cover the copyright systems of all countries of
the world without dealing with their particular constraints directly. Therefore it generally
states, that the meaning of the phrase “to propagate a work”—in the spirit of the FSF—is
whatever the specific copyright system wants to be covered by these words, “[...] except
executing it on a computer or modifying a private copy”.

129) ¢f . id., L.c., wp §0.

36

2 Open Source: The Same Idea, Different Licenses

program.

Referring to this new wording, the GPL-3.0 allows as a “basic permission” to
“[...] make, run and propagate covered works [...] without conditions so long
as your license otherwise remains in force.”!*” This might be read as anything
15 allowed without any restrictions—provided there does not exist any rule which
must be respected. Based on these specifications, the use and the modification of a
GPL-3.0 program only for yourself is not restricted.*!

So, in general—like all the other open source licenses and in accordance to the
OSD!2—also the GPL protects the user against the loss of the right to use, to
modify and/or to distribute the received copy of the source code or the binaries.??
Furthermore, based on its patent clauses, the GPL-3.0 protects the users and the
contributors of a software against patent disputes.'** Additionally, the GPL-3.0
tries to protect the contributors or distributors against warranty claims by its well
known “Disclaimer of Warranty”'*® and “Limitation of Liability” '*® which must
explicitly made been known at least in each case of source code distribution.?”
Finally, the most forceful protection of the GPL-3.0 concerns the protection against
the loss of feedback and against the privatization: Whenever you distribute a
GPL-3.0 licensed program in the form of binaries, you have to make the source
accessible, too.!*® Moreover, this obligation concerns every covered work, hence
not only the unmodified original, but also any modification or adaption derived
by any other kind of copying parts of the original into the “resulting work”:'*
“You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License.”'” So, no doubt: the GPL wants also the source

130) ¢f. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §2.

131) Tn general, you have to infer that you do not have to fulfill any tasks if you are using a
piece of open source software only for yourself—namely based of the fact that the particular
license rules focus only on the distribution of the software, not on the private use. But in
the GPL-3.0, this assertion concerning the private use becomes more explicit: It is one of
your “basic permissions” to “[...] make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains in force”. And “to
propagate a work” refers to anything “[...] except executing it on a computer or modifying
a private copy” (cf. id., L.c., wp. §2 and §0). Thus, the GPL-3.0 supports your total freedom
on your own machine: Do whatever you want to do; anything goes—as long as you do not
hand the result over to any third party in any sense.

cf. Open Source Initiative: The Open Source Definition, 2012, wp.

133) ¢f. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §3, §4, §5, and §6.

134) 5 OSLiC, p. 58

135) ¢f id., L.c., wp §15.

136) ¢f. id., Lc., wp §16.

137) ¢f. id., Le., wp §4.

138) ¢f. id., Lc., wp §6.

139) ¢f. id., l.c., wp §0.

140) ¢f id., L.c., wp §6.

132)

37

2 Open Source: The Same Idea, Different Licenses

code of all on-top developments to be published, not only the modified programs
and libraries used as base of these on-top developments. The single mode of use,
the GPL does not protect against privatization, is the mode of using the software
only for yourself.'*!

2.8 The protecting power of the GNU Lesser General Public
License (LGPL)

The LGPL is maintained and offered by the Free Software Foundation and hosted
as part of the well known “GNU operating system homepage.”'*? The meaning
of the name LGPL was changed in the course of time. First, in 1991, it should be
resolved as “GNU Library General Public License” and should denote the “first
released version of the library GPL” which was “[...] numbered 2 because it goes
with version 2 of the ordinary GPL.” Today, this license is marked as “superseded
by the GNU Lesser General Public License”*. This newer LGPL version from
1999 was released as “the successor of the GNU Library Public License, version 2,
hence [as] the version number 2.1.”'** Finally, in June 2007, the—for now—last
version of the LGPL was released—namely with a new structure: While GPL-2.0
and LGPL-2.1 are similar, but independent licenses, the LGPL-3.0 has to be read
as an addendum to GPL-3.0. At the beginning of the LGPL-3.0 license, the content
of the corresponding GPL-3.0 was included into the LGPL by the sentence that
“this version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented by
the additional permissions listed below.” %" Based on these differences, it seems
to be suitable to treat the different LGPLs separately.

141) Quite the contrary: The GPL-3.0 explicitly allows to delegate the modification to third
parties and allows to distribute the source code as working base “[...] to others for the
sole purpose of having them make modifications exclusively for you [...]" (cf. Open Source
Initiative: The GPL-3.0 License (OSI), 2007, wp. §2).

142) ¢f. Free Software Foundation: The GNU OS Licenses, 2011, wp.

13) ¢f. Free Software Foundation: GNU Library General Public License [version 2.0]; 1991 [n.y.
of the html page itself] (URL: http://www.gnu.org/licenses/old-licenses/lgpl-2.0.
html) — reference download: 2013-03-25, wp.

144) of. Free Software Foundation: GNU Lesser General Public License [Version 2.1]; 1999 [n.y.
of the html page itself] (URL: http://www.gnu.org/licenses/lgpl-2.1.html) — reference
download: 2013-03-06, wp.

15) ¢f. Free Software Foundation: GNU Lesser General Public License [version 3]; 2007 [n.y.
of the html page itself] (URL: http://www.gnu.org/copyleft/lesser.html) — reference
download: 2013-03-06, wp.

38

http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/copyleft/lesser.html

2 Open Source: The Same Idea, Different Licenses

2.8.1 LGPL-2.1

Like the other versions of the GPL or LGPL, the LGPL-2.1 also explicitly describes
its purpose as the task to “protect” the “rights” of the software users: it states that
generally all “[...] the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software [...]”"*% Of course, the LGPL-2.1
is an approved open source license'*” which protects the user against the loss of the
right to use, to modify and/or to distribute the received copy of the source code
or the binaries.'*® But the LGPL-2.1 does not offer any sentences to infer that it
grants any patent rights to the software user.'*’ So, it does not protect anyone
against patent disputes, neither the users, nor the contributors / distributors.
Instead of this, the LGPL-2.1 contains a special section “No Warranty” offering
two paragraphs which together establish the protection of the contributors and
distributors against warranty claims.'” Finally, the LGPL-2.1 also protects the
distributed sources against a re-closing / re-privatization and the contributors
against the loss of feedback. For that purpose, the LGPL-2.1 on the one hand
states that the recipient “[...] may modify (his) copy or copies of the Library or
any portion of it [...] and copy and distribute such modifications [...]” provided
that the results of these modifications are “[...] licensed at no charge to all
third parties under the terms of (the LGPL-2.1).”'"" On the other hand, this
LGPL version allows to distribute such modifications “in object code or executable
form” provided that one accompanies these entities “[...] with the complete
corresponding machine-readable source code” which itself must be distributed
under the terms of the LGPL-2.1.1%2

But contrary to the GPL, the LGPL does not require to publish the code of an
overarching program or any on-top development: It distinguishes the “work that
uses the Library” from the “work based on the Library”: First, it defines the
“Library” as any “software library or work” licensed under the LGPL-2.1 and adds
that “a ‘work based on the Library’ means either the Library or any derivative
work under copyright law.”'*® Second, it defines the “work that uses the Library’
as any “[...] program that contains no derivative of any portion of the Library, but
is designed to work with the Library by being compiled or linked with it” whereas
this “work that uses the Library”—taken “in isolation”—clearly “[...] is not a
derivative work of the Library [...]”'"* Third—and explictily “as an exception to

Y

146) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp Preamble.

147) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.
148) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §1, §2, §4.

149) _, OSLiC, p. 59

150) ¢f. id., Lc., wp §15, §16.

151) of id., Le., wp §2.

152) of id., Lc., wp §4.

153) ¢f. id., l.c., wp §0, emphasis ours.

154) ¢f id., l.c., wp. §5, emphasis ours. To be exact: the LGPL states also, that this work can

39

2 Open Source: The Same Idea, Different Licenses

the Sections above”—the LGPL-2.1 allows to “[...] combine or link a ‘work that
uses the Library’ with the Library to produce a work containing portions of the
Library, and distribute that work under terms of (one’s own) choice” provided one
“(accompanies) the work with the complete corresponding machine-readable source
code for the Library”. Together, these three specifications clearly require that one
must publish / distribute the source code of the library itself—regardless, whether
it is modified or not, and regardless, whether one distributes the code directly or
makes ‘only’ written offer for receiving the source code of the library separately.'®”
But these specifications do not require that one also must publish / distribute
the source code of the work that uses the library or—as the OSLiC is using to
say—the the on-top developments.

Thus—mno surprise—it has to be inferred that the LGPL does not protect the
on-top developments against a privatization. And of course, that is the reason
why it is called the GNU Lesser General Public License.

2.8.2 LGPL-3.0

The LGPL-3.0 wants to be read as an extension of the GPL-3.0. For that purpose,
it explicitly “[...] incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by (some) additional permissions |...]"
Thus, the LGPL-3.0 inherits the most parts of the protecting power of the GPL-
3.0—except those parts which deal with the overarching on-top development: In
opposite of the GPL-3.0, the LGPL allows to embed LGPL-3.0 licensed libraries
into libraries of higher complexity'®’, into on-top applications'®® and into sets
of reorganized library systems.'”® Moreover, the LGPL-3.0 allows to “convey’
these overarching units “under terms of (one’s own) choice.”'® Therefore, one is
not necessarily obliged to publish the source code of these on-top developments,
too'%'—but, of course, one is obliged to publish the source code of the (modified)
embedded libraries themselves.

Y

nevertheless become a derivative work under the particular circumstances of being linked to
the library. But even then, the LGPL allows to treat this ‘derivative work’ as a work which
is not a derivative work, provided one fulfills some additional conditions. With respect to
this viewpoint, the hint of the LGPL that the non-derivative work becomes a derivate work
by linking it, seems not to be as crucial as one might expect.

155) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §6.

156) ¢f. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp just before §0.

157) ¢f. id., Lc., wp §3.

158) ¢f. id., l.c., wp §4.

159) ¢f. id., Lc., wp §5.

160) ¢f. id., Lc., wp §4.

161) To be exact: The LGPL-3.0 wants to assure that “combined works” can be re-combined on
the base of newer versions of the embedded library. For that purpose, one has either to use
“a suitable shared libary mechanism” which allows to replace the embedded library without
relinking the larger unit, or one has to publish at least “the minimal corresponding source

40

2 Open Source: The Same Idea, Different Licenses
Based on the already described protecting power of the GPL-3.0'? and on these

additional specifications of the LGPL-3.0, one can summarize the protecting power
of the LGPL-3.0 this way:

First, the LGPL protects the users against the loss of the right to use, to modify
and/or to distribute the received software. Additionally, it protects them against
patent disputes. Second, it protects the contributors and distributors against the
loss of feedback, against warranty claims and against patent disputes. Finally, it
protects the distributed software itself against re-privatization.

But the LGPL-3.0 does not protect the undistributed source code and does not
protect the on-top developments against privatization.

2.9 The protecting power of the MIT license

As an approved open source license,'® the MIT License'® protects the user against
the loss of the right to use, to modify and/or to distribute the received copy of the
source code or the binaries.'> Additionally, it protects the contributors and/or
distributors against warranty claims of the software users, because it contains a
‘No Warranty Clause.’'%® And finally it protects the distributed sources against
a change of the license which would close the sources, because the “permission
[...] to use, copy, modify, [...] distribute, [...] (is granted) subject to the [...]
conditions, [that] the [...] copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.” 67

But the MIT License does not protect the users or the contributors and/or
distributors against patent disputes (because it does not contain any patent
clause). Additionally, it does not protect the contributors against the loss of

[code]” and a set of binaries by which the user himself can relink the overarching unit on
the base of a newer version ob the embedded library (cf. Free Software Foundation: The
LGPL-3.0 License (FSF), 2007, wp. §4)

162) 5 OSLIiC, p. 36

163) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

164) “MIT’ has to be resolved as “Massachusetts Institute of Technology” (cf. Wikipedia (en):

MIT License; n., 2011 (URL: http://en.wikipedia.org/wiki/MIT_License) — reference

download: 2011-09-20, wp).

cf. Open Source Initiative: The Open Source Definition, 2012, wp 1ff.

166) ¢f. Open Source Initiative: The MIT License; 2012 [n.y.] (URL: http://opensource.org/
licenses/mit-license.php) — reference download: 2012-08-24, wp.

167) ¢f. id., ibid.. The argumentation why the source code is protected, but not the binary form
follows that of the BSD licenses: By these requirements, one is not obliged to redistribute
the sourcecode of a modified (derivative) work. One is allowed to modify a received version
and to distribute the results only in binary form and to keep one’s improvements closed.
But if one distribute the source code of the modifications, the licensing is retained, simply
because the MIT “[...] permission note shall be included in all copies or substantial portions
of the software”.

165)

41

http://en.wikipedia.org/wiki/MIT_License
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php

2 Open Source: The Same Idea, Different Licenses

feedback (because it does not ‘copyleft’ the software). Moreover, the MIT license
does not protect the undistributed software or the distributed binaries against
re-closings—neither in unmodified nor in modified form—because it allows to
redistribute only the binaries without also supplying the source code.'*® Finally,
the MIT license does not protect the on-top developments against a privatization.

2.10 The protecting power of the Mozilla Public License
(MPL)

As an approved open source license,'%’ the Mozilla Public License'™ protects
the user against the loss of the right to use, to modify and/or to distribute
the received copy of the source code or the binaries.!”™ Furthermore, based on
its split and distributed patent clause,'”™ the MPL protects the users against
patent disputes.'™ Besides this patent sections, the MPL additionally contains
a “Disclaimer of Warranty” and a “Limitation of Liability.”!™ These three
elements together protect the contributors / distributors against patents disputes
and warranty claims. Finally, the MPL also protects the distributed sources
against a re-closing / re-privatization and the contributors against the loss of
feedback: The MPL clearly says that, on the one hand, “all distribution of

168) of. Open Source Initiative: The MIT License, 2012, wp.

169) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

170) Tn 2012, the Mozilla Public License 2.0 (cf. Mozilla Foundation: Mozilla Public License
2.0 (MPL-2.0); 2012 (URL: http://www.mozilla.org/MPL/2.0/) — reference download:
2013-03-05, wp) has been released as a result of a longer “Revision Process” (cf. Mozilla
Foundation: About MPL 2.0: Revision Process and Changes FAQ; 2013 [n.y.] (URL:
http://www.mozilla.org/MPL/1.1/) — reference download: 2013-03-05, wp) by which the
Mozilla Public License 1.1 (cf. Mozilla Foundation: Mozilla Public License Version 1.1;
2013 [n.y.] (URL: http://www.mozilla.org/MPL/1.1/) — reference download: 2013-03-05,
wp) has been ousted. The OSI is also hosting its version of the MPL-2.0 (cf. Open Source
Initiative: The MPL-2.0 License (OSI), 2013, wp) and is listing it as an OSI approved license
(cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp)
while it classifies the MPL-1.1 as a “superseded license” (cf. Open Source Initiative: The
Open Source Licenses by Category, 2013, wp). The Mozilla Foundation itself says concerning
the difference between the two licenses that “the most important part of the license—the
file-level copyleft—is essentially the same in MPL 2.0 and MPL 1.1” (cf. Mozilla Foundation:
MPL 2.0: Revision Process and Changes, 2013, wp). By reading the MPL-1.1, one could
get the impression that fulfilling all conditions of the MPL-2.0 would imply also to act
in accordance to the MPL-1.1. Thus the OSLiC focuses on the MPL-2.0, at least for the
moment. Nevertheless, in this section we want to use the general label ‘MPL’ without any
release number for indicating that with respect to its protecting power the MPL-2.0 and the
MPL-1.1 can be taken as equipollent.

170 ¢f. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §2.1.a.

172) _ OSLiC pp. 60

173) ¢f. id., l.c., wp §2.1.b, §2.3, §5.2.

174) ¢f . id., lL.c., wp §6 & §7.

42

http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/1.1/
http://www.mozilla.org/MPL/1.1/

2 Open Source: The Same Idea, Different Licenses

Covered Software in Source Code Form, including any Modifications [...] must
be under the terms of this License”'” and that, on the other hand, MPL licensed
software “[...] (distributed) in Executable Form [...] must also be made available
in Source Code Form [...]”'" So, it must be inferred that the MPL is a copyleft
license.

But nevertheless, the Mozilla Public License is not a license with strong copyleft.
It does not protect on-top developments against privatization: First, the MPL
does not use the term derivative work.'” Instead of this, the MPL denotes the
“[...] (initial) Source Code Form [...] and Modifications of such Source Code
Form” by the label “Covered Software”'™®—while the term “Modifications” refers
to “any file in Source Code Form that results from an addition to, deletion from, or
modification of the contents of Covered Software or any file in Source Code Form
that results from an addition to, deletion from, or modification of the contents of
Covered Software.” '™ Second, the MPL contrasts the source code form and its
modifications with the “Larger Work” by specifying that the larger work is “[...]
material, in a seperate file or files, that is not covered software.”'® Finally, the
MPL states, that “you may create and distribute a Larger Work under terms of
Your choice, provided that You also comply with the requirements of this License
for the Covered Software.” ! Based on these specifications, one has to reason
that an on-top development which depends on MPL licensed libraries by calling
some of their functions, is undoubtably a derivative work,'®? but also only a larger
work in the meaning of the MPL so that code of this on-top application needs
not to be published—provided, that the library and the on-top development are
distributed as different files.'®® Hence, the MPL is license with a weak copyleft

175) ¢f. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §3.1.

176) ¢f. id., Lc., wp §3.2.

177) ¢f. id., l.c., wp. The MPL-1.1 uses the term derivative work only in the context of writing
new “versions of the license”, not in the context of licensing software (cf. Mozilla Foundation:
Mozilla Public License Version 1.1, 2013, wp. §6.3).

178) f. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §1.4.

179) ¢f. id., l.c., wp. §1.10. The Mozilla Foundation denotes this reading by the term “file-level
copyleft” (cf. Mozilla Foundation: MPL 2.0: Revision Process and Changes, 2013, wp).

180) ¢f. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §1.7.

181) ¢f. id., l.c., wp §3.3.

182) This follows from the general meaning of a derivative work as a benevolent software developer
would read this term (— OSLiC, pp. 67). But again: The MPL does not focus on this
general aspect; it uses its own concept of a larger work.

183) Tt might be discussed whether integrating a declaration of a function, class, or method into
the on-top development by including the corresponding header files indeed means that one
is “including portions (of the Source Code Form)” into a file which therefore has to be taken
as “Modification” (cf. Mozilla Foundation: Mozilla Public License Version 1.1, 2013, wp.
§1.4). From the viewpoint of a benevolent developer it should be difficult to argue that the
including of declaring (header) files alone can evoke a derivative work. It is the call of the
function in one’s code which establishes the dependency. But that is not the point, the MPL
focuses. The MPL aims on the textual reuse of (defining) code snippets. Hence, one could

43

2 Open Source: The Same Idea, Different Licenses

effect and does not protect the on-top developments against privatization.

2.11 The protecting power of the Microsoft Public License
(MS-PL)

As an approved open source license,'®* the Microsoft Public License protects
the user against the loss of the right to use, to modify and/or to distribute the
received copy of the source code or the binaries.'® Furthermore, based on its
patent clause,'®® the MS-PL protects the users against patent disputes.'®” Because
of this patent clause and of its concise disclaimer of warranty, the MS-PL also
protects the contributors / distributors against patents disputes and warranty
claims.'®® Finally, the Microsoft Public License protects the distributed sources
themselves—and even “portions of these sources”—against a change of the license
which would reset the work as closed software, because first, one “[...] must
retain all copyright, patent, trademark, and attribution notices that are part of
the software,”'® and because, second, one must also incorporate “a complete copy

of this license” into one’s own distribution premised one distributes the source
code.'””

But the Microsoft Public License does not protect the contributors against the
loss of feedback because it does not ‘copyleft’ the software: The license does not
contain any sentence which requires that one has to publish the sources, too.'"!

ignore the textual integration of parts of the declaring header files: it should not trigger that

one’s own work becomes a modification in the eyes of the Mozilla Findation. But of course,

one would circumvent the idea of the MPL if one hides defining code in header files and
reuses that code by one’s own compilation. This would undoubtably be an incorporation of
portions and therefore would make the incorporating file becoming a modification of the

MPL licensed initial work.

cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

185) ¢f. Open Source Initiative: Microsoft Public License (MS-PL); 2013 [n.y.] (URL: http:
//opensource.org/licenses/MS-PL) — reference download: 2013-02-26, wp §2.

186) _ OSLiC pp. 61

187) ¢f. id., Lc., wp §2.B and §3.B.

188) ¢f. id., l.c., wp §2B, §3B, §3D.

189) ¢f. id., Lc., wp §3C.

190) ¢f. id., Lc., wp §3D.

191) There seems to be some misunderstandings on the internet: The English wikipedia specifies
the MS-PL as a permissive license and the MS-RL as a license with copyleft effect (cf.
Wikipedia (en): Shared source; n.l, 2013 [n.y.] (URL: http://en.wikipedia.org/wiki/
Shared_source) — reference download: 2013-02-26, wp). The German wikipedia says that the
MS-PL is a license with a “schwachen [weak] copyleft” (cf. Wikipedia (de): Microsoft Public
License; n.l, 2013 [n.y.] (URL: http://de.wikipedia.org/wiki/Microsoft_Public_
License) — reference download: 2013-02-26, wp). And it says also that the “Microsoft
Reciprocal License” (MS-RL) is a license with weak copyleft, too (cf. Wikipedia (de):
Microsoft Reciprocal License; n.l, 2013 [n.y.] (URL: http://de.wikipedia.org/wiki/

184)

44

http://opensource.org/licenses/MS-PL
http://opensource.org/licenses/MS-PL
http://en.wikipedia.org/wiki/Shared_source
http://en.wikipedia.org/wiki/Shared_source
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Microsoft_Public_License
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL

2 Open Source: The Same Idea, Different Licenses

In the same spirit, the MS-PL does not protect the undistributed software or the
distributed binaries against re-closings—neither in unmodified nor in modified
form—because the MS-PL License allows to (re)distribute the binaries without
also supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, also the MS-PL does not protect the on-top developments
against a privatization.

2.12 The protecting power of the Postgres License
(PostgreSQL)

As an approved open source license,'”? the PostgreSQL License protects the user
against the loss of the right to use, to modify and/or to distribute the received
copy of the source code or the binaries.'”® Because of its disclaimer of warranty,
the PostgreSQL also protects the contributors / distributors against warranty
claims.'”* Finally, the PostgreSQL protects the distributed sources themselves
against a change of the license which would reset the work as closed software,
because the “copyright notice” and the whole license must “[...| appear in all
copies.” 1%

But the PostgreSQL License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: The license does not contain
any sentence which requires that one has to publish the sources, too. In the
same spirit, the PostgreSQL does not protect the undistributed software or the
distributed binaries against re-closings—neither in unmodified nor in modified
form—because the PostgreSQL allows to (re)distribute the binaries without also
supplying the sources—even if the binaries rest upon sources modified by the
distributor. Finally, the PostgreSQL does not protect the on-top developments
against a privatization.

Ms-RL) — reference download: 2013-02-26, wp). But for the very thoroughly working “ifross

license center”, the MS-RL is a license with restricted (weak) copyleft, while the MS-PL is a

permissive license with some selectable options (cf. ifross: ifross Lizenz-Center, 2011, wp).

Based on the license text itself and these other readings, we decided to take the MS-PL as a

permissive license in accordance to the English wikipedia page and the ifross page.

cf. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

193) of. Open Source Initiative: The PostgreSQL Licence (PostgreSQL); 2013 [n.y.] (URL:
http://opensource.org/licenses/PostgreSQL) — reference download: 2013-02-27, wp.

194) of id., ibid.

195) ¢f . id., ibid.

192)

45

http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://de.wikipedia.org/wiki/Ms-RL
http://opensource.org/licenses/PostgreSQL

2 Open Source: The Same Idea, Different Licenses
2.13 The protecting power of the PHP License

As an approved open source license,'”® the PHP-3.0 License protects the user
against the loss of the right to use, to modify and/or to distribute the received
copy of the source code or the binaries.'”” Because of its disclaimer of warranty,
the PHP license also protects the contributors / distributors against warranty
claims.'”® Finally, the PHP license protects the distributed sources themselves
against a change of the license which would reset the work as closed software,
because “redistributions of source code must retain the [...] copyright notice,
this list of conditions and the [...] disclaimer.” "

But the PHP-3.0 License does not protect the contributors against the loss of
feedback because it does not ‘copyleft’ the software: The license does not contain
any sentence which requires that one has to publish the sources, too. In the
same spirit, the PHP license does not protect the undistributed software or the
distributed binaries against re-closings—mneither in unmodified nor in modified
form—Dbecause the PHP license allows to (re)distribute the binaries without also
supplying the sources—even if the binaries rest upon sources modified by the
distributor.

2.14 Summary

All these specifications can not only be summarized by a table,?”’ but also by
a mindmap as it is shown at the end of this chapter. Moreover, based on these
specifications, one could generate new groups of open source licenses, new classes,
like ‘user protecting licenses,”?"! ‘patent disputes fending licenses’ up to more
sophisticated taxonomies.

However, one must keep in mind that all of these grouping viewpoints do not
legitimate the conclusion that all members of a group can be respected by fulfilling
the same requirements. This would only be possible if the grouping criteria would
directly refer to the fulfilling tasks. Indeed, nearly all open source licenses do
differ with respect to these criteria, and even if the differences are very small, they
can’t be neglected.?’? So: reflecting on possible classes of open source licenses is

196) of. Open Source Initiative: The Open Source Licenses, alphabetically sorted, 2012, wp.

97) cf. Open Source Initiative: The PHP License 3.0 (PHP-3.0); 2013 [n.y.] (URL: http:
//opensource.org/licenses/PHP-3.0) — reference download: 2013-02-27, wp.

198) ¢f . id., ibid.

199) ¢f. id., ibid.

200) 5 OSLIC, p. 28

201) all of them because all of them have to fulfill the OSD

202) Pars pro toto: Both, the BSD license and the Apache license require that you provide an
indication to the developers of the application. But in case of the BSD license you have to

46

http://opensource.org/licenses/PHP-3.0
http://opensource.org/licenses/PHP-3.0

2 Open Source: The Same Idea, Different Licenses

a good method to become familiar with the area of open source licenses. But it is
not a method to determine, what needs to be done to obtain the right to use the
software. For that purpose every license must be considered individually.

publish the copyright notice /line, while in case of the Apache license you have exactly to
present the content of the notice file distributed together with the application.

47

2 Open Source: The Same Idea, Different Licenses

Affero
~_|GNU |
undistributed against Jﬁ Public
Software License
. 7/
protecting the L7
user, the con- |-~ [GNU B
atis _ L
zings . P \
initial code, _ -~ License [~
all direct deri-
part of On-Top- agei vations & the Lesser
Developments (indirectly de- GNU L -
o, .
: £y rived) on-top- Public
: Lo developments Li b
’ . icense
%_- =] Strong Copyleft L7
§ L modified against. o T o Eumpean
g Binaries ings protecting the Public
3 .
2 user, the con- | - License
& tributor, the ol
initial code, €& | __ PC Z? 'S¢
i los- . . 1 -
modified against o 00 all direct deri- L?L e
Sources ings vations . 1cense
) Weak Copyleft T~ MOZZUG/ _
B §> : Public
B Y i N [~ <
C 8 o unmodified) reclos- License
] RN against
. e Binaries ings
g Q
- & PHP |
. protecting the _J License
open user, the con- =~
unmodified - reclos- o PostgreS
source S against ings tributor & the -- Li greS[Q]
. ources L. cense
license wmitial code N
- Permissive Licenses ~~| MicroSoft
C T N Public
B o N
o / ! i
:_ § Loss Of , \ N License
B %\, II | \
1 5 Feeback b Apache
é o |\ MIT License
RO e 1 T
: o .
S % ! | License !
=%) %} 2.0
e %/ Warranty BSD /
ES : Claims License /
=) : 4
X B / N //
S 3-Clauses 2-Clauses y 4
g S 4
' Z
’? Loss of
. N@%-_ Rights
v NI
%
A
% '
2,
Wy Patent

Disputes

48

3.0

3.0

2.1

3.0

2.1

1.2

1.1

1.0

2.0

1.1

3.0

3 Open Source: About Some Side Effects

3.1 The problem of implicitly releasing patents

In this chapter, we briefly analyze the effects of patent clauses in open source
licenses—mnot in general, but with respect to the license fulfilling tasks they require,
also known as the ‘tmplicit acceptance of a patent use’ by distributing open source
software.

At least the free software movement frowns on the existence of software patents.?’?

One of the best known witnesses for that attitude is the GPL itself. Its preamble
purports that “[...] any free program is threatened constantly by software
patents.”?"* One can read that the open source community fears three risks: First,
they are apprehensive of people who hijack the idea of a piece of open source
software they do not have developed, register a corresponding patent, and finally
try to earn money by preventing the use of the software or by involving its users
in patent ligitations.””> Second, they fear a bramble of general software patents
which practically prohibits them to develop open source software legally.?’® Third,
they anticipate the possibility that (not quite benevolent) open source developers

203) For an early and elaborate description on the effects of software patents based on the
viewpoint of the free software movement see Stallman, Richard M.: Free Software: Freedom
and Cooperation; transcript of a speech given at New York University on 29 May 2001; In
Stallman: Free Software, Free Society: Selected Essays, 2002, wp. This lecture seems to have
been given more than once and printed later on (cf. Stallman, Richard M.: The Danger of
Software Patents; transcript of a speech given at University of Cambridge, London on the 25th
of March 2002; In Stallman: Free Software, Free Society: Selected Essays, 2002, wp). Within
the first decade of 2000, the focus switched to a more political fight against software patents
(cf. Stallman, Richard M.: Fighting Software Patents - Singly and Together; n.st. [2004]
(URL: http://www.gnu.org/philosophy/fighting-software-patents.html) — reference
download: 2013-02-18, wp). But recently there seems to have appeared another turn
in dealing with software patents: Not fighting against the patents, but mitigating their
effects. The proposal is ‘[...] (to legislate) that developing, distributing, or running a
program on generally used computing hardware does not constitute patent infringement’ (cf.
Stallman, Richard M.: Let’s Limit the Effect of Software Patents, Since We Can’t Eliminate
Them; in: Wired, n.st. January (2012) (URL: http://www.wired.com/opinion/2012/
11/richard-stallman-software-patents/) — reference download: 2013-02-18, ISSN n.st.,
Wp)

204) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp.

205) cf. Jaeger a. Metzger: Open Source Software. Rechtliche Rahmenbedingungen der Freien
Software, 2011, p. 234.

206) ¢f . id., ibid.

49

http://www.gnu.org/philosophy/fighting-software-patents.html
http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/
http://www.wired.com/opinion/2012/11/richard-stallman-software-patents/

3 Open Source: About Some Side Effects

could try to register patents with the intention of undermining the open source
principles.?’”

Howsoever, regardless whether one tries to fight against software patents or not,
software patents have become a reality. To abide by the law requires managing
the constraints of patents properly. Open source licenses know and respect this
necessity. Moreover, at least some of them try to manage the effect of software
patents by specific patent clauses®”® or by several sentences distributed in the
license text.?”Y But why does the OSLiC have to deal with this topic, if the OSLiC
does not want to participate in general discussions?

Opposite to the other conditions of the open source licenses, their patent clauses
or propositions in general do not directly refer to a specific set of actions which
have to be executed for acting in accordance with the licenses. Open source patent
clauses normally do not join in the game ‘paying by doing.” So, actually, it does
not seem to be necessary to mention the patent clauses here.

Unfortunately, although the patent clauses do not directly say ‘do this or that in
these or those circumstances,” some of them nevertheless have side effects which
imply that the distributors of open source software already have something done
if they actually distribute a piece of open source software. This implicit effect

makes it necessary to deal with the patent clauses even in an only pragmatic
OSLiC.

Patent clauses in open source licenses can have two different directions of impact.
They use two methods to protect the users of the open source software—and
sometimes these methods are combined:

e First, an open source license can assure that all contributors to and dis-
tributors of a piece of open source software grant to all users/recipients
not only the right to use the open source software itself, but automatically
and implicitly also the right to use all those patents belonging to the con-
tributors/distributors which as patents are necessary to use the software
legally.?!? So, let us—a little simplifying and therefore only on the following
few pages—mname such licenses the granting licenses.

207) of. Jaeger a. Metzger: Open Source Software. Rechtliche Rahmenbedingungen der Freien

Software, 2011, p. 235.

208) pars pro toto cf. Open Source Initiative: APL-2.0, 2004, wp §3.

209) pars pro toto cf. Open Source Initiative: EPL-1.0, 2005, wp wp.

210) There might arise a legal discussion whether even a distributor who does not contribute
to the software development has to grant the necessary rights of his patent portfolio. The
OSLiC does not want to participate in this discussion. We take a simple and pragmatic
position: to be sure that you are acting according to an open source license with such a
patent clause you should simply assume that you have to do so. If this default position is not
reasonable for you it might be a good idea to consult legal experts which—perhaps—may
find another way for you to use the software legally.

20

3 Open Source: About Some Side Effects

e Second, an open source license can try to automatically terminate the right
to use, to modify, and to distribute the software if its user initiates litigations
against any of the contributors/distributors with respect to an infringement
of patent. That can be seen as a revocation of rights granted earlier. So, let
us name these license the revoking licenses.

Later on, we will summarize the concrete patent clauses of all the licenses discussed
in the OSLiC as a proof for the following classification:

@Tbﬂ’ng Pa,
g’(' ZG’;ZZ(

gmntmg patent clay,

& | MmIT

Way 2

BSD-X- GPL-
Clause 2.0

EUPL-1.X
g
Apache-2.0 EPL-1.X

| MPL-xY || MSPL |
|

Es
qranting * revoz,,

PHP-
3.X

Post-
greSQL

| LePL-3.X || @PL-3.0

open source licenses

But regardless of the final textual form a license uses to express its granting or
revoking positions, in any case one has to consider some aspects:

e Overall, one has to keep in mind that of course no licensor, contributor
and/or distributor can release the right to use any patents he does not
own—not even if he tries to release them by an open source patent clause.?!!
Implictly touched patents of third parties not having contributed to the
development and/or participated in the distribution can never be implicitly

211) The EPL is one of the licenses which insists on this aspect: It the second half of its patent
clause, the EPL underlines that “[...] no assurances are provided by any Contributor that
the Program does not infringe the patent or other intellectual property rights of any other
entity.” Moreover, it explicitly adds that “[...] if a third party patent license is required to
allow Recipient to distribute the Program, it is Recipient’s responsibility to acquire that
license before distributing the Program” (cf. Open Source Initiative: EPL-1.0, 2005, wp

§2¢).

o1

3 Open Source: About Some Side Effects

and automatically released on the base of such an (open source) patent
clause: no rights, no right to release.?'? Hence: even for those open source
licenses which try to protect the users, finally the users themselves must
nevertheless ensure that they do not violate the patents of third parties
being unwillingly touched by the way the code works or the processes in
which the software is used.??

e In the context of a granting license, one has also to consider that contributing
to and distributing a piece of software implicitly evokes that all patents of
the contributor and/or distributor are ‘given free’ which are necessary to use
the software as whole—including the more or less deeply embedded libraries.
So, if one wants to check whether some of the core patents of one’s patent
portfolio are afflicted by a patent clause (and whether one therefore better
should not use/distribute the corresponding piece of open source software),
one should not forget to check the embedded libraries, too.

e Finally, one has to consider in the context of a granting license that its patent
clause only releases the use of the patents in the meaning of ‘allowed to be
used for enabling the use of the distributed software.” The patent clause does
not release the patents generally. Thus, the threat of (unwillingly) releasing
patents by open source software is not as large as sometimes feared: the use
of the patent is only granted in combination with the software. On the one
hand, you may not use the open source software without having the right to
use the patent because the use of the patent is inherently necessary for using
the software—regardless, whether the open source software is embedded
into a larger process or not. On the other hand, you are not allowed to use
patents—released by the patent clause of an open source license—without
exactly that open source software which has been licensed under this open
source license, because the patent clause only refers to the use of just that
open source software.

e Summarized, one has to consider that the granting open source licenses
automatically and implicitly force you to grant all the rights which are nec-
essary to use the software legally. Open source contributors and distributors
should know that.?!*

212) This is an important aspect which is sometimes not considered by programmers. Inside
of DTAG we had a fruitful discussion evoked by Mr. Stephan Altmeyer who—as patent
lawyer—patiently explained this constraint to us.

213) Sometimes, this problem of willingly or unwillingly violated third party patents is seen as a
weakness of open source software. But that is not true. It is a weakness of every software.
Even a commercial licensor (developer) has only the right to license the use of those patents
he really owns or he has ‘bought’ for relicensing. Moreover, even commercial licensors can
willingly or unwillingly violate patents of other persons.

214) Again: It might be debatable whether this is also valid for the distributors which do not
contribute anything to the development. That’s a legal discussion the OSLiC does not wish
to participate in. From the viewpoint of an open source user who only wants to have one

52

3 Open Source: About Some Side Effects

e With respect to the revoking licenses, one has to consider that their patent
clauses contain negative conditions which may be read as interdictions. The
OSLiC will integrate these conditions into specific ‘prohibits’-sections of its
to-do lists.

e Finally one should mention that in some cases, the form of the revocation
used by the revoking license refers to the use of the software, in other cases
to the use of the patents. But nevertheless, one can reason that—from
the pragmatic viewpoint of a benevolent open source software user—this
second case of patent revocation also implicitly terminates the right to use
the software: If the use of a patent is necessary to use a piece of software
legally, one is not allowed to use the software without having the right to
use the patent, too; and if the use of the patent is not necessary for using
the software, then the patent is not covered by the patent clause. So, in
any case, this kind of patent clauses seems to terminate the right to use,
distribute or modify the software. Hence, single users as well as companies
or organizations should also respect such patent clauses if they want to be
sure to use open source software compliantly.

The OSLiC wants to support its readers not only to act according to the licenses
in general, but also according to its patent clause. Thus, we now briefly cite and
summarize the meaning of particular patent clauses:

3.1.1 AGPL statements concerning patents

(prelimiary text)

The AGPL-3.0 is a license derived from the GPL-3.0: apart from the preamble
and the paragraphs §11 and §13, they contain nearly the same text.?’” In §13,
the AGPL explictly refers to the focus on a “remote network interaction” which
shall also be able to trigger the delivery of the corresponding source code; and in

611, the AGPL establishes its specific patent clause cf. Open Source Initiative:
The AGPL-3.0 License (OSI), 2007, §11 and §13.

Like the GPL-3.0, the AGPL-3.0 tries to protect all licensees against patent claims.
This kind of protection is then established by three steps:

First, the AGPL-3.0 assures that “each contributor grants a non exclusive, world-
wide, royalty free patent license under the contributor’s essential patent claims, to

reliable and secure way to use open source software compliantly, one should perhaps assume
that there is no difference.

215) compare Open Source Initiative: GNU Affero General Public License, Version 3 (AGPL-3.0);
2007 [n.y. of the html page itself] (URL: http://opensource.org/licenses/AGPL-3.0) —
reference download: 2013-04-05, and Open Source Initiative: The GPL-3.0 License (OSI),
2007, in both §1 ...811

23

http://opensource.org/licenses/AGPL-3.0

3 Open Source: About Some Side Effects

make, use, sell offer for sale, import and otherwise run, modify and propagate the
contents of its contributor version.”?' Furthermore, the patent license defines
that this patent license granted by the contributor is automatically extended to
all downstream recipients who later on receive any version of the work even if
they indirectly receive them by third parties and even if they receive a covered
work or work based on the program.””

Second, the AGPL enforces not only the grant of patent licenses by the “con-
tributors,” the license even requires the same from licensees who distributes the
program unchanged: “If, pursuant to or in connection with a single transaction
or arrangement, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the covered
work authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to all
recipients of the covered work and works based on it.”?!®

Finally, the AGPL-3.0 introduces an revoking clause by stating that a licensee
“[...] may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling,
offering for sale, or importing the Program or any portion of it”?'” and that this
licensee “automatically” loses the rights granted by the AGPL-3.0 “including any
patent licenses” if he tries to propagate or modify a covered work against the
regulations of the AGPL-3.0.%%

According to that, the AGPL-3.0 is like the GPL-3.0 a granting and a revoking
license: At first, one is granted the right to use all patents of all contributors
which are necessary to use the software legally. But if one installs any litigation
regarding an infringement of patents, then the rights granted to him are revoked.

3.1.2 Apache-2.0 statements concerning patents

Titled by the headline “Grant of Patent License”, the Apache License 2.0 contains a
specific patent clause being comprised of two very long and condensed sentences.??!
Outside of this patent clause, the word patent is only used once again—for requiring

that one “[...] must retain, in the (sources) [...]| all [...] patent [...] notices
[' B]a7222

216) of. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp §11.
217) ¢f. id., ibid.

218) ¢f. id., ibid.

219) ¢f. id., l.c., wp §10.

220) ¢f. id., l.c., wp §8.

221) ¢f. Open Source Initiative: APL-2.0, 2004, wp §3.

222) ¢f id., l.c., wp §4.3.

o4

3 Open Source: About Some Side Effects

The one core message of the Apache-2.0 patent clause is that “[...] each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable |[...] patent license to make, have made, use, offer to sell,

sell, import, and otherwise transfer the Work [...]”?%

The second core message of the Apache-2.0 patent clause is the statement that

“if You institute patent litigation against any entity [...] alleging that the Work
[...] constitutes [...] patent infringement, then any patent licenses granted to
You [...] shall terminate [...]"***

The third message of the Apache-2.0 patent clause is the statement, that the “|...]
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted”.**”

Thus, the Apache-2.0 is—as we use to say in this chapter—a granting and a
revoking license: At first you are granted to use all patents of all contributors
which are necessary to use the software legally. But if you—with respect to the
software—install any litigation concerning the infringement of patents, then the
rights granted to you are revoked.

3.1.3 CDDL statements concerning patents

The patent clauses of the CDDL are similiar in spirit to the Apache License: The
license grants rights to each contributors patents that are neccessarily infringed
by distributing or using the software. The license also revokes all rights granted
to someone who files a patent litigation with respect to the software against any
contributor. The CDDL differs from other licenses in that the litigant does not
lose his rights automatically and immediately but gets a grace period of 60 days.
If he withdraws his claims during this period, the license granted to him will not
be terminated.

The actual wording used in the CDDL is complicated by the fact that the
CDDL distinguished between the “Initial Developer” and other “Contributors.”
A “Contributor” receives a version of the software to which he then adds some
“Modifications” thus creating the “Contributor Version.” For all practical purposes
we can treat the “Initial Developer” as another contributor who happens to not
receive any software and whose “Contributor Version” (officially called “Original
Software”) equals his “Modifications.”

223) ¢f. Open Source Initiative: APL-2.0, 2004, wp §3. The “Contributor,” “Work,” and
“You” are defined in §1: Contributor refers to the original licensor and to all others whose
contributions have been incorporated into the Work. The Work denotes the result of the
development process regardless of its form. You denotes the licensees.

224) of . id., ibid.

225) ¢f. id., ibid.

95

3 Open Source: About Some Side Effects

The patent licenses are granted in the clause (b) of the sections titled “The Initial
Developer Grant”??° and “Contributor Grant.”??” Each contributor grants the
licensee “a world-wide, royalty-free, non-exclusive license under Patent Claims
infringed by the making, using, or selling of Modifications made by that Contribu-
tor either alone and/or in combination with its Contributor Version |...], to make,
use, sell, offer for sale, have made, and/or otherwise dispose of: (1) Modifications
made by that Contributor [...]; and (2) the combination of Modifications made
by that Contributor with its Contributor Version [...]” This limits the patent
license to patents infringed by code present in the contributor version. And clause
(d) limits the grant even further to exclude “infringements caused by]. .. |third
party modifications of Contributor Version”?*® or Covered Software in the absence
of Modifications made by that Contributor.?”” This ensures that no contributor
is required to tolerate an infringement of his patents caused by code modified
after he made his contribution and, in particular, it is not possible to remove the
contributors modifications completely without also removing all other causes of
infringement of the patent claims because the patent license does not carry over
to such a use of the software.

The section titled “TERMINATION” contains the usual defense against patent
infringement claims by declaring that any such claim against a “Participant®*’
[...] alleging that the Participant Software [...]| directly or indirectly infringes any
patent, then any and all rights granted directly or indirectly to You®*! [...] under
Sections 2.1 and/or 2.2 of this License shall, upon 60 days notice from Participant
terminate prospectively and automatically at the expiration of such 60 day notice
period, unless [...| You withdraw Your claim [...] against such Participant either
unilaterally or pursuant to a written agreement with Participant.”

Thus, not only has the Participant to actively initiate the termination of the
licenses, the licensee also has 60 days to either settle the case by an agreement
with the Participant or to withdraw his claims.

3.1.4 EPL statements concerning patents

The Eclipse Public License treats the patents necessary to use the program in
the same section and under the same headline “Grant of Rights” like all the
other rights: First, the EPL clearly states that “[...] each Contributor [...]
grants (the recipient) a non-exclusive, worldwide, royalty-free patent license under
Licensed Patents to make, use, sell, offer to sell, import and otherwise transfer

226) cf. Open Source Initiative: The CDDL-1.0, 2004, wp §2.1(b).

27) ¢f. id., l.c., wp §2.2(b).

228) ¢f. id., Lc., wp §2.2(d).

229) ¢f. id., ibid.

230) The “Contributor” or “Initial Developer” against whom the claim is made
231) The party making the patent infringement claim

o6

3 Open Source: About Some Side Effects

the Contribution of such Contributor, if any, in source code and object code
form.”?*?> Then the EPL delimits the extend of this act of granting: Neither
hardware patents of the contributors are covered by this releasing patent clause,
nor patents that concern aspects out of the area of the initially intended software
combination.?*® Finally, the EPL hints to the general fact that 3" party patents
not belonging to the contributors can never be implicity be released by such a
patent clause. Moreover, it gives the example that “[...] if a third party patent
license is required to allow Recipient to distribute the Program, it is Recipient’s
responsibility to acquire that license before distributing the Program.”

Like other open source licenses, the EPL announces at its end that “if (a) Recipient
institutes patent litigation against any entity [...] alleging that the Program [...]
infringes such Recipient’s patent(s), then such (granted) Recipient’s rights |[...]
shall terminate [...]”%*

Thus, the EPL, too, is a granting and a revoking license: At first you are granted
the use of all patents of all contributors which are necessary to use the software
legally. But if you—with respect to the software—install any litigation concerning
an infringement of patents, then the rights granted to you are revoked.

3.1.5 EUPL statements concerning patents

The European Union Public License contains a very brief patent clause. It only
states, that “the Licensor grants to the Licensee royalty-free, non exclusive usage
rights to any patents held by the Licensor, to the extent necessary to make use of
the rights granted on the Work under this Licence.”?* Furthermore the EUPL
does not contain any patent specific revoking clause, but only an abstract clause
requiring that all “[...] the rights granted hereunder will terminate automatically
upon any breach by the Licensee of the terms of the Licence”?*". Thus, the EUPL
is—as we are using to say in this chapter—a granting license but not a revoking
license.

3.1.6 GPL statements concerning patents

Although the GPL versions 2.0 and 3.0 are aiming for the same results, they differ
heavily with respect to textual and arguing structure. Therefore, it should be
helpful to treat these two licenses separately.

232) ¢f. Open Source Initiative: EPL-1.0, 2005, wp §2.b.

233) cf. id., ibid.

234) ¢f. id., L.c., wp §2.c.

235) ¢f. id., l.c., wp §7.

236) of. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp end of §2.
237) ¢f. id., l.c., wp §12.

o7

3 Open Source: About Some Side Effects

3.1.6.1 GPL-2.0

The GPL-2.0 does not contain any specific patent clause by which it would grant
(and revoke) the rights to use those patents belonging to the contributors and
being necessary to use the software in accordance with the legal patent system.

Instead of this, the preamble of the GPL-2.0 alleges that “[...]| any free program is
threatened constantly by software patents” and that the authors of the GPL—for
tackling this threat—*[...] had made it clear that any patent must be licensed
for everyone’s free use or not licensed at all”?*®. Unfortunately, this specification
is only an indirect claim which needs a lot of arguing for establishing a protective
effect against patent disputes. Howsoever, this paragraph of the GPL-2.0 does
not directly grant any rights to the software users to use necessary patents, too.

With respect to the patent problem, the GPL-2.0 also states that a licensee has
to fulfill the conditions of the GPL-2.0 completely, even if an existing patent
infringement—being “imposed” on the GPL licensee—“[...] contradicts the
conditions of this license” so, that a waiver of the use of the software is the only
way to fulfill both constraints.**® And finally the GPL-2.0 allows the original
copyright holder to “add an explicit geographical distribution limitation excluding
[...] countries” provided that these countries “[...] (restict) the distribution
and/or use of the library [...] by patents [...]”?*" Based on these statements,
one cannot infer that the GPL-2.0 grants any patent rights to the software user,
neither directly, nor indirectly.

Thus, the GPL-2.0 is neither a granting nor a revoking license.

3.1.6.2 GPL-3.0

Initially, the GPL-3.0 regrets that “[...] every program is threatened constantly
by software patents” what should be seen as the “[...] danger that patents applied
to a free program could make it effectively proprietary”. And therefore—as the
GPL-3.0 itself summarizes its patent rules—*[...] the GPL assures that patents
cannot be used to render the program non-free.”?*!. This kind of protection is then
established by three steps. First, the GPL-3.0 stipulates that “each contributor
grants |[...the licensees| a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version.”?*? Second, the GPL-3.0 defines that this patent license granted by the

238) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp Preamble.
239) ¢f. id., Lc., wp §11.
240) ¢f. id., l.c., wp §12.
241) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp Preamble.
242) ¢f. id., l.c., wp §11.

o8

3 Open Source: About Some Side Effects

contributor “[...] is automatically extended to all recipients” who later on receive
any version of the work, even if they indirectly receive them by third parties and
even if they receive a “covered work” or “works based on it.”?** Moreover, the
GPL-3.0 also specifies that those distributors of a “covered work” who have the
right to use a patent necessary for the use of the distributed software but who
are not allowed to relicense this patent to third parties must solve this problem
by making the source code available nevertheless, by “depriving” themselves or
by “extending the patent license to downstream recipients.”?** And finally, the
GPL-3.0 also introduces a revoking clause by stating that a licensee “[...] may
not initiate litigation [...| alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it”?*°
and that this licensee “automatically” loses the rights granted by the GPL-3.0
“including any patent licenses” if he tries to propagate or modify a covered work
against the rules of the GPL-3.0.2%0

Thus, GPL-3.0 is a granting and a revoking license: At first, one is granted the
right to use all patents of all contributors which are necessary to use the software
legally. But if you—with respect to the software—install any litigation concerning
an infringement of patents, then the rights granted to you are revoked.

3.1.7 LGPL statements concerning patents

As already mentioned above, the LGPL versions 2.1 and 3.0 differ heavily with
respect to textual and arguing structure. Therefore, they should be treated
separately.

3.1.7.1 LGPL-2.1

Like the GPL-2.0, the LGPL-2.1 does not contain any specific patent clause by
which it would grant (and revoke) the rights to use those patents belonging to
the contributors and being necessary to use the software in accordance with the
legal patent system.

Instead of this, the preamble of the LGPL-2.1 says that “[...] software patents
pose a constant threat to the existence of any free program” and that the authors
of the LGPL—for tackling this threat—“[...] insist that any patent license
obtained for a version of the library must be consistent with the full freedom of
use specified in this license.”?*" Unfortunately, this specification is again only an

243) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §11.

249) ¢f. id., ibid.

245) ¢f. id., l.c., wp §10.

246) ¢f. id., l.c., wp §8.

247) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp Preamble.

29

3 Open Source: About Some Side Effects

indirect claim which needs a lot of arguing to establish a protective effect against
patent disputes. Howsoever, this paragraph of the LGPL-2.1 does not directly
grant any rights to the software users to use necessary patents.

With respect to the patent problem, the LGPL-2.1 also states that a licensee has
to fulfill the conditions of the LGPL-2.1 completely, even if an existing patent
infringement—being “imposed” on the LGPL licensee—*[...] contradicts the
conditions of this license” so that a waiving of the use of the software is the only
way to fulfill both constraints.?*® And finally the LGPL-2.1 allows the original
copyright holder to “add an explicit geographical distribution limitation excluding
[...] countries” provided that these countries “[...] (restict) the distribution
and/or use of the library [...] by patents [...]”** Based on these statements,
one cannot infer that the LGPL grants any patent rights to the software user,
neither directly, nor indirectly.

Thus, the LGPL-2.1 is neither a granting nor revoking license.

3.1.7.2 LGPL-3.0

The LGPL-3.0 is an extension of the GPL-3.0. Before starting with a section
“Additional Definitions”, the LGPL-3.0 states that it “[...] incorporates the
terms and conditions of version 3 of the GNU General Public License” and then
“supplements” this GPL-3.0 content by some “additional permissions.”?*® The
LGPL-3.0 itself does not contain the word ‘patent,” but the GPL-3.0 does.?”! So,
the LGPL-3.0 inherits its patent clause from the GPL-3.0 which is—as we already
described??—a granting and a revoking license.

3.1.8 MPL statements concerning patents

The MPL distributes its statements concerning the tolerated use of the patents
over three paragraphs: First, it clearly says that “each Contributor |[...] grants
.. . the licensee] a world-wide, royalty-free, non-exclusive license [...] under Patent
Claims of such Contributor to make, use, sell, offer for sale, have made, import,
and otherwise transfer either its Contributions or its Contributor Version”?"*
Second, it hihlights some “limitations.”?** And finally, the MPL introduces a
revoking clause which signifies that the rights, granted to the licensee “[...] by

248) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §11.

249) ¢f. id., l.c., wp §12.

250) of. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp wp.

251) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §11.

252) 5 OSLIC, p. 58

253) of. Open Source Initiative: The MPL-2.0 License (OST), 2013, wp §2.1, esp. §2.1.b.
254) ¢f. id., l.c., wp §2.3.

60

3 Open Source: About Some Side Effects

any and all Contributors [...] shall terminate” if the licensee “initiates litigation
against any entity by asserting a patent infringement claim [...] alleging that a
Contributor Version directly or indirectly infringes any patent [...]"%?

Thus, the MPL is a granting license and a revoking license.

3.1.9 MS-PL statements concerning patents

First, the MS-PL contains a statement, by which “[...] each contributor grants
(the software users) a non-exclusive, worldwide, royalty-free license under its
licensed patents to make, have made, use, sell, offer for sale, import, and/or
otherwise dispose of its contribution in the software or derivative works of the
contribution in the software.”?*® Second, the MS-PL says that “if you bring a
patent claim against any contributor|. ..] your patent license from such contributor
to the software ends automatically.” 2"

Thus, the MS-PL is a granting and a revoking license: At first you are granted to
use all patents of all contributors which are necessary to use the software legally.
But if you install any litigation concerning an infringement of patents with respect
to the software, then the rights granted to you are revoked.

3.2 Excursion: Why linking is a secondary criterium

Distributing statically or dynamically linked software is often discussed as a problem
(and sometimes as a solution) for acting compliantly. In this chapter, we briefly
discuss why this aspect can mostly be ignored and why it does not help to determine
the existence of a derivative work.

In some earlier versions of the OSLiC, its finder subclassified some use cases
with respect to the way an application was ‘composed’ as a larger unit: In the
previous form for gathering the necessary information, the OSLiC user had to
answer whether he was going to combine the received open source software with
other software components by linking them together statically, by linking them
dynamically, or by textually including (parts of) the open source software into
a larger unit. Today, this question has totally been erased. The authors could
convince themselves that it is not necessary to consider this aspect.

Of course, we know that being linked statically or dynamically is often and deeply
discussed by license experts.?”® It seems to be an important aspect:

255) of. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp §5.2.

256) cf. Open Source Initiative: MS-PL, 2013, wp §2.B.

257) cf. id., l.c., wp §3.B.

258) Even on the European Legal and Licensing Workshop, 2013 in Amsterdam, there was given
an excellent lecture concerning the nature and concequences of linking elf files.

61

3 Open Source: About Some Side Effects

[TBD: Discussion of the literature]

So, let us start with some undeniable facts: The OSLiC deals with the Apache-
2.0 license,?” the BSD 2-Clause license,’®” the BSD 3-Clause license,?®! the
MIT license,?®? the MS-PL,?%® the PostgreSQL,?** and the PHP license®® as
instances of permissive licenses. Additionally, the OSLiC treats the EPL,* the
EUPL,%" the LGPL,**® and the MPL?% as licenses with weak copyleft. Finally,
the OSLiC thoroughly discusses the GPL*™ and the AGPL?"! as licenses with
strong copyleft.?"

Only three of these licenses mention the word linking (or variants of it): Using
the command grep -i link * | grep -v "<link\|links\|skip-link" in a
shell—executed as an operation on a set of html formatted license files—directly
shows that only the AGPL-3.0, the Apache-2.0, the GPL-2.0, the GPL-3.0, the
LGPL-2.1 and the LGPL-3.0 are using mutations of the word linking. Additionally,
the results of the command grep -i statical * show that only the LGPL-2.1
uses the word ‘statical,” while using the command grep -i dynamical * only
hints to the AGPL-3.0 and the GPL-3.0. Finally, the command grep -i "shared"
x—executed on the same set of files—shows that the term shared libary is also
only used by these licenses.

This analysis already indicates that being statically or dynamically linked might
not be as important for acting compliantly as it is often suggested. If one reads
the concrete statements, then one can see, that acting compliantly depends only
slightly and only rarely on the kind of being ‘combined’:

Apache-2.0: This version of the Apache license uses the word link only once for
stating that “[...] Derivative Works shall not include works that remain
separable from, or merely link [...] to the interfaces of, the Work and

259) cf. Open Source Initiative: APL-2.0, 2004, wp.

260) ¢f. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

261) ¢f. Open Source Initiative: The BSD 3-Clause License, 2012, wp.

262) f. Open Source Initiative: The MIT License, 2012, wp.

263) cf. Open Source Initiative: MS-PL, 2013, wp.

264) f. Open Source Initiative: PostgreSQL License, 2013, wp.

265) of. Open Source Initiative: PHP-3.0, 2013, wp.

266) of. Open Source Initiative: EPL-1.0, 2005, wp.

267) of. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp.

268) For LGPL-2.1 see cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. For
LGPL-3.0 see cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp.

269) of. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp.

270) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp For
GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp

21 of. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.

272) You can find html based instances of these licenses in the OSLiC directory ‘licenses.” They
have been downloaded from the OSI pages. All of the following statements refer to these
files.

62

GPL-

3 Open Source: About Some Side Effects

Derivative Works thereof.”?™ Thus, the Apache-2.0 does not use the criteria
being linked for determining a derivative work, neither being linked in general,
nor being statically linked, nor being dynamically linked. Hence, for acting
in accordance to the Apache-2.0, this class of attributes can completely be
ignored.

3.0: The GPL-3.0 uses the word link three times: First, it defines the
“‘Corresponding Source’ for a work in object code form [... as] all the source
code needed to generate, install, and [...] run the object code and to modify
the work [...]”. Additionally the GPL-3.0 also explains in this context
that this definition shall include “[...] the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed
to require”?™. Second, the GPL-3.0 allows “[...]| to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting
work.”?™ Finally, the GPL-3.0 explains that “the GNU General Public
License [itself] does not permit incorporating your program into proprietary
programs” and that the LGPL might be a better license for those licensors
who have written a “subroutine library [...] and may consider it more useful
to permit linking proprietary applications with the library [...]"%7.

So, also in this text, the features statically linked or dynamically linked are
not used to trigger any license fulfilling actions. The conditions for “Convey-
ing Modified [...] Versions” refer to the “work based on the Program”?""
which itself denotes a “‘modified version’ of the earlier work”?"®. Moreover,
the licensee—as modifier, distributor, and subsequent licensor—is required
by the GPL-3.0 “[...] to license the entire work [which has been developed
on the base of a GPL-3.0 component], as a whole, under this License to
anyone who comes into possession of a copy”?””. The GPL-3.0 does not limit
this claim—especially not by referring to a mode of being linked. Hence,
also with respect to the GPL-3.0, one can completely ignore these features
of the software, its use and its distribution for determining how to use the
software compliantly.

AGPL-3.0: Concerning the use and the meaning of the words dynamically and

linking, the AGPL-3.0 exactly follows the structure of the GPL-3.0: first the
terms arise in the context of defining the “Corresponding Source”;**" then

273) cf.
274) cf.
275) cf.
276) cf.
277) cf.
278) cf.
279) cf.
280) cf.

Open Source Initiative: APL-2.0, 2004, wp. §0.

Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §0.
id., l.c., wp. §13.

id., l.c., wp. last parapgraph.

id., l.c., wp. §5.

id., Lc., wp. §0.

id., l.c., wp. §5.

Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §0.

63

GPL-

3 Open Source: About Some Side Effects

the word link helps to say that AGPL and GPL are compatible licenses;*®!
and finally the word link is used to hint to the LGPL.?*? So, again, one can
ignore the feature of being statically or dynamically linked if one wants to
determine how to use the software compliantly.

2.0: In the GPL-2.0, the word link only arises in the context of hinting to the
LGPL.?* Moreover, the words statical and dynamical are not used in this
text—mnot at all and in no sense: the copy left feature of the GPL depends
‘only’ on a specification which refers to a “work based on the Program |[...]
that in whole or in part contains or is derived from the Program or any part
thereof [...]”?** Thus, even in this old version of the GPL, the criteria of
being linked—in which way ever—does not trigger any task for using the
software compliantly.

LGPL-3.0: In this license, variants of the word link are used to define the concept

of a “Combined Work” which shall be the name for a “[...] work produced
by combining or linking an Application with the Library.”?*® In the end the
LGPL-3.0 allows to “[...] convey a Combined Work under terms of your
choice [...]”, provided that one distributes also all material (including the
object files of the overarching on-top developments) necessary for enabling
the receiver to relink the whole product with a later version of the library
or that one presupposes the use of a “suitable shared library mechanism”
so that the receiver can update the library simply by replacing the binary
library file?®®. For fulfilling these conditions it is sufficient to require that
a distributor shall either distribute the on-top development and the library
in the form of dynamically linkable parts or distribute the statically linked
application together with a written offer, valid for at least three years, to
give the user all object-files of the on-top development and the library, so
that he can relink the application on its own behalf.

LGPL-2.1: Even if the LGPL-2.1 argues more sophistically than all the other

licenses, in its preamble this license clearly states what it wants to evoke:
“If you link other code with the library, you must provide complete object
files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. [...]”?*" For that purpose,
the LGPL-2.1 defines at the beginning that if “a program is linked with a
library, whether statically or using a shared library, [then]| the combination
of the two is legally speaking a combined work, a derivative of the original

281) cf.
282) cf.
283) cf.
284) cf.
285) cf.
286) cf.
287) cf.

Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.

id., l.c., wp. §5.

Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. last paragraph.
id., l.c., wp. §2.

Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp. §0.

id., l.c., wp. §4.

Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. preamble.

64

3 Open Source: About Some Side Effects

library”:?*® On the one hand a “work that uses the Libary”—which is only
“[...] designed to work with the Library by being compiled or linked with
it [...]”—%[...] in isolation, is not a derivative work of the library [...]".
On the other hand, it is no question for the LGPL-2.1, that “linking a
‘work that uses the Library’ with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library).”?%
But then—*“as an exeption”—the LGPL-2.1 allows to “[...] combine or
link a ‘work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of
your choice”. The right to do this is granted provided that the distributor
either presupposes the use of a “suitable shared library mechanism” or that
he distributes also the complete material (including the object files of the
overarching on-top developments) which is necessary to enable the receiver
to relink the whole product with a later incoming newer version of the
library??’. Again, for fulfilling all these conditions it is sufficient to require
that a distributor shall either distribute the on-top development and the
library in the form of dynamically linkable parts or distribute the statically
linked application together with a written offer, valid for at least three years,
to give the user all object-files of the on-top development and the library, so
that he can relink the application on its own behalf.

Thus, with respect to this analysis, we can conclude that—in general—there
is no need to investigate whether one wants to distribute software in the form
of statically or dynamically linked binaries for deriving the necessary tasks to
distribute this software compliantly. Instead of this, we can directly incorporate
those doings into the task lists of the LGPL what has been discovered as sufficient
doings. Moreover, it is also sufficient to insert this statement only in the task list
of the LGPL. There is no need to generalize this discussion. So, we could simplify
our form offered to gather the information to find the adequate license fulfilling
task list.

3.3 Excursion: What is a 'Derivative Work’ - the basic idea of

open source

This chapter briefly discusses aspects of being a derivated pieces of software which
have to be known for using open source software compliantly. As usually, the
OSLiC only tries to find one safe interpretation. The authors know that there
exist many other ways to consider this topic. So, if you feel, that the viewpoint of
the OSLiC does not fit the specific circumstances of your particular case, do not

288) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. preamble.
289) cf. id., L.c., wp. §5.
290) ¢f. id., l.c., wp. §6, §6b and §6¢ together with §6c.

65

3 Open Source: About Some Side Effects

hesitate to ask your own lawyer. But if you agree with the OSLiC, be aware that
you dealing with this topic from the viewpoint of a benevolent user.

Let us outline the argumentation:

The meaning ‘derivative work’ must be known! Many open source licenses
use the term ‘derivative work,*!either directly or indirectly in form of the
word ‘modification.”*?[Write a table as survey] And nearly all licenses that
are using the term ‘derivative work’ etc., are linking tasks that must be
executed to comply with the corresponding license, to the precondition
that something is a derivative work. [table survey] Hence, for acting in
accordance with such a license, it has to be known what a derivate
work is.

Unfortunately the meaning is not clearly fixed. There exist different readings
of the term ‘derivative work.” [specify the differences and cite the sources]
Hence, it is not as clear what a derivative work is as one could
wish

So, let us argue from the viewpoint of a benevolent developer: Open
source licenses are written for software developers, mostly to preserve their
freedom to develop software. And sometimes these licenses are also written
by software developers—or at least with their assistance. So, one should be
able to answer the question under which circumstances a piece of software
is a ‘derivative work’ of another piece of software based on two principles:

e Let us argue from the viewpoint of a benevolent neutral software
developer without hidden interests or a hidden agenda.

e In case of doubts let us preferably assume that the two pieces interrelate
as source and derivative work—so that the OSLiC rather recommends
to perform the required tasks.

We generalize a specific viewpoint of the LGPL. It uses three terms:

“library” is defined as “a collection of software functions and/or data prepared
so as to be conveniently linked with application programs.”?%

“work based on the library” is defined as “either the library or any derivative

work.” 24
“work that uses the library” is defined as something which initially “[...] is
not a derivative work of the library [...]” but can become a derivative work

295

by being combined / linked to the library it uses.

291) cite the sources

292) cite the sources

293) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §0.
294) ¢f . id., ibid.

295) ¢f. id., l.c., wp §5.

66

3 Open Source: About Some Side Effects

Following these specifications, one has to conclude that derivative works of the
library can be drieved in two different ways: First, the library itself can be
enhanced without changing the character of being a library. Then, of course, the
resulting library is a derivative work of the initial library. Second, an overaching
program can use the library by calling functions, methods, or data offered by the
library. In this case, the overarching program functionally depends on the library
and is a derivative work (as soon as it is linked to the library).

This viewpoint can be generalized: snippets, modules, plugins can be enhanced
and used by overarching programs or even by more complex libraries. Based
on this viewpoint—which should finally be formulated as the viewpoint of a
benevolent impartial developer—the OSLiC uses the following rules by which the
OSLiC decides to take something as derivative Work:

Copy-Case Copying a piece of code from a source file and pasting it into a target
file makes the target file a derivatve work of the source file.?”

Modify-Case Inserting any new content or deleting any existing content of a
source file makes the resulting target file a derivate work of the source file.

Call-Case Inserting the call of function which is defined inside of and delivered
by a sourcefile into a target file makes that target file depending on the
source file and therefore a derivative work of the delivering source file.

And here are some applications of these rules:

e Enlarging an existing source file by an external text creates a
derivative work! Why? Because you are going to reuse the external code
for simplifying our life. [see 'Copy Case’]

¢ Reducing a source file creates a derivative work! Why? Because you
are going to prepare the given file(s) for a better reuse. [see 'Modify-Case’]

¢ Replacing something in a source file creates a derivative work!
Why? Because you are going to reuse parts of the existing code for simplifying
your life. [see 'Modify Case’]

e Integrating a foreign snippet into an existing source code creates
a derivative work! Why? Because you are going to simplify your life by
reusing both, the foreign snippet and the original file. [see 'Copy Case’ and
"Modify-Case’]

e Refactoring a given work by extracting a function / method into
an autonomous file creates a derivative work in two respects! Why?
Because, first, all modified / generated files depend on the original file and,

296) Be careful: this case must still be distinguished from the case of an automatic inclusion
(header files, script libraries) during the compilation / execution: Inclusion of header files
alone should not create a derivative work.

67

3 Open Source: About Some Side Effects

second, because those function calls in the files introduce a dependecy on the
file defining the function itself. [see 'Modify-Case’ and ’Call-Case]

e Calling a function - served by a defining module - lets the calling
file become a derivative work of the serving module! Why? Because
you are going to simplify your life by reusing an already prepared work (often
offered by other developers). [see *Call-Case’]

¢ By calling elements - served by a defining library - the calling file
becomes a derivative work of the serving library! Why? Because

you are going to simplify your life by reusing an already prepared work (often
offered by other developers). [see *Call-Case’]|*"

And now some additional ’ideas’ which might invite to be discussed:

e Does a plugin depend on its framework? No. Why? Because it
is like a module: it offers a function (normally without using a function,
offered by the framework itself).

e Does a framework depend on its plugin? Let us try to answer:
Sometimes yes, sometimes no. Why? If the framwork crashes when it
18 missing its plugin, then it clearly depends on the plugin. No doubt. It is
simply not autonomous. But if it does not crash, then it perfectly does for
which it has been designed: it is offering a place which might be filled by the
plugin, but not necessarily. This kind of a framework is like an application
listing to a port for getting data which it shall process and which are served
by another application.

e Does a program using inter process communication depend on its
I0-partners? Definitely not! Why? Because, otherwise, we need not
discuss all these cases, every thing would depend on everything—in each
running system.

[...TBD ...]

3.4 Excursion: Reverse Engineering and Open Source

Beyond any doubt, the LGPL mentions “reverse engineering” literally?”® for
indicating that reverse engineering in any respect must be allowed to use and

297) Tn this context, you may sometimes read that one has to differentiate the defining file (for
example the C-code) and the declaring file (for example the C-Header). But in our view, it
is not so important to make such a difference: The using file, which includes the declaring
header file depends on the defining source code file (’Call-Case’). So, one can ignore the
formal dependance on the declaring header file (’Copy-Case’).

298) For the LGPL-v2 cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6;
for the LGPL-v3 cf. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §4

68

3 Open Source: About Some Side Effects

distribute LGPL software compliantly:

“I...] you may [...] distribute a work (containing portions of the
Library) under terms of your choice, provided that the terms permit
[-..] reverse engineering [...]” #%?

There are three strategies for dealing with such provisions: one can try to fully
honor its meaning, one can mitigate its meaning, or one can avoid to discuss this
requirement altogether:

A first group of well known open source experts take the sentence of the LGPL-v2
as a strict rule which requires that one has to allow reverse engineering of the
whole software product if one embeds any LGPL licensed component into that
product?®.

A second group of well known and knowledgeable open source experts signify that
the LGPL-v2 indeed literally contains a strict rule, but that this rule actually is
not meant as it sounds: For example, two of these experts explain that “these
requirements on the licensed combination require that the license chosen not
prohibit the customer’s modification and reverse engineering for debugging these

299) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §6. The LGPL-v2 uses
the capitalized word “Library” for denoting a library which “[...] has been distributed
under (the) terms” of the LGPL-v2. (cf. id., l.c., wp, §0). Inside of our LGPL chapter(s) we
follow this interpretation.

300) For example, a very trustworthy German expert states that the LGPL-2.1 generally requires
that a distributor of a program which accesses a LGPL-2.1 licensed library, must grant his
customer also the right to modify the accessing program and hence also the right to execute
reverse engineering. Literally the German text says:

“Ziffer 6 LGPLv2.1 kniipft die Erlaubnis, das zugreifende Programm unter be-
liebigen Lizenzbestimmungen verbreiten zu driifen, an eine Reihe von Verpflich-
tungen, die in der Praxis oft iibersehen werden: Zunéchst muss dem Kunden,
dem die Software geliefert wird, die Verédnderung des zugreifenden Programms
gestattet werden und zu diesem Zweck auch ein Reverse Engineering zur Fehler-
behebung. Dies diirfte alle Formen des Debugging und das Dekompilieren des
zugreifenden Programms umfassen.” (cf. Jaeger a. Metzger: Open Source
Software. Rechtliche Rahmenbedingungen der Freien Software, 2011, pp. 81;
emphasis KR).

At first glance, also “copyleft.org” — the “[...] collaborative project to create and disseminate
useful information, tutorial material, and new policy ideas regarding all forms of copyleft
licensing” (cf. copyleft.org: What is copyleft.org; n.l, 2014 (URL: http://copyleft.org/) —
reference download: 2014-12-15, wp.) — could be taken as another witness for such an attitude
of strict reading: Some of its contributors elucidate in a chapter dealing with “special topics
in compliance” that “the license of the whole work must [sic!] permit ‘reverse engineering
for debugging such modifications’ to the library” and that one therefore “ should take care
that the EULA used for the Application does not contradict this permission” (cf. Kuhn,
Bradley M. et al.: Copyleft and the GNU General Public License: A Comprehensive Tutorial
and Guide; n.l, 2014 (URL: http://copyleft.org/guide/comprehensive-gpl-guide.
pdf) — reference download: 2014-12-15, p. 86

69

http://copyleft.org/
http://copyleft.org/guide/comprehensive-gpl-guide.pdf
http://copyleft.org/guide/comprehensive-gpl-guide.pdf

3 Open Source: About Some Side Effects

modifications in the work as a whole”. But then they directly add the limitation,
that “in practice, enforcement history suggests, it means that the license terms
chosen may not prohibit modification and reverse engineering for debugging of
modification in the LGPL’d code included in the combination”*"!.

Finally, a third group of experts prefers not to discuss the problem of reverse engi-
neering, although this technique is literally mentioned in the license and although

they want explain how to use GPL/LGPL licensed software compliantly*’?.

This situation must bother companies and people who want to use open source
software compliantly and who therefore are looking for guidance. Particularly
it disturbs those who want to protect their business relevant software. At the
end, they might consider that this sentence is not consistently understood by the
open source community itself. And — as far as we know — at least some of these
companies preventively prohibit their developers to embed LGPL licensed compo-
nents into programs which contain business relevant techniques. Unfortunately,
this consequence does not only obstruct the access to a large set of well written
free software, but it is scarcely possible to obey such an interdiction consequently:
The glibc, which enables the programs to talk with the kernel of the GNU/Linux
system®”?, is licensed under the LGPL*"*. And hence, this library is indirectly

301) ¢f. Moglen, Even a. Mishi Choudhary: Software Freedom Law Center Guide to GPL
Compliance, 2nd Edition; 2014 (URL: https://www.softwarefreedom.org/resources/
2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html) — reference download: 2014-12-15,
wp., chapter LGPLv2.1, section 6. Such a mitigation can also be found in the tutorial
of copyleft.org: After they have summarized the LGPL-v2 sentence as a strict rule, they
directly continue, that one “[...] must refrain from license terms on works based on the
licensed work that prohibit replacement of the licensed components of the larger non-LGPL’d
work, or prohibit decompilation or reverse engineering in order to enhance or fix bugs in the
LGPL’d components” (cf. Kuhn etal.: Copyleft and the GNU General Public License, 2014,
p. 86). This added specification indicates, that one only has to facilitate the modification of
the library and that reverse engineering can be ignored as long as there are other ways to
improve the embedded library.

302) An article of Terry J. Ilardi might be taken as a first witness of this third strategy: he

profoundly explains the essence of the LGPL, he especially discusses §6, and he delivers

applicable rules like “DO NOT statically link to LGPL [...] code if you wish to keep your

program proprietary”. But he does not discuss reverse engineering (cf. Ilardi, Terry J.:

Common OSS License Problems; n.l, 2010 (URL: http://www2.aipla.org/html/spring/

2010/papers/Ilardi_Paper.pdf) — reference download: 2014-12-16, pp.5f). Similarily

argues Rosen (cf. Rosen: Open Source Licensing, 2005, pp. 121ff). And — despite their
comments on reverse engineering in the specific chapter special topics in compliance — the
copyleft.org document can also be taken as an instance of this attitude: Although its authors
recommend to “study chapter 10 carefully” for establishing an adequate “compliance with

LGPLv2.1” (cf. Kuhn etal.: Copyleft and the GNU General Public License, 2014, p. 86),

this chapter 10 — dedicated to the meaning of the “Lesser GPL” — does not deal with reverse

engineering, although it discusses the §6 of the LGPLv2.1 in depth (cf. id., l.c., pp. 56ff, esp.
60f).

cf. http://www.gnu.org/software/libc/

304) ¢f. http://en.wikipedia.org/wiki/GNU_C_Library

303)

70

https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf
http://www2.aipla.org/html/spring/2010/papers/Ilardi_Paper.pdf

3 Open Source: About Some Side Effects

linked to or combined with any program running on the GNU/Linux system. So,
if the LGPL-v2 indeed required, that reverse engineering of every program must
be allowed, which contains portions of any LGPL Library, then every GNU/Linux
user would be allowed to examine every program running on GNU/Linux by
reverse engineering, simply, because finally every 'GNU /Linux program’ is linked
to or combined with the glibc®*®. In other words: if the LGPL indeed required the
permission of reverse engineering, then every program executed on GNU /Linux
may be reverse engineered.

But an exhaustive reading of the LGPL-v2 strongly indicates, that there must be
another valid, more ’liquid’ understanding of the LGPL: The preamble explains
the reason for offering another weaker license beside the GPL. It says that “[...]
on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard” and that therefore
it could be strategicly necessary to “allow [...] non-free programs [...] to use
the library” without enforcing that these programs become free software too®’.

So, if the LGPL had indeed determined that every program linked to or combined
with any LGPL library may be reverse engineered, then the LGPL would have
an effect contrary to its own intention. It would have introduced something like
"security by obscurity’: First, the LGPL would allow to protect the internals of
your own work against investigation by allowing to keep the code of the non-
free program using the library a scecret®*”. But then — in the end — the LGPL
would also allow the user to reverse engineer the received binary and hence would
enable him to nevertheless discover all internals®’®. Hence, finally the LGPL-v2
would undermine its own raison d’étre introduced by its inventors: under such
circumstances there probably would have been less hope that any LGPL library
could have become a defacto standard.

We know that the inventors of the GNU licenses and GNU software are very
sophisticated experts. They never would have published such an inconsistent
document. So, this dissent read in(to) the document is a strong indicator for the
fact, that there must be a better way to understand the license. And thus, it is
up to us, the followers, to explicate a more adequate interpretation. Of course,
such an interpretation must be grounded on the written text. No doubt: we, the
scholars, are not allowed to add our own wishes. We must read the license very
strictly. We have to deduce 'understandings’ only by matching the interpretations
explicitly and reasonably back to the license text itself.

305) This conclusion might surprise. But it is inferred with exactly the same arguments as the
conclusion, that without a licence offering a weaker copyleft every program would have been
licensed under the GPL. The copyleft.org document explains this argumentation in great
detail (cf. Kuhn etal.: Copyleft and the GNU General Public License, 2014, pp. 56f).

306) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp, §preamble.

307) The weak copyleft has been introduced for encouring the widest possible use of the library.

308) Tt would only cost a little more effort - as security by obscurity indicates.

71

3 Open Source: About Some Side Effects

Encouraged by the indication that a better understanding of the LGPL may
exist and contrary to the other strategies, we are going to prove that there is
a valid way to compliantly distribute any open source based software without
permitting reverse engineering: We want to show that none of the main open
source licenses®” requires reverse engineering if the work using the open source
Library is distributed in form of dynamically linkable files. In particular, we are
going to prove that one even has not to allow reverse engineering of the work
using an LGPL Library, if one distributes that work as dynamically linkable files.
And we want to show that in all other cases one has at least to fear that one
has implicitly allowed the reverse engineering of the work using the open source
Library if one distribute that work. In particular, we want to prove that one
has to fear this implicitly given permission even if one distributes a work using a
library licensed under any permissive license®!.

In general, we hope that our analysis, grounded on the license text itself, will
support companies and people to compliantly use open source software more
often and with less hesitation due to the fear that they have to deliver themselves
unclear textual aspects.

But — with respect to the discussion about this text in the OSI and Free Sofwtare
Mailing lists — we have to add a disclaimer here: The license text alone is not all.
In the concrete situation of using free and open source software, it is the intention
of the licensor which has to be respected. Or in the words of Eben Moglen:

A license is, by definition, a unilateral permission to make use of the
property or intangible rights of another. The measure of the permission

309) Just as the OSLiC, also this part focuses only on the most important open source licenses
(cf. https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses wp.):
the Apache license (cf. Open Source Initiative: APL-2.0, 2004, wp.), the BSD licenses (cf.
Open Source Initiative: The BSD 3-Clause License, 2012, wp. and cf. Open Source Initiative:
The BSD 2-Clause License, 2012, wp.)), the MIT license (cf. Open Source Initiative: The
MIT License, 2012, wp.), the MS-PL (cf. Open Source Initiative: MS-PL, 2013, wp.), the
PostgreSXQL (cf. Open Source Initiative: PostgreSQL License, 2013, wp.), the PHP license
(cf. Open Source Initiative: PHP-3.0, 2013, wp.), the EPL (cf. Open Source Initiative:
EPL-1.0, 2005, wp.), the EUPL (cf. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp.),
the MPL (cf. Open Source Initiative: The MPL-2.0 License (OSI), 2013, wp.), the LGPLs
(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. and cf. Open Source
Initiative: The LGPL-3.0 License (OSI), 2007, wp.), the GPLs (cf. Open Source Initiative:
The GPL-2.0 License (OSI), 1991, wp. and cf. Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp.) and the AGPL (cf. Open Source Initiative: The AGPL-3.0 License (OSI),
2007, wp.)

310) By the way, our analysis should also provide proof that the LGPL is not something like
a ’'poisoned’ license containing “an imprenetrable maze of technology babble” which “...]
should not be in a general-purpose software license” (cf. Rosen: Open Source Licensing,
2005, p. 124). The challenge of the today’s descendants is to understand the former inventors
of the GNU licenses and their way to think about computing - including all the hassle the
computing language C might provoke.

72

3 Open Source: About Some Side Effects

is the intention of the party giving it.>'!

Nevertheless, we believe that each text firstly has its own inherent independent
meaning and message. But — of course, in the specific situation of legally contending
about the practical consequences of a license, one has indeed to consider what
the specfic licensor really had had in his mind, when he released his work. One
has to consider his intention.

So, the pure textual meaning of the license might be overloaded or overwritten by
some external facts, traditions or understandings, not founded on the license text
itself. The problem with this legal fact is, that in a concrete legal case, one has to
prove what the licensor really had in his mind. As long as we do not have direct
insights into the brain of our fellow human beings, this can again only be done by
referring to other orally uttered or written words and texts. Therefore, we indeed
believe, that it is firstly important to know what the text itself says and means.

Hence, let us prove our position 'bottom up’. Let us firstly show that it is true
for the LGPL-v2 — by explicating the license text lingually, then logically, and
finally empirically, before we infer the correct understanding. Then let us show
that it is also true for the LGPL-v3. And in the end let us show that it is true for
all other licenses®?.

3.4.1 Reverse Engineering in the LGPL-v2

The LGPL-v2.1 contains one sentence which literally refers to the issues of reverse
engineering:

)

“I...] you may [...] combine or link a ‘work that uses the Library
with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the
terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.”?!?

Hereinafter, we will sometimes denote these lines by the term LGPL2-RefEng-
Sentence.

311) Eben Moglen, eMail to ftf-legal-bounces@fsfeurope.org, 2015-03-06

312) analysed by the OSLiC: — p. 71.

313) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6.. The first ellipse in
this citation — notated by the string ’[...]" — refers to the phrase “As an exception to the
Sections above,”, the second to the phrase “also”. These words together want to indicate,
that the LGPL offers its §6-way-of-distribution as an exception to the intended default way
of distributing such a Library. So, the nature of the extraordinary way itself is not affected
by this hint. Thus, we feel free to erase this contextual link.

73

3 Open Source: About Some Side Effects

3.4.1.1 Linguistical Clarification

For fulfilling our rule, to read the text strictly and deduce our interpretations
reasonably, let us firstly only highlight the syntactical conjunctions for simplifying
the understanding;:

“[...] you may [...] combine or link a ‘work that uses the Library’
with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.”?4

It is evident that the conjunction ’provided that’ is splitting the sentence into
two parts: you are allowed to do something provided that a condition is fulfilled.
Additionally, both parts of the sentence — the one before the conjunction ’provided
that” and the part after it — are syntactically condensed embedded phrases which
also contain subordinated conjunctions and elliptical constructions®'”. These
syntactical interconnections must be disbanded:

Let us firstly dissolve the syntactical compression before the conjunction
‘'provided that’: 1t is established by using the two other conjunctions and and
or and introduced by the subordinating phrase you may /...]. Unfortunately,
from a formal point of view, one can read the phrase you may (X or Y and Z) as
two different groupings: either as you may ((X or Y) and Z) or as you may (X or
(Y and Z)).

But, fortunately, we know from the semantic point of view that speaking about
“[...] combining or linking [...something] to produce a work containing portions
of the Library” denotes two different methods which both can join the components
“[...] to produce a work containing portions of the Library”. So, let us — only for a
moment®'® — simply replace the string “combine or link” by the string “*join”!7.
This reduces the syntactical structure of the sentence back to the simple phrase
you may (W and Z) in which W stands for (X or Y).

Now, we can directly state that the phrase you may (W and Z) itself is a condensed
version of the explicit phrase (you may W) and (you may Z).

Finally we have to note, that the phrase before the conjunction provided that’
contains also a linguistic ellipsis®'®: It says that you may *join the components

314) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6, emphasis KR..

315) ¢of. http://en.wikipedia.org/wiki/Ellipsis_%28linguistics %29, wp.

316) Later on we will re-insert th original phrase!

317) When the LGPL and the GPL were initially defined, the C programming language was the
predominant model of software development. Knowing this method eases the understanding
of these licenses. Thus, it is not totally wrong to take this token *join also as a curtsey to
the C programming language.

318) ¢f. http://en.wikipedia.org/wiki/Ellipsis_%28linguistics %29, wp.

74

3 Open Source: About Some Side Effects

“to produce a work containing portions of the Library and distribute that
work under terms of your choice”. With respect to the English grammar, we may
conclude that the second term that work refers back to the previously introduced
specification of a work containing portions of the Library: if a complete phrase
has just been introduced explicitly, then the English language allows to reduce
its next occurence syntactically while its complete meaning is retained. Hence,
conversely, we are allowed to unfold the reduced form to restore the complete
phrase.

So — overall — we may understand the phrase before the conjunction ’provided
that’ as a phrase with the structure (you may W) and (you may Z°):

((you may [...] *join a “work that uses the Library” with the Library
to produce a work containing portions of the Library) and (you may
[...] distribute that work containing portions of the Library under
terms of your choice)) provided that |...]

Theoretically, a reader could reject our first dissolution of the LGPL2-RefEng-
Sentence. But for reasonably denying our interpretation he has to deliver other
resolutions of the lingustic elliptical subphrases or other dissolvations of the
conjunctions. Fortunately, it seems to be evident that such attempts must violate
the English grammar.

Let us secondly dissolve the part after the conjunction ’provided that’:
With respect to the subordinated conjunction ‘and’, the subphrase the terms permit
syntactically refers to both, the modification and the reverse engineering: An
embedded conjunction ‘and’ allows to use a more stylish grammatical compaction.
So, it should be clear, that saying

provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications

means

provided that the terms permit (modification of the work for the
customer’s own use and reverse engineering for debugging such modi-
fications)

and is totally equivalent to the sentence

...] provided that ((the terms permit modification of the work for
the customer’s own use) and (the terms permit reverse engineering
for debugging such modifications)).

We believe that there is no other possibility to understand this part of the LGPL2-
RefEng-Sentence with respect to the rules of the English language. Nevertheless,

75

3 Open Source: About Some Side Effects

this is a next point where our reader may formally disagree with us. If he really
wants to object our dissolution, he must deliver another valid interpreation of
the scope of the conjunction and or he must deliver another resolutions of the
linguistic ellipsis. But we reckon, that one can not reasonably argue for such
alternatives.

Finally, there are other deeply embedded ellipses, which need to be resolved as
well:

1. In the part before the splitting conjunction ’provided that’ we already had
to expand the abridging ’that work’ by its intended explicated version ’‘that
work containing portions of the Library’. In the part after the splitting
conjunction the first subphrase also contains the term ’the work’. Formally,
this term can either refer to ’the work that uses the library’ as one of
the components which are joined, or it can refer to ’the work containing
portions of the Library’ as the result of joining the components. We decide
to constantly dissolve the elliptic abridgement by the phrase the work
containing portions of the Library’.

2. The first clause of the part after the splitting conjunction ’provided that’ talks
about the purpose of “permitting modification of the work” which we just
had to unfold to the phrase ‘permitting modification of the work containing
portions of the Library’. The second clause talks about the purpose of
“permitting reverse engineering”: it shall support the “debugging [of] such
modifications”. The pronoun ’such’ indicates that the word "modifications’
refers back to the just unfolded phrase modification of the work containing
portions of the Library. So, even the second sentence has to be expanded to
that explicit phrase.

3. Finally and only for being complete, we also have to unfold the clause “the
terms” to the form which is predetermined by the first referred instance
“the terms of your choice”

So — overall — we are allowed to rewrite the LGPL2-RevEng-Sentence in the
following form, namely without having changed its meaning®'’:

((you may
*join a work that uses the Library with the Library
to produce a work containing portions of the Library)

AND
(you may
distribute that work containing portions of the Library
under terms of your choice
))

319) Recollect that "*join’ still stands for ’combine or link’.

76

3 Open Source: About Some Side Effects

PROVIDED THAT
((the terms of your choice permit
modification of the work containing portions of
the Library for the customer’s own use)
AND
(the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

At this point we must recommend all our readers to verify that this ’structurally
explicated presentation’ does exactly mean the same as the initially quoted LGPL2-
RefEng-Sentence. We are now going to discuss some of its logical aspects by some
formal transformations. For accepting these operations and linking the results
back to the original LGPL2-RefEng-Sentence, it is very helpful to know that
one already has accepted the equivalence of this explicated form and the more
condensed original version. For reviewing the equivalence the reader could — for
example — ask himself which of our rewritings are wrong, why they are wrong
and which alternatives can reasonably be offered for solving the syntactical issues
which disposed us to chose our solutions. Again, we ourselves — of course — are
profoundly convinced that both versions are completely equivalent.

3.4.1.2 Logical Clarification

For simplifying our discussion let us now replace the meaningful terminal phrases
of our form by some logical variables:

[' :- (you may *join a work that uses the Library with the Library to produce a
work containing portions of the Library)

A :- (you may distribute that work containing portions of the Library under
terms of your choice)

® - (the terms of your choice permit modification of the work containing portions
of the Library for the customer’s own use)

Y. - (the terms of your choice permit reverse engineering for debugging modifica-
tions of the work containing portions of the Library)

© -T and A
Q-0 and X

Based on these definitions, we can syntactically reduce the LGPL2-RefEng-
Sentence to the formula (I' and A) provided that (® and) or — even shorter — to
(© provided that Q).

7

3 Open Source: About Some Side Effects

Now, we have to clarify the meaning of the conjunction ’provided that’:

Obviously, provided that means something like under the condition that. So, one
might try to take this conjunction as another more stylish version of the common
if(. ..)then(. ..)-formula, sometimes also identified as a (logical) implication®*.
Thus, we have to consider the process of sequencing the linguistic form into a
logical formula: if we indeed take the conjunction provided that as another form
of the logical implication, it is not evident, which part of the linguistic sentence

must become the premise, and which the conclusion: Does (© provided that 2)
mean (if © then) or (if Q then ©)7

Apparently, provided that wants to establish something like a precondition. So,
one might conclude that (© provided that) means (if 2 then ©) or — more
logically notated — ((® A ¥) — (I' A A)). If this interpretation is adequate, it
must of course fulfill the intended purpose of the corresponding LGPL-v2-section,
which wants to regulate the distribution of works containing portions of LGPL
libraries.

For facilitating the understanding of our argumentation, let us first check whether
this logical interpretation of the linguistic conjunction fits the purpose of the LGPL
— by unfolding the slightly reduced version (X — A) back to the corresponding
verbal form:

if ([..] the terms permit reverse engineering for debugging modifi-
cations of the work containing portions of the Library,) then ([...]
you may distribute that work containing portions of the Library under
the terms of your choice.)

Now we can better see the problem: An implication as a whole is false only if the
premise is true and the conclusion is false. In all other cases it is true. Especially,
it is true, if the premise is false: If the premise is false, then the truth value of
the conclusion does not matter in any sense. Thus, if we take this implication as
a rule, which shall determine our behaviour, then this implication only supports
us, if we already have decided to permit reverse engineering. In this case the rule
successfully tells us that we are allowed to distribute the work containing portions
of the Library. But from the converse decision that we will not permit reverse
engineering, follows nothing - because a false premise does not influence the truth
value of the conclusion. Especially, the rule does not tell us that we may not
distribute the work containing portions of the Library. So — from the viewpoint
of the formal logic — this translation of the original conjunction ’provided that’
says, that if the terms of your own license do not permit reverse engineering for
debugging modifications of the work containing portions of the Library*?!, then

320) Actually the logical implication and the computational if-then-construct are not equivalent.
Fortunately, we later on can show, that in the context of this discussion the difference can
be ignored.

321) The premise is false.

78

3 Open Source: About Some Side Effects

you may or may not distribute that work containing portions of the Library
under the terms of your choice®??. Hence, we must state that this interpretation
does not fulfill the purpose of the LGPL-V2: if reverse engineering is not allowed,
the distribution of the work containing portions of the Library is not regulated.
We have to conclude, that this sequencing the LGPL2-RefEng-Sentence as a
logical implication is wrong.

But we deduced this consequence from a slighty reduced form of the LGPL2-
RefEng-Sentence. Thus, we still have to ask, whether we have to derive this
conclusion also on the base of the completely unfolded formula ((® A £) — (T
A A))? The answer is yes: the premise ((® A X) contains a logical conjunction.
So the truth value of the whole premise depends on the truth value of each of its
terminal statements, particularly on that of the statement ¥: If we decide not to
permit reverse engineering, then the premise as whole is false, regardless we forbid
or allow modifications. Consequently, the premise does not influence the truth
value of the conclusion. So, there is no way, to conclude that we have to allow
or that we do not have to allow reverse engineering. Hence we can transfer our
result, deduced for the slightly reduced formula to the unfolded complete formula:
assuming that (© provided that Q1) means (if 2 then ©) is wrong.

So, let us test the other combination. Let us ask, whether (© provided that Q2)
means (if © then) or — more logically notated — (I' A A) — (& A X)). If
we again for a moment focus on the reduced version (A — X)) and dissolve our
replacements, then we get back the rule:

if ([...] you may distribute that work containing portions of the
Library under the terms of your choice,) then ([...] the terms
permit reverse engineering for debugging modifications of the work
containing portions of the Library.)

Now we can see, that this version perfectly regulates the distribution of works
containing portions of LGPL libraries: If we are allowed to do so or — in other
words: if we are compliantly distributing works containing portions of LGPL
libraries®”?, then we have to permit reverse engineering®?*. This follows from
applying Modus Ponens to the implication®?”. And if we do not permit reverse
engineering®?, then we are not allowed to distribute works containing portions of
LGPL libraries**”. This follows from applying Modus Tollens to the implication®*®

322) The truth value of the conlusion is undetermined by the rule.

323) The premise is true.

324) The conclusion must be true, too!

325) A true premise evokes a true conclusion based on the given truth of the implication / rule
itself.

326) The conclusion is false.

327) The premise must be false, too!

328) A false conclusion evokes a false premise based on the given truth of the implication / rule

79

3 Open Source: About Some Side Effects

But — again — we have to consider that we have deduced this consequence from a
slighty reduced version of our LGPL2-RefEng-Sentence. Thus, we still have to
show that our result also holds for the completely unfolded formula ((I' A A) —
(® A X)): If we want to distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library**’, then
our terms must permit the modification and reverse engineering of the distributed
product®. And if we do not allow its modification or reverse engineering®*!, then
we do not compliantly distribute works containing portions of the Library which
have been produced by joining the Library and the work using the Library®*?
Thus, we may generally state, that the logical explication ((I' A A) — (& A X))
perfectly regulates the distribution of works containing portions of LGPL libraries.

Based on this clarification, we can reasonably replace the more stylish conjunction
‘provided that’ by its more known equivalent implication™*, which we indicate
by the commonly used character for a logical implication, the sign "—:

O provided that €2
=0 —0Q
= (dAX)—=> (A A)

= (([?] you may
*join a work that uses the Library with the Library
to produce a work containing portions of the Library)
A
([X] you may
distribute that work containing portions of the
Library under terms of your choice

/'\\l/\./

([I'] the terms of your choice permit
modification of the work containing portions of
the Library for the customer’s own use)

itself.

329) Premise is true.

330) Conclusion must become true by Modus Ponens.

331) Conclusion is false.

332) Premise must become false by Modus Tollens.

333) Here we can also see, that the difference between the if-then-command as part of a procedural
computer language and the logical implication does not influence our results: In the context
of a procedural if-then-command the truth of the premise triggers the execution of the
conclusion. In our discussion, this aspect is totally covered by the Modus Ponens derivation
of the logical interpretation. And the Modus Tollens derivation of the logical interpretation
on the other side does not play any role in a procedural if-then-command. So, it was the
right decision to understand the LGPL2-RefEng-Sentence logically and not as procedual
command.

80

3 Open Source: About Some Side Effects

A

([A] the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

3.4.1.3 Empirical Clarification

We can now simplify this formula once more by considering some empirical facts
and explicating some underlying understandings:

The first sentence ¢ explains that the work that uses the Library and the used
Library itself together are joined and thereby transformed into a work containing
portions of the Library. So, formally, one might ask, whether this newly generated
work containing portions of the Library also still uses the Library?

Unfortunately, it is empirically possible, that such a process for combining the two
components could (a) copy all original portions of the library into a something
like a ’dead end section’ of the program where they are never excuted, and could
(b) replace all original portions of the library by functionally equivalent portions
of any other library. Thus, the resulting work containing portions of the Library
would indeed still contain portions of the Library, although it would not use it
any longer. And because of this possibility, we are not allowed to say, that every
work containing portions of a library also uses the library®**.

But, fortunately, the normal computational process of combining and linking a
work that uses the Library with the Library to produce a work containing portions
of the Library inherently preserves the utilization of the joined library: It is the
general purpose of a software library to offer functions and/or data (structures)
for really being used by applications. And vice versa, software developers refer
to a specific library because they prefer its service: They use readily prepared
libraries (or classes or anything else) because they want to simplify their own
work while they conserve the quality level of their work. Thus, they chose a
library based on the assertion, that the standard compiling and linking process
guarantees, that indeed the chosen library is used (and not secretly substituted
by a mysterious ’equivalent’). With respect to this praxis of programming we
are allowed to say that a work containing portions of the Library which has been
built by the normal development processes of combining, compiling, and
linking source and object files, indeed also uses the intended library.

Now, we are able to consider an empirical correlation between the first sentence
® and the second sentence :

334) even if we think that this is a really silly way to organize the joining process!

81

3 Open Source: About Some Side Effects

It seems to be evident, that we must already have done ®, in other words: that
we must already have *joined — respectively: combined or linked — a work that
uses the Library with the Library to produce a work containing portions of the
Library, if we are going to compliantly distribute that work containing portions
of the Library under terms of your choice. Or briefly spoken: It seems to be
conclusive that ¥ empirically implies ®3%°.

But is this conclusion correct? Let us check this statement by assuming the
opposite: If the contrary was true, there had to exist a work containing portions
of the Library which had been gained without having linked or combined the
work and the Library in any sense. But from the inference above we already
know that works containing portions of the Library, which have been produced
by the standard computational processes of combining and linking a work that
uses the Library with the Library, indeed also use the Library. Thus, it would be
self-contradictory to talk about a work containing portions of the Library, which
was produced by the standard combining and linking processes, and similarily to
state, that exactly this work is not combined with the library in any sense. And
from a proof by contradiction we may infer the truth of the logical opposite:

So, with respect to the meaning of being standardly combined or linked with, we
may now say, that

e it is necessarily true that a computional work, which is standardly produced
on the base of a work that uses the Library and the Library and which
therefore literally contains more or less portions of a library, indeed uses the
the Library and s therefore combined with the library.

o 33 empirically implies ®**7 (in the standardized world of software devel-
opment), because ® must ever have been executed when ¥ is going to be
realized.

Thus, we can now reduce the LGPL2-RefEng-Sentence to its real core, the LGPL2-
RefEng-Rule:

(¢ [¥] you may
distribute (a) work containing portions of the
Library®*® under terms of your choice)

N

(([I'] the terms of your choice permit

335) hut not vice versa.
336) distributing a work that uses the Library and contains portions of a library
337) A work that uses the Library has been *joined with the Library to produce a work containing
portions of the Library
338) which previously has been prepared for being distributed by standardly combining and
linking the work that uses the Library with the Library in a way that this pre-
pared work indeed
also uses the Library

82

3 Open Source: About Some Side Effects

modification of the work containing portions of
the Library for the customer’s own use)

A

([A] the terms of your choice permit
reverse engineering for debugging modifications
of the work containing portions of the Library

))

This is indeed the essence of the LGPL2-RefEng-Sentence. It logically explains us
that we have to allow reverse engineering and modification of a work containing
portions of the Library if we distribute it (Modus Ponens) and that we are not
allowed to distribute a work containing portions of the Library, if we do not allow
its modification or reverse engineering (Modus Tollens).

Thus, for applying this rule correctly, we now only must know whether a work
indeed contains portions of the Library or not.

3.4.1.4 Final Conclusion

Unfortunately, there are more than one software developing scenarios, which must
be considered for answering this question in detail. We see three general types of
developing computer software:

1. You can produce software by using script languages. Source files which
contain script language commands are distributed and executed by an
interpreter without priorly being transformed into another 'more’ machine
specific language.

2. You can develop software by using languages which are designed for being
compiled into a machine independent bytecode. Later on, this independent
bytecode is executed by a machine specific virtual machine.

3. You can write traditional software files. Sometimes, these files are remastered
by a preprocessor before the real process starts. The traditional sources
themselves or the output files of the preprocessor are then compiled and
linked as machine specific binary file(s).

You may take 'php’ is an example for the first environment, ’Java’ an example for
the second, and 'C/C++" an example for the third.

Fortunately, the nature of these environments simplifies the answer to the question
under which conditions the work using the Library contains portions of the Library:

3.4.1.4.1 Distributing works with manually copied portions of the Library
evokes the copyleft effect: Manually copying code from the sources of the

83

3 Open Source: About Some Side Effects

Library into the overarching work that uses the Library, is not the standard way
of combining both components, neither in the world of script programming, nor
in the world of bytecode programming, nor in the world of programming machine
specific code:

Normally, the work which uses the Library is joined to the intended Library by an
include statement, an input statement, an import statement, a package statement,
or anything else. These *join-statements are inserted into the code of the work.
They denote the file(s) which deliver(s) the used functions, methods, classes, or
data. It is an integrated feature of the normal development tools that inserting
such *join-statements does not directly augment the work using the library by
some code of the Library: The development processes are designed to offer an
automatic augmention as part of the standard compilation which is started after
the actual development loop has been terminated.

Nevertheless, developers can circumvent these standard methods for using a
Library. Technically, they can directly copy code from the Library into their
own work. Consequently, these manually copied extensions of the code will be
compiled and/or executed together with the 'own’ code of the work. Thus, it is
clear that in this case the work that uses the Library already contains portions of
the Library, particularly before the normal *join-processes of the environment are
executed.

Hence, if you are going to distribute works that contain literal copies of the Library
source code, then you have to allow reverse engineering, even if they have already
been compiled (but still not linked) on the base of such augmented files**".

339) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens. But nevertheless, one
might reply here, that even the result of manually copying code from the Library to the
work using the Library is covered by the limits of tolerance, introduced by the LGPL-v2-§5.
Formally, this argument seems to be appropriate. And indeed, also we have to consider these
limits of tolerance later on. But in the context of copying code from the Library into the
work manually, a closer look reduces its impact. You have to discriminate three cases:

1. Developers can manually copy / transfer some or at most all elements of the
Library header files into the code of the work which the preprocessor itself
would copy / transfer into that code automatically. But developers will not do that.
Some simple include commands would cause the same effect. And developers want to
save resources, especially their own working time. So, why should they manually do
what they can delegate to the standard development process. Thus, it is reasonable
to assume that developers, who nevertheless copy portions from Library into their
work, do not want to repeat the service of the preprocessor manually, but to transfer
more than only these elements. Hence, it is reasonable to assume, that their work is
covered by the LGPL2-RefEng-Rule.

2. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work
using the Library and they can nevertheless let the work being linked to
the Library. But again developers will not do that, because — again — some simple
include and linking commands would cause the same effect. So it is reasonable to

84

3 Open Source: About Some Side Effects

But, if we manually copy code from the Library to our work using the Library,
we also have to consider that the LGPL-v2 directly regulates this kind of using
the Library: It says, that “you may modify your copy or copies of the Library or
any portion of it [...] provided that you also [...] cause the whole of the work
to be licensed [...] under the terms of this License”?!’. Thus, there are strong
arguments for the proposition, that the LGPL causes the copyleft effect in case of
literally copying code from the Library into the work using the Library: The code
of the work using the library has to be made accessible, as well.

So, overall, we might say, that 'manually’ copying code from an LGPL-v2 Library
into a work using that Library as a bypass of the standard software combining
processes and distributing the result indeed requires to additionally permit its
reverse engineering — even if this permission is probably not very important for
the recipient, because he probably must have a direct access to the code.

3.4.1.4.2 Distributing scripts does not need reverse engineering: Computer
programs written in a script language are distributed as they have been developed.
They are not transformed into another kind of code®*'. The interpreter takes the
script file as it is and directly executes it. Thus, there is no special technique of
reverse engineering for understanding these kind of software: you can directly

read it if you know the script language.

So, again, we might conclude, that a script using a script Library perhaps requires
to permit its reverse engineering — but probably this permission is not very
important for the recipient, because he can directly read the code.

3.4.1.4.3 Distributing statically combined bytecode requires the permission
of reverse engineering: In Java — the prototype for languages which are compiled

start from the premise that copying developers in fact do more than this. Thus, it is
reasonable to assume that their work is covered by the LGPL2-RefEng-Rule.

3. Developers can manually copy / transfer more than only the elements of the
Library header files from the Library sources into the code of the work
using the Library without linking it to the Library. This is a reasonable step
of work, because it spares the developers to link their work to the Library. But — by
definition — such an augmented work contains more elements of the Library than
LGPL-v2-§5 tolerates. Thus it is — again — reasonable to assume, that such a work is
covered by the LGPL2-RefEng-Rule.

Hence — overall and from a practical point of view — we can indeed say that manually copying
code from the Library into the work using the Library requires to allow reverse engineering.

340) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §2, escpcially §2c.

341) Java script is often offered as compressed code. Roughly spoken, this means that at first
all white space signs have been replaced by blanks and then all rows of blanks have been
reduced to at most one single blank. So, even then, the code itself is directly readable and
comprehensible — even if only for very sophisticated experts.

85

3 Open Source: About Some Side Effects

to machine independent portable bytecode — each class is compiled as a separate
class file. These class files have to be stored somewhere in the classpath. Aside
from that, classes can also be collected and distributed in form of packages which
then can be used like 'traditional” Libraries. These packages must also be stored
somewhere in the classpath. A single class is made known to the work that wants
to use it by an import statement which contains the class name; a whole Java
library is made usable by integrating a package statement into the code.

The code which follows such import- or package statements, can then use the
definitions offered by the classes. It denotes the elements of the classes by the
(qualified) names of its public or protected member variables or methods. Thus, —
from a strict viewpoint — the code of such a Java work using a Library indeed
contains portions of that library, even if these portions are only identifying names
or data structures containing identifying names. The Java compilation process
which generates the bytecode, preserves these denoting names. It does not replace
the referring names by the referred code of the methods and so on. Only just at
the end, when the java virtual machine itself tries to execute the work using the
Library, it collects all necessary commands of all ’joined’ classes.

So, one might tend to argue that answering the question whether a distributed
java bytecode already contains portions of the used Library depends on the
interpretation whether a denoting identifier of a Library indeed is a portion of the
Library. We will discuss this case together with the corresponding C/C++-Case.

But there is another Java specific aspect, which has to be considered as well. As
already mentioned, in Java you can also join your work containing the denoting
identifiers and the denoted Library by building a new package, which then contains
both, the work using the Library and the used Library. Hence, one can say, that
this package is quasi statically linked: if you distribute such an integrated package,
then you are distributing both components together. Thus, if you distribute a
complete package, in other words: a quasi statically linked work containing the
work using the Library and (all portions of) the Library, then you have to permit
reverse engineering*?.

So, preliminarily we conclude that, with respect to Java programming you (a)
have to permit reverse engineering, if you distribute your work using the Library
and the Library itself as a (statically linked) integrated package®'® and that (b)
in all other cases your obligation to permit reverse engineering depends on the
interpretation whether the identifiers declared by a Library are indeed portions of
the Library.

Fortunately, we can reasonably decide the issue of case (b) soon.

342) This directly follows from the LGPL2-RefEng-Rule by Modus Ponens
343) This follows from the LGPL2-RevEng-Rule by Modus Ponens.

86

3 Open Source: About Some Side Effects

3.4.1.4.4 Distributing statically combined binaries require the permission
of reverse engineering: Similar to Java, in C/C++ — the prototype of those
languages, which are compiled as machine specific code — a C/C++ Library is
also explicitly made known to the work that wants to use it, namely by some
include statements. These include statements denote the header files offered by
and distributed with the Library. They contain the declarations of those elements
which the Library wants to publish. Or briefly worded: the Library contains the
definitions in form of code, the header files the corresponding declarations.

The C/C++ code following such include statements can refer to the definitions
offered by the Library by using the declarations anounced by the header files.
So, again, — from a strict viewpoint — the code of such a C/C++ work using the
Library indeed contains portions of the library, even if these portions are only
identifying names or data structures published by the header files.

Beyond that conceptual relation, the C/C++ development process finally compiles
the work using the library as an object file containing machine specific code. Just
as the Java compilation, this process does not replace the referring names by the
referred code of the Library; it still preserves the denoting names. The resulting
file, which has been compiled into machine specific code, but still contains the
denoting identifiers, is also known as ’object code file’.

The C/C++ compilation process is (mostly) managed by a make file, which is
executed by the make command?**. This development tool calls the compiler for
each source file, makes known the directories which contain the compiled target
object files, and finally calls the linker. The linker recursively scans the compiled
object files and replaces each embedded identifier by a truly executable jump
command into that set of Library commands which are denoted by the identifier
and which shall be executed as part of the work using the Library. So, only at
the end, the linker collects all necessary commands of all ’joined’ object files and
Libraries and produces the really executable work.

But — notwithstanding the above — the linker can either be called as integrated step
of the development process itself, or the linker can be called separatedly, especially
on another machine. In the first case, the development process generates a
statically linked executable which already contains all necessary portions of all used
Libraries. In the second case, the development process generates a dynamically
linkable program by collecting the (set of) still unlinked object code file(s) as a
distributable package. Thus, if you distribute a statically linked executable, it
definitely contains 'portions’ of the library; if you distribute a dynamically linkable
program you have to decide whether the embedded identifying names of a Library
have indeed to be interpreted as portions of the Library.

344) Sometimes there additionally exists a complete meta environment which generates such
make files. The GNU build system for example offers a complex set of configure scripts and
make file templates (cf. http://en.wikipedia.org/wiki/GNU_build_system, wp.).

87

3 Open Source: About Some Side Effects

Unfortunately, we still have to consider a little complication, based on the nature of
the a C/C++ development process: contrary to the Java development environment,
a C/C++ development process inherently uses a preprocessor engine. This engine
takes the header files delivered by the Library, verifies the syntactically correct
use of the Library and can indeed replace some tokens of the work using the
Library by commands and/or lines from the Library. This technique is known
as inline functions or macros. They have been invented for those cases where
expanding the stack of commands during the compilation by a real function call
is more expensive than writing the embedded commands of the function more
than one time into the whole code. Hence, in the C/C++ development process
the compiled object files can indeed contain more than only the referring names
which denote portions of the Library: beside the denoting identifiers, they can
also already contain real, functionally relevant portions of the Library.

Thus, — again and similar to Java compilation — we may conclude, that with
respect to C/C++ programming you (a) have to permit reverse engineering, if you
distribute your work using the Library together with the Library as a statically
linked program®*® and that (b) in all other cases your obligation to permit reverse
engineering depends on the interpretation whether the used identifiers or dissolved
inline functions and macros, which have been declared by the Library and which
therefore have automatically and standard conformably been embedded into an
object file, are indeed portions of the Library.

Obviously, it is time to answer this crucial question:

3.4.1.4.5 Distributing dynamically combinable bytecode and linkable object
code does not require the permission of reverse engineering: Of course,
there is only one instance that can answer the question whether identifiers and
dissolved inline-functions or macros, which are — according to the development
standard — embedded into a work using the Library, indeed are portions of the
Library. This instance is the LGPL-v2 itself. And — fortunately — this license
supports us in a very clear way to answer this question, even if not by its §6 which
deals with the reverse engineering, but by its §5:

The LGPL simply specifies that “linking a ‘work that uses the Library’ with the
Library creates an executable that is a derivative of the Library (because it contains
portions of the Library) [...]” and that “the executable is therefore covered by
this License”?*°. Additionally, it talks about compiled, but still unlinked “object
files”, which therefore are not executables. Such an unexecutable “object file”
— for example that of the “work using the Library” — which “[...] uses only
numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” shall practically not be

345) This follows from the LGPL2-RevEng-Rule by Modus Ponens.
346) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §5.

88

3 Open Source: About Some Side Effects

covered by the license of the Library, because “...] the use of the object file is
unrestricted regardless of whether it is legally a derivative work”**" - as long as it
does not exceed the given limits.

Obviously, the answer of the LGPL to our question is this: (a) yes, such object files
containing names and snippets offered by the used Library, could contain portions
of the Library. But it is not necessary to clarify the details, because (b) — up to
a specific limit of sizes — these kind of ’little’ portions being embedded into the
object file by the standard compilation processes do not evoke any requirements:
they especially do not evoke the obligation to allow reverse engineering. In other
words: these little portions of a Library which are embedded by the standard
development process and which do not contain more than the specified size of
code may be regarded as another type of portions compared to the normal, real
portions which indeed evoke the obligation to allow reverse engineering. From the
viewpoint of the LGPL, they are pseudo portions of the Library, because they do
not restrict the containg object file in any respect.

So, from the LGPL-RevEng-Rule we can now indirectly conclude, that distributing
dynamically linkable or combinable bytecode or object code files which contain
“only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length)” being delivered by a Library
does not require to allow reverse engineering**®.

Unfortunately, there might be a practical objection which seems to disturb our
simple result: For applying this rule correctly, we apparently have to assure that
a compiled work that uses the Library but is still not *joined to it, indeed has
only been expanded by “small macros or small inline functions (ten lines or less in
length)”. Thus, seemingly, we have to study all header files of all used Libraries
in detail, if we want to compliantly distribute a work using a Library without
permitting reverse engineering. This could be a lot of work — up to a bulk which
practically can not be managed.

Fortunately, there is a simple solution for this challenge, a rule of thumb, based
on the principle “trust the upstream”3*":

The Library developers of course publish the header files or the public members
and functions of the classes in exactly that form they want these elements to be

347) of. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §5.

348) From the decision not to allow reverse engineering follows by Modus Tollens applied to the
LGPL2-RevEng-Rule, that the distribution of the work using the Library must not contain
real portions of the Library. From LGPL-v2-§5 and the limit of the standard proccesses
follows that here the work using the Library does not contain normal, real portions. So, we
know, that this case is not covered by the LGPL2-RevEng-Rule and thus we are allowed to
distribute a work using the Library without allowing its reverse engineering.

349) On the ELLW 2013, we were told about this principle for the first time. We do not know,
whether Armijn Hemel invented it. But we can respectfully affirm that he has persuasively
explained the spirit and purpose of the principle “trust the upstream”.

89

3 Open Source: About Some Side Effects

used. And they want their Library to be used as an LGPL library, otherwise
they would have chosen another License. So, they wish that improvements of the
Libraries shall be made accessible as well, but that the works using the Library
shall not necessarily be published in form of source code®*. Thus, as long as we
use a Library exactly in that form, the original authors have published, as long as
we load down the Library from the official repository, and as long as we do not
modify the intended interfaces defined and published by the original header and
class files, we may justifiably assume that we are using the Libraries just as their
copyright owners want them to be used. And thus, — in other words: as long as
we trust the upstream — we might assume that the header and class files of our
Libraries fit the restrictions of the LGPL-v2.

3.4.1.4.6 LGPL-v2 compliance with or without permitting reverse engineer-
ing: Now, we have reached our target. Our last clarification can directly be
applied to the both open cases: to the case of distributing Java bytecode as well, as
to the case of distribution C/C++4 object code. We now know, that the LGPL-v2
wishes, that not all portions of a Library covered by a work using the Library,
trigger the permission of reverse engineering. And we now know that the limits —
given by the LGPL-v2-8§5 — up to which such pseudo portions indeed do not trigger
the obligation to permit reverse engineering, are respected, if we use “upstream
approved’ C/C++ and Java libraries in standard development environments. Thus,
we indeed finally may conclude, that the LGPL-RevEng-Sentence

“[...] you may [...] combine or link a ‘work that uses the Library’

with the Library to produce a work containing portions of the Library
and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer’s own use
and reverse engineering for debugging such modifications.”?"!

means nothing else’ than

o With respect to a LGPL-v2 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces™”, and if you [D] distribute the produced unlinked object
code or bytecode files before they are linked as an executable.

350) The meaning of the weak copyleft.
351) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., §6, emphasis KR..
352) and which therefore do not to exceed the LGPL-v2 limits!

90

3 Open Source: About Some Side Effects

o [In all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself*”.

— if you distribute a work containing manually copied portions of the
Library.

3.4.1.5 Final Securing

So far, we have done a lot of work: At first, we unfolded and dissolved some
stylisch condensed formulations of the original LGPL2-RevEng-Sentence by their
linguistically explicit version. At second, we explicated the logical structure of the
sentence. At third, we empirically carved out the real meaning of the sentence.
And finally we mapped the triggering part of that rule to some verifiable facts.
Indeed, a lot of work for understanding only one sentence correctly®™*. So, it is a
good securing to verify that the derived result fits the spirit and the goals of the
LGPL-v2 perfectly.

For that purpose, let us fist discuss a little (semi-) official article — written by
David Turner and published by the FSF**® — which deals with the compliant use
of LGPL licensed Java libraries. Turner refers to the “FSF’s position” which - as
he says - “[...] has remained constant throughout”:

“l...] the LGPL works as intended with all known programming
languages, including Java. Applications which link to LGPL libraries
need not be released under the LGPL. Applications need only follow
the requirements in section 6 of the LGPL: allow new versions of the

353) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications.

354) Here, some readers might ask why the original authors have encapsulated their clear ideas
in such a sophisticate sentence. Here are two answers: First, this question is practically
irrelevant: The authors of the LGPL-v2 did, what they have done. And many developers
have already licensed their works under the terms of the LGPL-v2. Thus, we simply have to
live with the results — just until the last software being published under the terms of the
LGPL-v2 is relicensed by a better version. Probably this won’t happen during our life time.
Secondly, we appreciate the foresight of the LGPL-v2 authors. They wrote a license which
have successfully worked for more than twenty years. They chosed a formulation which had
also to cover 'uninvented’ techniques. So, it is not so surprizing, that we — today — have to
do a lot of work to understand all details the original authors want to be understood.

35%) ¢f. Turner, David: The LGPL and Java; 2004 (URL: http://www.gnu.org/licenses/
lgpl-java.en.html) — reference download: 2015-02-09, wp..

91

http://www.gnu.org/licenses/lgpl-java.en.html
http://www.gnu.org/licenses/lgpl-java.en.html

3 Open Source: About Some Side Effects

library to be linked with the application; and allow reverse engineering
to debug this.”?"°

Then he describes, that Java libraries are “[...] distributed as a separate JAR
(Java Archive) file” and that applications “[...]| use Java’s ‘import’ functionality
to access classes from these libraries”. Moreover, he also explains, that the process
of compilation “creates” and integrates “links” into the compiled application
which let become the application a “derivative work” of the library. Finally he
states, that not only the LGPL permits to distribute such derivative works, but
that “[...] it is easy to comply with the LGPL” if one indeed wants to “...]
distribute a Java application that imports LGPL libraries”: “Your application’s
license needs to allow users to modify the library, and reverse engineer your code
to debug these modifications.” "

So, we might state, that even this semi-official article argues very similarly to us.
There is only one little phrase in this text which differs a little: Summarizing the
“section 6 of the LGPL” by the statement “/...] allow new versions of the library
to be linked with the application; and allow reverse engineering to debug this” does
not consider that the first sentence of the section 6 of the LGPL contains a complex
condition. The LGPL2-RefEng-Sentence means — as we could prove — that one
may distribute (a) work containing portions of the Library only if one’s
license permit reverse engineering for debugging modifications®®. But — as we
could also show — for determining wether an application really contains portions
of the Library, one has additionally to consider the limits defined by section
5 of the LGPL*?: the application’s license needs to allow to reverse engineer
the application only if it contains more elements of the Library than §5 of the
LGPL-v2 has specified as limit.

That our analysis fits the spirit of the LGPL, can also be shown by considering
the LGPL directly:

The LGPL-v2 clearly describes its goals. It wants to enable the community to
let an LGPL Library “[...] become a de-facto standard”. And the LGPL knows,
that “to achieve this [goal], non-free programs must be allowed to use the library”,
because the “[...]| permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software”. But
the LGPL also asserts in this context, that “although the Lesser General Public
License is Less protective of the users’ freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to
run that program using a modified version of the Library” .

356) ¢f Turner: The LGPL and Java, 2004, wp.

357) ¢f. id., Lc., wp..

358) 5 p. 82

359) _ p. 88

360) of Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp., preamble, emphasis KR.

92

3 Open Source: About Some Side Effects

So — as a last check of our derivation — we can analyze, whether our derived result
violates this goal. If it does, then we probably made a tremendous fault; if not,
then we are allowed to trust in the consistence our analysis:

If you receive a work using the Library in form of a discret (set of) dynamically
linkable or combinable file(s) and if — hence — your provider assumed that the
files he delivers will be linked on your target machine which — therefore — has
to provide a linker and the the necessary dynamically linkable Libraries, than
you systematically have the freedom to replace the dynamically linked Libraries
by their updated versions®®!. And as long as the newer versions of the Libraries
preserve the defined and declared interfaces, you can do that successfully. That’s,
what the LGPL-v2 wants to ensure.

In all other cases, you must have the permission of reverse engineering or you
have a direct access to the source code. So, you can use the corresponding tools
and techniques to replace the embedded version of the Library by a newer version;
especially if you have received a statically linked package. Hence, also the second
part of our interpretation respects the spirit of the LGPL-v2.

So, finally we can say, everything is fine: The LGPL2-RevEng-Rule — together with
the meaning of being a portion of a Library — does not only verifiably exeplicate
the meaning of the LGPL2-RevEng-Sentence, but also fits the spirit and the
purpose of the LGPL-v2 as it has been announced by its preamble.

3.4.2 Reverse Engineering in the LGPL-v3

Based on our experiences how to successfully carve out the meaning of license
text, we can shorten the way to understand the one LGPL3-RevEng-Sentence
referring to reverse engineering:

“You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions of
the Library contained in the Combined Work and reverse engineering
for debugging such modifications, if you also do each of the following

/.) ./vb’()ﬁ?

Reusing our method of disambiguation, we first can exemplify the meaning of the
LGPL3-RevEng-Sentence by the following text:

361) Tn GNU/Linux — for example — you must (only) copy the dynamically linkable new version
of the Library into the lib/-directory and replace the existing link by a version pointing to
the newer version. Sometimes you should additionally verify the ld.so.conf files and call
ldconfig tool.

362) of. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §4. The ellipsis at the
end of the sentence denotes a set of tasks which we do not listen here for saving resources,
but which have to be considered as an integrated part of this sentence.

93

3 Open Source: About Some Side Effects

([©]
(You compliantly distribute a Combined Work
under terms of your choice
((that together effectively, do not restrict modification of
the portions of the Library contained in the Combined Work)
AND
(that together effectively, do not restrict reverse
engineering for debugging modifications of the portions
of the Library contained in the Combined Work)
))
IF
Q]
(you also do each of the following |[...])
)

But now, a simply executed logical serialization let us running into a problem:

If we serialized (© IF Q) as (@ — ©), then from not respecting © would follow
by Modus Tollens, that we are not allowed to realize €2 — in other words: that we
may not do even one of the single tasks covered by the ellipsis — which is a silly
result.

If we serialized (© IF Q) as (© — Q) then from doing © would successfully follow
by Modus Ponens that we also have to do 2. And from not respecting €2 would
successfully follow by Modus Tollens, that we must not do ©. But unfortunately,
we can respect this second interdiction also by distributing a Combined Work
under terms that restrict modifications and/or reverse engineering (instead of not
restricting these techniques) — which, again, is a silly result.

Obviously, a simple serialization based on a intutively unclear reading fails. In fact,
the LGPL3-RevEng-Sentence must have a more sophisticated underlying structure.
It must be logically serialized in a form, that integrates the requirements, not to
restrict modifications and reverse enigneering, as really triggable conditions. Thus,
the meaning of the sentence can logically be explicated as the LGPL3-RevEng-
Rule:

([2]
(You compliantly distribute a Combined Work
under terms of your choice

)
_>
(T]

(the terms of your choice together effectively do

not restrict modification of the portions of the

94

3 Open Source: About Some Side Effects

Library contained in the Combined Work)

A A]

(the terms of your choice together effectively, do
not restrict reverse engineering for debugging
modifications of the portions of the Library
contained in the Combined Work)

A Q]

(you also do each of the following |[...])

))

This LGPL3-RevEng-Rule indeed successfully regulates how to compliantly dis-
tribute a Combined Work by telling us,

e that we have to respect I', A and all single parts of €, if we distribute a

Combined Work compliantly>®?.

e that we do not distribute a Combined Work compliantly, if we do not respect
one of the requirements I, A or one of the single parts of 364,

Now, we can directly see, that the LGPLv3 does not enforce us, not to obstruct
reverse engineering in all respects! The required reverse engineering is limited
to the purpose of supporting the debugging of modifications and focused to the
Combined Work containing portions of the Library. In other words: our terms may
obstruct other purposes of reverse engineering or may restrict reverse engineering
of other forms of our work which which can not be specified as Combined Work
or do not contain portions of the Library. Thus, the first crucial question is, what
the LGPL-v3 means if it talks about a “Combined Work”. The second question
is, what the LGPL-v3 specifies as a portion of the Library.

Again, fortunately, the LGPL-v3 answers clearly: “A ‘Combined Work’ is a work
produced by combining or linking an Application with the Library”?%°. From
our LGPL-v2 analysis we know the ways how works that uses a Library can
technically be linked or combined with the Library:

e Copying code from the Library into the work using the Library®®° causes

that the application respectively the work using the Library indeed contains

portions of the Library?®°7.

363) follows by Modus Ponens. Thus, in this case especially our terms “[...] together effectively
[must] not restrict reverse engineering for debugging modifications of the portions of
the Library contained in the Combined Work”.

364) follows by Modus Tollens. Thus, especially we are not distributing a Combined Work
compliantly, if our terms “[...] together effectively do restrict reverse engineering for
debugging modifications of the portions of the Library contained in the Combined Work”.

365) of. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §0.

366) The LGPL-v3 designates the work using the Library as “Application” and defines that it
“[...] makes use of an interface provided by the Library [...]” (cf. id., ibid.).

367) 5 p. 83

95

3 Open Source: About Some Side Effects

e Combining script language based applications and Libraries may evoke that
the resulting application contains portions of the Library. But the details
can be neglected with respect to the reverse engineering, because script
code is distributed as it has been developed and can therefore directly be
understood?“®.

e Combining java classes and libraries as integrated quasi statically linked
packages causes, that the resulting package already contains all functionally
necessary code of the Library?®.

e Compiling java classes without combining them with the referred Library
classes causes, that the compiled classes at least contain identifiers having

been declared by the Library®™.

e Combiling C/C++ files or classes and linking them with the referred Libaries
statically causes, that the resulting executable indeed contains all functional
relevant code of all used Libraries®™".

e Combiling C/C++ files or classes without linking them to the referred
Libaries causes, that the resulting object file can dynamically be linked
on another machine and contains identifiers offered by the Library and
sometimes some functional code injected by dissolving some inline functions
or macros®’?.

So — overall — the situation is this: The LGPL3-RevEng-Rule tells us that we
have to allow reverse engineering of the portions of the Library contained in
the Combined Work. The LGPL3 additionally specifies, that a Combined Work
is simply the result of technically combining the work using the Library (the
application) and the Library. Finally the praxis tells us, that (a) combining both
components statically indeed causes that the resulting Combined Work contains
portions of the Library®™, and that (b) we — in case of preparing the both parts as
dynamically combinable components — still have to clarify whether the resulting
work already contains portions of the Library.

Just as the LGPL-v2, the LGPL-v3 supports us to answer this question by its §3
whose linguistic conjunctions we thoroughly have to consider:

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, [if the incorporated
material is not limited to numerical parameters, data structure layouts

368) 5 p. 85
369) _ p. 85
370) p. 88
371 5 p. 86
372) p. 88
373) Qo, it is triggering the LGPL3-RevEng-Rule.

96

3 Open Source: About Some Side Effects

and accessors, or small macros, inline functions and templates (ten
or fewer lines in length) |, you do both of the following: a) Give
prominent notice with each copy of the object code that the Library is
used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this
license document]’™.

The first sentence of this paragraph tells us that he is dedicated to object files
which are compiled and not linked to the used Library, but which nevertheless can
contain portions of the Library. The second sentence regulates the distribution of
such object files and can be logically serialized:

C [A]
(You compliantly distribute object code [incorporating
material from the Library] under terms of your choice)

]

w)

(the incorporated material is not limited to numerical
parameters, data structure layouts and accessors, or
small macros, inline functions and templates
[ten or fewer lines in length])

[a:] (you do [a] ...])
[B:] Cyoudo [b] ...])

\./>/\\L

))

We see, that this LGPL3-sentence concerning the distribution of object files

contains a main rule ((A — Z)) and that the conclusion Z itself has the form of
an embedded sub rule ((w — (a A 5)).

Firstly, the main rule enforces us to respect the sub rule if we want to distribute
the object code compliantly®™. Secondly, the main rule tells us that we do not
distribute the object code compliantly if we do not respect the sub rule *7.

We have two ways to respect the sub rule, and one way not to respect it:

e If the object code contains more and/or larger elements of the Library than
the limit specifies, then we do respect the sub rule, if we do o and 3°7".

374) of. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp., §3; emphasis and
additional braces KR..

375) follows by Modus Ponens to (A — E).

376) follows by Modus Ponens to (A — E).

377) follows by Modus Ponens to (w — (o A 3)).

97

3 Open Source: About Some Side Effects

e [f the object code contains elements of the Library at most up to specified
limits, then we do respect the sub rule without having to do some
additionally tasks®™®

e But if the object code contains more and/or larger elements of the Library
than the limit specifies and if we do not do « or 3, then we do not respect
the sub rule’”.

Thus, — at the end and based on the additional object code specification and the
known empirical background knowledge concerning the software programming —
the LGPL3-RevEng-Rule delivers the same result as the LGPL2-RevEng-Rule®®:

o With respect to a LGPL-v3 licensed Library, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces™!, and if you [D] distribute the produced unlinked object
code or bytecode files before they are linked as an executable.

e [n all other cases of distributing a work using such a Library, you are required
to allow reverse engineering of the work using this Library — especially, . . .

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself’®”.

— if you distribute a work containing manually copied portions of the
Library.

3.4.3 Reverse Engineering in the other Open Source Licenses

The rest of our way is simple: First, we can ascertain, that none of the other open
source licenses we consider®®, contain the phrase 'reverse engineering’. Moreover,

378) follows by definition of an implication: if the premise of this sub rule is false, the sub rule is
as whole is true and hence respected.

379) follows from definition of an implication: if the premise is true and the conclusion is false,
the the implication as whole is false, as well.

380) = 90

381) and which therefore do not to exceed the LGPL-v3 limits

382) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

383) 5 p. 71

98

3 Open Source: About Some Side Effects

they even do not contain one of the single words®***. So, we may infer, that these
most important other open source licenses could at most indirectly require the
permission of reverse engineering. Second, we know already that distributing
script code let the allowance to reverse engineer, become irrelevant: script code
can directly be read and understood, if one knows the script language®®®. Third,
from the definition of strong copleft we may derive, that distributing software
licensed under a strong copyleft license let the permission of reverse engineering
become unimportant, because the source code of the work using the libraries
licensed under a copleft license, must also be made accessible®*¢.

So — overally — we may conclude, that we have only to consider those cases, where
a piece of software is distributed in form of binaries or bytecode, which uses
libraries licensed under permissive open source licenses or under weak copyleft
licenses.

From the definition of being a permissive license or a weak copyleft license we
know already that the licenses of the open source components do not directly
influence the permission or interdiction to use the overarching work which uses

the open source software components®®’.

So, if we distribute such a work in form of dynamically linkable, but still not
linked binaries or bytecode files, then there is no way to reasonably derive that the
work using the components, may be reverse engineered: The permissive or weak
copyleft open source licenses mainly concern the open source components, not the
work using the components. On the one side, these licenses indeed require that
we add the license texts and the copyright lines of all the open source components
our work wants to use, to the distributed package containing our work. And the
lisenses prohibit to modify the licensing assertions being integrated into the open
source components our work wants to use**®*. But — on the other side and in
accordance to the permissive or weak-copyleft licenses — the freedom to use, to
study, to modify, or to distribute the software, which is established by these open
source licenses, concerns only the open source components themselves, not the
work using the open source components. So, as long as these components still
are not linked to or combined with the using work in accordance to the standard

384) One can verify this negative statement by (a) loading down all licenses from the OSI
homepage (http://opensource.org/licenses/alphabetical) and by (b) executing the command
grep -i "engineering" * respectively grep -i "reverse" * in the directory into which
the license files have been stored: grep will find the words reverse and engineering only in
the texts of the LGPLs.

385) _ p. 85

386) cf. Stallman: What is Copyleft?, 1996, wp.

387) f. Reincke, Karsten, Greg Sharpe, a. contributors: Open Source License Compendium.
How to Achieve Open Source License Compliance; 2015 (URL: http://www.oslic.org/
releases/oslic.pdf) — reference download: 2015-01-20, pp. 20ff..

38%) These requirements are part of all the open source licenses we consider here. For details cf.
id., l.c., pp. chapter 6.

99

http://www.oslic.org/releases/oslic.pdf
http://www.oslic.org/releases/oslic.pdf

3 Open Source: About Some Side Effects

compilation and computation methods, they can indeed be studied or modified
without the need to study or modify the work which uses these components®®’.

On the other side, if we compliantly distribute the work using the components,
as a statically linked binary or bytecode file — which therefore already contains
all the necessary components®”! and can directly be executed —, then we are also
obliged to add all the open source license texts and all the copyright lines to
our package, and we are not allowed to modify one of the licensing assertions
integrated into the original open source components®**?. Thus, one might conclude,
that the freedom to use and to modify the open source components themselves,
survive if we distribute software statically linked to or combined with the open
source components. So, the receiver of the statically linked work probably is
allowed to modify the embedded open source components - even if he had to
edit the binary or bytecode files. Methods to develop binary files reversely, are
known as reverse engineering. Hence, if we distribute a statically linked work
using open source licensed components, we have at least to fear that our receivers
indirectly have also got the permission to reverse engineer our complete product.
And we have to fear so even if the statically linked libraries are licensed under
any permissive or weak copleft license.

So, again, we can summarize the result in the following form:

o With respect to a Library licensed under any permissive or weak copyleft
license, you are not required to allow reverse engineering, if you [A] develop
your work using the Library, on the base of a standard version of the Library
containing the interfaces as the original developers have designed it, if you
[B] compile your work using this Library, as a discret (set of) dynamically
linkable or combinable file(s), if you [C] use only the standard compilation

389) The only way to infer that the licenses of the components operates also on the using work, is
to argue that the using work must at least contain elements (identifiers etc.) of the interfaces
declared (but not defined) by the libraries and that therefore at least these elements may be
investigated or modified. This challenge is explicitly addressed by the LGPL??°. Fortunately,
it is a general feature of software libraries that they must and shall be used in accordance to
the interfaces, the developers of the libraries have designed to make their libraries practically
usable. So, if the licenses — in contrary to the LGPLs — do not explicitly address the issue of
implicitly included portions of the library in case of unlinked binaries or bytecode files which
have been compiled in accordance to the standard methods and which therefore use open
source software by reffering to their standard interfaces, then one has to infer from the nature
of computation, that the developers have implictly allowed without any requirements such
an integration of declared, but not defined interface elements, because they have designed
the interface as they did and because they have licensed their work as they did. If they
had not wished to use these elements without any requirements, hey had designed another
interface. And if they had wished to incorporate any copyleft effect or permission of reverse
engineering, then they would have selected another license. But again: this conclusion holds
only for the standard methods to use a software library.

391) instead of only the declared interface elements!

392) ¢f. Reincke, Sharpe, a. other contributors: OSLiC, 2015, pp. chapter 6..

100

3 Open Source: About Some Side Effects

methods which preserve the upstream approved interfaces, and if you [D]
distribute the produced unlinked object code or bytecode files before they are
linked as an executable.

e In all other cases of distributing a work using such a Library, you have at
least to fear that you are implictly allowing reverse engineering of the work
using this Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself*"’.

— if you distribute a work containing manually copied portions of the
Library.

3.4.4 Reverse Engineering in Open Source Licenses: Summary

So, finally we can compile all our results into one single result:

o With respect to any open source Library’™, you are not required to allow
reverse engineering, if you [A] develop your work using the Library, on the
base of a standard version of the Library containing the interfaces as the
original developers have designed it, if you [B] compile your work using this
Library, as a discret (set of) dynamically linkable or combinable file(s), if you
[C] use only the standard compilation methods which preserve the upstream
approved interfaces™’, and if you [D] distribute the produced unlinked object

code or bytecode files before they are linked as an executable.

e In all other cases of distributing your work using such a Library, you are
probably required to allow reverse engineering of your work. By all means,
you have at least to fear that you are implictly allowing reverse engineering
of your work using such a Library — especially, . ..

— if you distribute the work using the Library and the Library together as
a statically linked program or as an integrated package containing both
parts, the work using the library and the Library itself*”.

— if you distribute a work containing manually copied portions of the
Library.

393) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

394) 5 p. 71

395) and which therefore do not to exceed limits, prescribed by the owners of the Library

396) This holds also if you distribute a script language based program or package, notwithstanding
the fact, that one does not need the permission of reverse engineering to understand script
language based applications

101

And, so, we can reformulate our result as a slightly modified “rule of thumbs
originally offered by an open source expert who analyzed the problem of protecting

3 Open Source: About Some Side Effects

your own work from an other viewport:

e “DO NOT statically link [or combine] [open source| code if you wish to
keep your program proprietary [and if you want to protect it against reverse

g.e.d

3.5

3.6

engineering]” 7.

“DO dynamically link to [any open source code, not only to] LGPL code

Excursion: The problem of license compatibility [tbd]

Here we discuss the often neglected or only superficially treated problem of combining
differently licensed software. We will hint to the Ezclusion-List of the Free software
foundation; we will hint to the Eclipse / GPL-plugin problem; we will mention the
recent discussion whether the kernel requires to license the complete Android as
GPL; and finally we will discuss the just now published, short analysis of Jaeger
and Metzger presenting a combining matriz which seems to fall into their lap. We
will argue that the question can simply be answered: Only if you embed two libraries
which both are licensed under an on-top-development protecting license and if both
these licenses require the licensing of the derivated work by different licenses then
you have a problem. In all other cases which we will describe, there is no problem.

Excursion: open source software and money [tbd]

Here we will shortly discuss ways in which money and Open Source is no problem.

397) ¢f. Ilardi: Common OSS License Problems, 2010, pp. 6; bracketed text KR..
398) ¢f. id., ibid.

102

4 Open Source Use Cases: Concept and Taxonomy

This chapter establishes our concept of open source use cases as a classification
system for to-do lists. The conditions of a specific license, in the context of a
particular open source use case, shall be satisfiable by following the corresponding
to-do list. Additionally this chapter introduces a taxonomy for these open source
use cases. Later on, this taxonomy will organize the Open Source Use Case Finder.

After all these introductory remarks, we can summarize our idea. We know that
the right to use open source software depends on the tasks required by the open
source licenses. As opposed to commercial licenses, you can not buy the right to
use a piece of open source software by paying money. It is embedded into the
Open Source Definition that the right to use the software may not be sold. The
OSD states first that an open source license may “[...| not restrict any party from
selling or giving away the software as a component of (any) aggregate software
distribution”, and adds second in the same context that an open source license
“[...] shall not require a royalty or other fee for such sale”*%?.

However, it would be wrong to conclude that you are automatically allowed to
use open source software without any service in return: generally you have to
do something to gain the right to use the software. In other words: open source
software is covered by the idea of 'paying by doing’. Accordingly, open source
licenses describe specific circumstances under which the user must execute some
tasks in order to be compliant with the licenses. So, if we want to offer to-do lists
for fulfilling license conditions, we must consider these tasks and circumstances.

In practice, such circumstances are not linear and simple. They contain combina-
tions of (sometimes context sensitive) conditions which can be grouped into classes
of tokens. Such a class of tokens might denote a feature of the software itself—such
as being an application or a library. Or it can refer to the circumstances of using
the software, such as 'using the software only for yourself’ or ’distributing the
software also to third parties’.

At the end, we want to determine a set of specific OSUCs—the open source
use cases. And we want to deliver for each of these OSUCs and for each of the
considered open source licenses one list of actions which fulfills the license in that
context .

Such an open source use case shall be considered as a set of tokens describing

399) cf. Open Source Initiative: The Open Source Definition, 2012, wp §1.

400) Fortunately, sometimes one task list fulfills the conditions of more than one use case—a
welcome reduction of complexity

103

4 Open Source Use Cases: Concept and Taxonomy

the circumstances of a specific usage. Hence, to begin, we must specify the
relevant classes of tokens, before we can determine the valid combinations of these
tokens—our open source use cases. Finally, based on the tokens, we generate a
taxonomy in the form of a tree. This tree will become the base of the Open Source
Use Case Finder which will be offered in the next chapter, and which leads you
to your specific OSUC by evaluating just a few questions and answers.

There are only a handful of tokens which are relevant to the circumstances of
open source software licenses:

e The type of the open source software: On the one hand, we regard code
snippets, modules, libraries and plugins, and on the other hand, autonomous
applications, programs and servers. We will take the word ’snimolis’ for the
first set, and 'proapses’ for the second. This is necessary, as we are not only
talking about libraries and applications in the everyday sense, but rather in
the broadest sense?’!. More specifically, we will ask you, whether the open
source software you want to use, is an includable code snippet, a linkable
module or library, or a loadable plugin, or whether it is an autonomous
application or server which can be executed or processed. In the first case,
the answer should be ’it is a snimoli’, in the second ’it is a proapse’.

e The state of the open source software: It might be used exactly as
one has received it. Or it can be modified, before being used. More
specifically, we will ask you, whether you want to leave the open source
software as you have received it, or whether you want to modify it before
using and/or distributing it to 3rd parties. In the first case, the answer
should be 'unmodified’, in the second 'modified’.

e The usage context of the open source software: On the one hand you
might use the received open source software as a readily prepared application.
On the other hand you might embed the received open source into a larger
application as one of its components. More specifically, we will ask you,
whether you are using the open source software as an autonomous piece
of software, or whether you are using it as an embedded part of a larger,
more complex piece of software. In the first case, the answer should be
‘independent’, in the second 'embedded’.

e The recipient of the open source software: Sometimes you might wish
to use the received open source software only for yourself. In other cases
you might intend to hand over the software (also) to other people. More

401) Of course, our newly introduced concepts of ’snimoli’ and "proapse’ are not absolutely one
of the most elegant words. So, initially we tried to talk about ’applications’ and ’libraries’,
although in our context these words should denote more, than they traditionally do. But we
couldn’t minimize the irritations of our interlocutors. Too often we had to remind them that
we were not talking about applications and libraries in the strict sense of the words. Finally
we decided to find our own words—and to stay open for better proposals ;-)

104

4 Open Source Use Cases: Concept and Taxonomy

specifically, we will ask you, whether you are going to use the open source
software only for yourself, or whether you plan to (re)distribute it (also)
to third parties. In the first case, the answer should be ’4yourself’, in the
second "2others’.

The form of the distributed files: Many licenses also draw a distinction
between distributing the software as sources and distributing the files as
binaries. In this case, we will ask you, whether you want to distribute the
software in the form of binaries or as source code. In the first case, the
answer should be ’binaries’, in the second ’sources’

The kind of the ioAccess of the executed program: At least one license
draws a distinction between an open source based work offering only local
access to its io data and an open source based work distributing its io data
via internet. In the first case, the answer should be ’onlyLocally’, in the
second ’vialnternet’

From a more programmatic point-of-view, we can summarize these tokens as

follows:
e type::snimoli or type: :proapse
e state::unmodified or state::modified
e context::independent or context::embedded
e recipient::4yourself or recipient::2others
e form::binaries or form: :sources
e ioAccess::onlylLocally or ioAccess::vialnternet

We have already defined the open source use case as the combination of these
tokens. If we simply combine all these tokens of all these classes with all the
tokens of the other classes®’?, we get 2-2-2-2-2-2 = 62 sets of tokens—or 62
open source use cases. Fortunately, some of the generated sets are invalid from an
empirical or logical view, and some of these sets are context sensitive:

1.

If you already have specified that the used open source software is a proapse—
an autonomous program, an application, or a server—then your answer
implies that the software is used independently and is not embedded with
other components into a larger unit. But if you have specified that the used
open source software is a snimoli—a snippet of code, a module, a plugin,

402) in the sense of the cross product TYPE x STATE x CONTEXT x RECIPIENT x FORM
x IOACCESS. In some earlier versions of the OSLiC, we also asked whether you are going
to combine or to embed the open source software with other software components by linking
them statically or dynamically, or by textually including (parts of) the open source software
into your larger product. Meanwhile, we clearly discovered that it is unnecessary to increase
the complexity by the results of this question. For Details — OSLiC p. 61

105

4 Open Source Use Cases: Concept and Taxonomy

or a library—then it can indeed be used as an embedded component of a
constructed larger application or server, or it can be used independently in
case you ‘only’ re-distribute it to 3rd. parties.

2. If you already have specified that the used open source software is a snimoli—
a snippet of code, a module, a plugin, or a library—and that this snimoli
shall be used only by yourself (not distributed to other 3rd. parties) then
your answer must also imply that this snimoli is used in combination, as an
embedded part of a larger unit. A library can not be used autonomously,
without using it as a component of another application. In this case, it
would simply sit on the disk and would do nothing more than occupying
space.

3. To enquire the form of the distributed files is only relevant if you have
decided to distribute the software to other recipients 2others.

4. With respect to the one license using the type of ioAccess as a discriminator,
it is only relevant to enquire the type of the ioAccess if you either locally
execute a modified open source program 4yourself or if you locally execute
a program 4yourself, which uses an embedded open source component,
regardless whether it has been modified or not.

Does this sound complex? We thought so, too. We spent much time explaining
these constraints to ourselves, and only when we had transposed all the combina-
tions and rules into a tree, the situation became clearer. The following diagram
summarizes the main results of our investigation®?::

403) Fach of the invalid use cases (= sets of tokens) [for details s. p. 105] is marked by an %
and leads to an empty set (= &). We are using the word ’invalid’ a little ambigiuosly: A
combination of values is invalid, if it is empirically impossible, to combine the features or if
it is irrelavant to subclassify a concept by the added features. Particularly:

e A proapse can not be embedded into another software unit, also containing a main-
function.

e Using a software library only for yourself and independently (not in combination with
larger software unit), is like having an unused heap of bytes on your disc.

e To discriminate between sources and binaries is only valid in case of distributing
software.

e To discriminate between an executed program with an only locally based io access
and that with an internet based io access is only relevant, if you are using the software
for yourself what implies to execute it.

106

4 Open Source Use Cases: Concept and Taxonomy

{proapse, 4yourself,

I {proapse, independent,

independent, unmodified }

{proapse, 2others,
independent, unmodified }

{proapse, 4yourself,
independent, modified}

type?

=
I {proa

pHe,

embedded, modified}

recipient? ‘\\‘7@»

{snimoli, 2others,
independent, modified}

{snimoli, 2others,
embedded, modified}

’.’,ﬁ/ {2others, sources}

I
""
"9'\
N
!\
| ‘\ {proapse, 4yourself,
“‘ modified, onlyLocal}
I N
B L
\, I {proapse, 4yourself, unmodified, :
6\\/ : {vialnternet, onlyLocal} } 4 |

T
N\

{2others, binaries}

{proapse, 4yourself,
modified, vialnternet}

=
<

!

WA

{snimoli, 4yourself,
embedded, vialnternet}

X

7

onlyLocal

) T

{snimoli, 4yourself,

embedded, onlyLocal}

I {snimoli, 4yourself, independent,

‘ {vialnternet, onlyLocal} } % |

107

\
4

[y : {snimoli, embedded, :
1 OSUC-07S | 2others, unmodified, |
.l, \ I sources} I

L

I
| {snimoli, embedded, :
OSUC-09L | 4yourself, modified, |
I

L

I
" | {snimoli, embedded, :
. OSUC-09N) 1 dyourself, modified, |
/ I

X/
. I
/ | {snimoli, embedded,
/ OSUC-010S | 1| 2others, modified,
I sources}
Lo e e
| : {snimoli, embedded,
! OSUC-010B | | 2others, modified,

OSUC-01
OSUC-028

I 4yourself, unmodified }
L

I {proapse, independent,

I 2others, unmodified, sources}

I {proapse, independent,

I 2others, unmodified, binaries}

I {proapse, independent,

I 4yourself, modified, onlyLocal}

| {proapse, independent,

I 4yourself, modified, vialnternet}

OSUC-03N
OSUC-04S

N

OSUC-04B

I {proapse, independent,
I 2others, modified, sources}

I {proapse, independent,
I 2others, modified, binaries}
L

embedded
W A Jelf, independent,
4’ podified}} 4 _ _ _ _ _ _ ________
| by |
modifiod I YL NN =N : {snimoli, independent, :
NN¥% ”_OSUC—OSS | 2others, unmodified, |
’.'. ' {snimoli, \Rpthers, I sources} |
/;W independelftl, unmodified} Lo oo)
. | | I
/AT ! ; {snimoli, independent,
/A?ﬁl.‘r“‘ T | OSUC-05B | | 2others, unmodified, |
7""'«“" \ Snimoli, 4youysslf, I binaries} I
(conteats ===\ X\ \ < Rubedded, unipilified} b mm e !
EEmi T g R
7 X ‘ N \' , {snimoli, embe led, |
' N \,"\\ ;v {snimoli, 2others OSUC-06L | 4yourself, unmodified,
/' ‘H“%r “‘ embedded, unmddified } / LonlyLocal} J
T ST TTTTTTTTITT
","\‘\‘» N P |
(, {snimoli, embedded, |
"A"'L--k“ {snimoli, 4yourself, (\\y OSUC-06N | 4yourself, unmodified, |
A~ I

I vialnternet}
[

I
; {snimoli, embedded, :
| 2others, unmodified, |
| binaries} I

» OSUC-07B
[I
| {snimoli, independent,
OSUC-08S | 2others, modified, |
|

I sources}

|
| {snimoli, independent,
| 2others, modified, |
I binaries} I

‘ OSUC-08B

I onlyLocal}

I vialnternet }

I binaries}

5 Open Source Use Cases: Find the License
Fulfilling To-do Lists

This chapter offers the Open Source Use Case Finder: Based on the information
gathered by a form, it allows to traverse a tree whose leaves are linked to the open
source use cases which finally refer to the respective to-do lists.

5.1 A standard form for gathering the relevant information

Which open source software do you want to use?
Under which open source license is it released?
Focus ‘ Questions Answers
Is the open source software you want to use a library
in the broadest sense (an includable code snippet, .
. . , O snimoli
Type a linkable module or library, or a loadable plugin), O proapse
or is it an autonomous program, application, or proap
server which can be executed?
Do you want to leave the open source software)
State unmodified as you have received it, or are you 0 unmf)dlﬁed
going to create a modified version of it? U modified
Are you going to use / distribute the open source
Context software as an independent unit, or do you plan | 0 independent
to integrate it as an embedded component into a | O embedded
complexer piece of software?
Are you going to use the open source software only O 4 "
Recipient | for yourself, or do you plan to (re)distribute it - 2y0}111rse
(also) to other third parties? others
Given you want to (re)dz'stribute an open source O bi .
Form based work [2others], do you focus on distributing HHares
. . [J sources
the binaries or the sources?
Given you are using open source software [{yourself]
by executing a modified os program [modified] or by
. . . , 0 onlyLocally
TIoAccess | creating & executing a program using an os library i
[embedded], does this program distribute its I0 data D vialnternet
only locally or via internet?

108

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

As discussed earlier, there are of course some invalid or irrelevant combinations.*’*

Here are some extra explanations concerning the classes resp. the focuses:

Type: A piece of (open source) software is a program, an application, or a server,
only if you can start its binary form with your normal program launcher, or
(in case of a text file which still must be interpreted by an interpreter like
php, perl, bash etc.) if you can start an interpreter which takes the file as
one of its arguments and executes the commands.

State: You are modifying a piece of (open source) software if you expand, reduce or
modify at least one of the received software files, and—in case of dealing with
binary object code—if you (re)compile and (re)link the modified software
to a new binary file. But if you only modify some of the configuration files,
you are not modifying the open source software itself.

Context: You are using a piece of open source software as an embedded component
of a larger unit ...

e if one of your files of the larger unit contains a verbatim or a modified
copy (i.e. a snippet) of the received open source software, or

e if your larger unit contains an include statement referring to a func-
tionally defining file of the received open source software, or

e if your larger unit calls a function defined in the received open source
software, or

e if your development environment contains a compiler or linker directive
referring to the received open source software (binaries) and if your
larger unit can’t be executed without resolving this linker directive.

Recipient: You are using the received open source software only for yourself, if
you as a person do not pass it to other entities like persons, organizations,
companies etc., or if you—as a member of a specific development group—
pass it only to the other members of your development group. But if you
store open source software on any device such as a mobile phone, an USB
stick, etc. or if you attach it to any transport medium like email etc. and if
you then sell, give away, or simply send this device or transport medium to
anyone (other than a direct member of your development group) then you
indeed hand the open source software over to third parties.*’

404) type::proapse excludes state::embedded; recipient::4yourself excludes the combination with
state::independent and type::snimoli; any value of class ‘'mode’ implies state::embedded; form
is only relevant if recipient::2others; ioAccess is only relevant if recipient::4yourself[for details
see page 105]. If you have encountered one of these invalid combinations, please check the
corresponding explanations.

405) Please remember that—at least in Germany—there are opinions that even handing over
software to another legal entity or department of the same company is also a kind of
distribution. It is always safest to take the broadest possible meaning.

109

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

Form: Open source software knows two ways to distribute the software: in the
form of binaries and in the form of sources. Mostly it is up to you to
decide whether you want to distribute only the binaries or whether you
are intentionally going to distribute the sources (too). At a first glance,
the concepts 'sources’ and ’binaries’ seems to be clearly distinguished. On
the one hand, compiled sources should be taken as binaries. On the other
hand, editable pieces of software are denoted by the concept ’sources’. But
sometimes the difference is not as clear as wished: For example, you can
modify even already compiled object files by using an hex-editor. Or it
is very difficult to modify the minimized versions of javascript files even
if they are indeed text files. Therefore, the OSLiC 'reuses’ a famous rule
of thumb: “The source code for a work means the preferred form of the
work for making modifications to it”.*%® All other forms are denoted by
the concept of "binaries’. Based on this specification, you can respect some
special conditions if you want to distribute the sources and/or the binaries.

ioAccess: If you execute an open source program or an own program using an
open source library, then (normally) you do not distribute that software.
Under these circumstances, the most open source licenses do not require
anything for executing the program compliantly - even if it is the base
of a globally used internet service. For closing this 'gap’, the AGPL has
been invented: Like the GPL, the AGPL let the obligation to fulfill the
well known set of GPL tasks be triggered by distributing the software.
But, it let these tasks also be triggered by an established remote network
interaction: whoever interacts with the locally executed program remotely
through a computer network gets all the rights which normally the receiver
of a distribution gets. Nevertheless, the AGPL does not wish to cause an
overhead of tasks: Only locally excuted open source programs which have
been modfied or locally executed own programs using an AGPL licensed
library shall indeed trigger the fulfillment of the requirements. Thus, we
introduced the features i0Access:onlyLocally and i0Access:vialnternet: They
are only relevant if you uses a program only for yourself (4yourself) and |
(if that AGPL licensed program has been modified {proapse and modified})
or (if that program uses an embedded AGPL licensed library {snimoli and
embedded})].

5.2 The taxonomic Open Source Use Case Finder

Now, after having gathered the necessary information, determine your open source
use case by traversing the following tree and its corresponding branches:

406) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3.

110

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

recipient:

4yourself

state: context:
unmodified independent

form:
sources
form:
binaries

recipient:

2others

type:
proapse

ioAccess:
onlyLocal
ioAccess:
vialnternet
form:
sources
form:
binaries
form:
sources
form:
binaries
ioAccess:
onlyLocal
ioAccess:
vialnternet
form:
sources
form:
binaries
form:
sources
form:
binaries
ioAccess:
onlyLocal
ioAccess:
vialnternet
form:
sources
form:
binaries

recipient:

4yourself

state: context:
modified independent

recipient:

2others

context: recipient:
independent 2others

state:
unmodified

recipient:

4yourself

context:
embedded

recipient:

2others

context: recipient:
independent 2others

type:
snimoli

state:

modified

recipient:

4yourself

context:
embedded

recipient:

2others

111

= OSUC-01: p. 112

= OSUC-028
(see p. 112)

= OSUC-02B
(see p. 113)

= OSUC-03L
(see p. 114)

= OSUC-03N
(see p. 115)

= OSUC-04S
(see p. 116)

= OSUC-04B
(see p. 116)

= OSUC-058
(see p. 117)

= OSUC-05B
(see p. 118)

= OSUC-06L
(see p. 119)

= OSUC-06N
(see p. 120)

= OSUC-07S
(see p. 120)

= OSUC-07B
(see p. 121)
= OSUC-08S
(see p. 122)

= OSUC-08B
(see p. 123)

= OSUC-09L
(see p. 123)

= OSUC-09N
(see p. 124)

= OSUC-108
(see p. 125)

= OSUC-10B
(see p. 126)

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

5.3 The open source use cases and its to-do list references

On the following pages, each Open Source Use Case is textually specified one
more time and complemented by a list of page numbers. Each of these pages
covers the license-specific to-do list whose items together offer a processable way
for acting according to the license under the circumstances of the described Open
Source Use Case.

OSUC-01: Only for yourself, you are going to use an unmodified open source
program, application, or server just as you received it. But you do not
combine it with other components in the sense of software development (=
proapse, unmodified, independent, 4yourself). To see the specific, license
fulfilling to-do lists jump to the following pages:

p. 128 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)
b

. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)

p. 291 for the MS-PL (= Microsoft Public License)

p. 298 for the PostgreSQL (= Postgres License)

p. 302 for the PHP-3.0 License

OSUC-02S: Just as you received it, you are going to distribute an unmodified
open source program, application, or server to third parties in the form

112

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

of sources. In this act of distribution, you do not combine this program,
application, or server with other software components in the sense of software
development (= proapse, unmodified, independent, 2others, sources). To see
the specific, license fulfilling to-do lists jump to the following pages:

p. 129 for the AGPL-3.0 (= GNU Affero General Public License)
p. 151 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 182 for the EPL-1.0 (= Eclipse Public License)

p. 197 for the EUPL-1.1 (= European Union Public License)

p. 212 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 255 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 278 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 303 for the PHP-3.0 License

OSUC-02B: Just as you received it, you are going to distribute an unmodified
open source program, application, or server to third parties in the form
of binaries. In this act of distribution, you do not combine this program,
application, or server with other software components in the sense of software
development (= proapse, unmodified, independent, 2others, binaries). To
see the specific, license fulfilling to-do lists jump to the following pages:

p. 130 for the AGPL-3.0 (= GNU Affero General Public License)
p. 152 for the Apache-2.0 (= Apache License)

p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

113

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 183 for the EPL-1.0 (= Eclipse Public License)

p. 197 for the EUPL-1.1 (= European Union Public License)

p. 212 for the GPL-2.0 (= GNU General Public License Version 2)
p. 225 for the GPL-3.0 (= GNU General Public License Version 3)
p

. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 256 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 279 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 304 for the PHP-3.0 License

OSUC-03L: You are executing an open source program, application, or server
which you have modified (but not combined with other components in the
sense of software development) and which distributes its input/output only
locally to you (= proapse, modified, independent, 4yourself, onlyLocal). To
see the specific, license fulfilling to-do lists jump to the following pages:

p. 128 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

114

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)

p. 291 for the MS-PL (= Microsoft Public License)

p. 298 for the PostgreSQL (= Postgres License)

p. 302 for the PHP-3.0 License

OSUC-03N: You are executing an open source program, application, or server
which you have modified (but not combined with other components in the
sense of software development) and which distributes its input /output to you
or other users via the internet (= proapse, modified, independent, Jyourself,
vialnternet). To see the specific, license fulfilling to-do lists jump to the
following pages:

p. 141 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)
p

. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)
p. 291 for the MS-PL (= Microsoft Public License)

115

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

° D.

® D.

OSUC-04S:

298 for the PostgreSQL (= Postgres License)
302 for the PHP-3.0 License

You are going to modify an open source program, application, or

server after you received it and before you will distribute it to third parties
in the form of sources. But you do not combine this modified program,
application, or server with other software components in the sense of software
development (= proapse, modified, independent, 2o0thers, sources). To see
the specific, license fulfilling to-do lists jump to the following pages:

e p. 133 for the AGPL-3.0 (= GNU Affero General Public License)

e p. 153 for the Apache-2.0 (= Apache License)

e p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

e p. 163 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

e p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

e p. 184 for the EPL-1.0 (= Eclipse Public License)

e p. 201 for the EUPL-1.1 (= European Union Public License)

e p. 216 for the GPL-2.0 (= GNU General Public License Version 2)

e p. 228 for the GPL-3.0 (= GNU General Public License Version 3)

e p. 248 for the LGPL-2.1 (= GNU Lesser General Public License

Version 2.1)

® D.

259 for the LGPL-3.0 (= GNU Lesser General Public License

Version 3)

® D.

T T T T

OSUC-04B:

273 for the MIT License (= Massachusetts Institute of Technology)

. 280 for the MPL (= Mozilla Public License)

. 292 for the MS-PL (= Microsoft Public License)
. 299 for the PostgreSQL (= Postgres License)

. 304 for the PHP-3.0 License

You are going to modify an open source program, application, or

server after you received it and before you will distribute it to third parties
in the form of binaries. But you do not combine this modified program,
application, or server with other software components in the sense of software
development (= proapse, modified, independent, 2others, binaries). To see
the specific, license fulfilling to-do lists jump to the following pages:

116

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 134 for the AGPL-3.0 (= GNU Affero General Public License)

p. 154 for the Apache-2.0 (= Apache License)

p. 170 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 164 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 178 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 185 for the EPL-1.0 (= Eclipse Public License)

p. 202 for the EUPL-1.1 (= European Union Public License)

p. 217 for the GPL-2.0 (= GNU General Public License Version 2)
p. 230 for the GPL-3.0 (= GNU General Public License Version 3)
p. 248 for the LGPL-2.1 (= GNU Lesser General Public License

Version 2.1)

p

. 260 for the LGPL-3.0 (= GNU Lesser General Public License

Version 3)

p
p
p
b

p

. 273 for the MIT License (= Massachusetts Institute of Technology)
. 281 for the MPL (= Mozilla Public License)

. 293 for the MS-PL (= Microsoft Public License)

. 299 for the PostgreSQL (= Postgres License)

. 305 for the PHP-3.0 License

OSUC-05S: Just as you received it, you are going to distribute an unmodified
open source library, code snippet, module, or plugin to third parties in
the form of sources. In this act of distribution, you do not combine this
library, code snippet, module, or plugin with other software components
in the sense of software development (= snimoli, unmodified, independent,
2others, sources). To see the specific, license fulfilling to-do lists jump to
the following pages:

p. 129 for the AGPL-3.0 (= GNU Affero General Public License)

p. 151 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

117

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 182 for the EPL-1.0 (= Eclipse Public License)

p. 197 for the EUPL-1.1 (= European Union Public License)

p. 212 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)
b

. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 255 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 278 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 303 for the PHP-3.0 License

OSUC-05B: Just as you received it, you are going to distribute an unmodified
open source library, code snippet, module, or plugin to third parties in
the form of binaries. In this act of distribution, you do not combine this
library, code snippet, module, or plugin with other software components
in the sense of software development (= snimoli, unmodified,independent,
2others, binaries). To see the specific, license fulfilling to-do lists jump to
the following pages:

p. 130 for the AGPL-3.0 (= GNU Affero General Public License)
p. 152 for the Apache-2.0 (= Apache License)

p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 183 for the EPL-1.0 (= Eclipse Public License)

p. 197 for the EUPL-1.1 (= European Union Public License)

p. 212 for the GPL-2.0 (= GNU General Public License Version 2)
p. 225 for the GPL-3.0 (= GNU General Public License Version 3)

118

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 244 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 256 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 279 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 304 for the PHP-3.0 License

OSUC-06L: You are executing any application which distributes input/output
only locally to you and which uses an unmodified embedded open source
library, code snippet, module, or plugin (= snimoli, umodified, embedded,
4yourself, onlyLocal). To see the specific, license fulfilling to-do lists jump
to the following pages:

p. 128 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)

p. 291 for the MS-PL (= Microsoft Public License)

p. 298 for the PostgreSQL (= Postgres License)

119

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

e p. 302 for the PHP-3.0 License

OSUC-06N: You are executing any application which distributes its input/output
to you or other users via the internet and which uses an unmodified embedded
open source library, code snippet, module, or plugin (= snimoli, umodified,
embedded, 4yourself, vialnternet). To see the specific, license fulfilling to-do
lists jump to the following pages:

p. 143 for the AGPL-3.0 (= GNU Affero General Public License)

p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)
p. 243 for the LGPL-2.1 (= GNU Lesser General Public License

Version 2.1)

p

. 254 for the LGPL-3.0 (= GNU Lesser General Public License

Version 3)

p
p
b
p

p

. 272 for the MIT License (= Massachusetts Institute of Technology)
. 277 for the MPL (= Mozilla Public License)

. 291 for the MS-PL (= Microsoft Public License)

. 298 for the PostgreSQL (= Postgres License)

. 302 for the PHP-3.0 License

OSUC-07S: Just as you received it and before you will distribute it to third
parties in the form of sources and together with a larger software unit, you
are going to combine and embed an unmodified open source library, code
snippet, module, or plugin into that larger software unit in the sense of
software development (= snimoli, unmodified, embedded, 2others, sources).
To see the specific, license fulfilling to-do lists jump to the following pages:

e p. 131 for the AGPL-3.0 (= GNU Affero General Public License)
e p. 151 for the Apache-2.0 (= Apache License)

120

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 182 for the EPL-1.0 (= Eclipse Public License)

p. 199 for the EUPL-1.1 (= European Union Public License)

p. 214 for the GPL-2.0 (= GNU General Public License Version 2)
p. 226 for the GPL-3.0 (= GNU General Public License Version 3)

p. 246 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 257 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 278 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 303 for the PHP-3.0 License

OSUC-07B: Just as you received it and before you will distribute it to third
parties in the form of binaries and together with a larger software unit, you
are going to combine and embed an unmodified open source library, code
snippet, module, or plugin into that larger software unit in the sense of
software development (= snimoli, unmodified, embedded, 2others, binaries).
To see the specific, license fulfilling to-do lists jump to the following pages:

p. 132 for the AGPL-3.0 (= GNU Affero General Public License)
p. 152 for the Apache-2.0 (= Apache License)

p. 169 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 162 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 177 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 183 for the EPL-1.0 (= Eclipse Public License)

121

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 199 for the EUPL-1.1 (= European Union Public License)
p. 215 for the GPL-2.0 (= GNU General Public License Version 2)
p. 227 for the GPL-3.0 (= GNU General Public License Version 3)

p. 246 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 258 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 273 for the MIT License (= Massachusetts Institute of Technology)
p. 279 for the MPL (= Mozilla Public License)

p. 292 for the MS-PL (= Microsoft Public License)

p. 299 for the PostgreSQL (= Postgres License)

p. 304 for the PHP-3.0 License

OSUC-08S: Before you will distribute it to third parties in the form of sources,
you are going to modify an open source library, code snippet, module, or
plugin. But you do not combine it with other software components in the
sense of software development (= snimoli, modified, independent, 2others,
sources). To see the specific, license fulfilling to-do lists jump to the following

pages:

p. 136 for the AGPL-3.0 (= GNU Affero General Public License)
p. 155 for the Apache-2.0 (= Apache License)

p. 171 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 164 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 178 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

. 186 for the EPL-1.0 (= Eclipse Public License)

. 203 for the EUPL-1.1 (= European Union Public License)

. 219 for the GPL-2.0 (= GNU General Public License Version 2)
. 231 for the GPL-3.0 (= GNU General Public License Version 3)

p. 249 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 262 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

b
b
b
b

122

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

274 for the MIT License (= Massachusetts Institute of Technology)
283 for the MPL (= Mozilla Public License)

294 for the MS-PL (= Microsoft Public License)

300 for the PostgreSQL (= Postgres License)

306 for the PHP-3.0 License

IR

OSUC-08B: Before you will distribute it to third parties in the form of binaries,
you are going to modify an open source library, code snippet, module,
or plugin. But you do not combine it with other software components
in the sense of software development (= snimoli, modified, independent,
2others, binaries). To see the specific, license fulfilling to-do lists jump to
the following pages:

p. 137 for the AGPL-3.0 (= GNU Affero General Public License)
p. 155 for the Apache-2.0 (= Apache License)

p. 171 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 165 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 178 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 188 for the EPL-1.0 (= Eclipse Public License)

p. 204 for the EUPL-1.1 (= European Union Public License)

p. 220 for the GPL-2.0 (= GNU General Public License Version 2)
p. 232 for the GPL-3.0 (= GNU General Public License Version 3)
b

. 250 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 263 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 274 for the MIT License (= Massachusetts Institute of Technology)
p. 284 for the MPL (= Mozilla Public License)

p. 295 for the MS-PL (= Microsoft Public License)

p. 300 for the PostgreSQL (= Postgres License)

p. 307 for the PHP-3.0 License

OSUC-09L: You are executing any application which distributes input/output
only locally to you and which uses an embedded open source library, code

123

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

snippet, module, or plugin — being modified by you (= snimoli, modified,
embedded, 4yourself, onlyLocal). To see the specific, license fulfilling to-do
lists jump to the following pages:

p. 128 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)

p. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

p. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)

p. 291 for the MS-PL (= Microsoft Public License)

p. 298 for the PostgreSQL (= Postgres License)

p. 302 for the PHP-3.0 License

OSUC-09N: You are executing any application which distributes its input/output
to you or other users via the internet and which uses an embedded open
source library, code snippet, module, or plugin — being modified by you (=
snimoli, modified, embedded, 4yourself, vialnternet). To see the specific,
license fulfilling to-do lists jump to the following pages:

p. 143 for the AGPL-3.0 (= GNU Affero General Public License)
p. 150 for the Apache-2.0 (= Apache License)

p. 168 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 161 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

124

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

p. 176 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 181 for the EPL-1.0 (= Eclipse Public License)

p. 196 for the EUPL-1.1 (= European Union Public License)

p. 211 for the GPL-2.0 (= GNU General Public License Version 2)
p. 224 for the GPL-3.0 (= GNU General Public License Version 3)
b

. 243 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

p. 254 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

. 272 for the MIT License (= Massachusetts Institute of Technology)
p. 277 for the MPL (= Mozilla Public License)

p. 291 for the MS-PL (= Microsoft Public License)

p. 298 for the PostgreSQL (= Postgres License)

p. 302 for the PHP-3.0 License

T

OSUC-10S: Before you will distribute it to third parties in the form of sources,
you are going to modify an open source library, code snippet, module, or
plugin, which you combine with other software components in the sense of
software development (= snimoli, modified, embedded, 2others, sources). To
see the specific, license fulfilling to-do lists jump to the following pages:

p. 138 for the AGPL-3.0 (= GNU Affero General Public License)
p. 156 for the Apache-2.0 (= Apache License)

p. 172 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

p. 166 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

p. 179 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 189 for the EPL-1.0 (= Eclipse Public License)

p. 205 for the EUPL-1.1 (= European Union Public License)

p. 221 for the GPL-2.0 (= GNU General Public License Version 2)
p. 234 for the GPL-3.0 (= GNU General Public License Version 3)
b

. 251 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

125

5 Open Source Use Cases: Find the License Fulfilling To-do Lists

e p. 264 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

e p. 274 for the MIT License (= Massachusetts Institute of Technology)

e p. 285 for the MPL (= Mozilla Public License)

e p. 295 for the MS-PL (= Microsoft Public License)
e p. 300 for the PostgreSQL (= Postgres License)

e p. 307 for the PHP-3.0 License

OSUC-10B: Before you will distribute it to third parties in the form of binaries,
you are going to modify an open source library, code snippet, module, or
plugin, which you combine with other software components in the sense of
software development (= snimoli, modified, embedded, 2others, binaries).
To see the specific, license fulfilling to-do lists jump to the following pages:

e p. 140 for the AGPL-3.0 (= GNU Affero General Public License)

e p. 158 for the Apache-2.0 (= Apache License)

e p. 173 for the BSD-2-Clause License (= Berkeley Software Distribu-
tion)

e p. 167 for the BSD-3-Clause License (= Berkeley Software Distribu-
tion)

e p. 179 for the CDDL-1.0 (= Common Develop and Distribution Li-
cense)

p. 190 for the EPL-1.0 (= Eclipse Public License)

e p. 207 for the EUPL-1.1 (= European Union Public License)
p. 222 for the GPL-2.0 (= GNU General Public License Version 2)
p. 235 for the GPL-3.0 (= GNU General Public License Version 3)

e p. 253 for the LGPL-2.1 (= GNU Lesser General Public License
Version 2.1)

e p. 265 for the LGPL-3.0 (= GNU Lesser General Public License
Version 3)

. 274 for the MIT License (= Massachusetts Institute of Technology)
p. 287 for the MPL (= Mozilla Public License)
e p. 296 for the MS-PL (= Microsoft Public License)

p

p

[}
i)

. 300 for the PostgreSQL (= Postgres License)
. 309 for the PHP-3.0 License

126

6 Open Source License Compliance: To-Do Lists

With respect to the defined open source use cases, this chapter lists what one has
to do for acting in accordance with the specific open source licenses.

6.1 Some general remarks on ’'giving’ someone a file

This chapter has to be started with some general points which are relevant for
many of the to-do lists. So that the same points are not repeated too often, we
will start with these general remarks and refer to them throughout the chapter.

e Sometimes when delivering a binary package containing open source software,
the medium doesn’t allow the recipient to view all files contained in that
package. For example, a lot of mobile devices don’t give the user access to
the file system. But open source licenses often require ‘to give’ someone
copies of text files, such as the license text, copyright notes, or specific notice
file. The safe interpretation of ‘giving someone a text’ is that the receiver
must be able to read it*’". Thus, on systems which offer a file browser and
a suitable reader, it is sufficient, to put these file onto the files system. On
the other systems, you must present the content of the files through the
UT of your application—for example in a specific copyright screen®. The
OSLiC does not want to refine the taxonomies down to the level of operating
systems, so it is up to the user to keep this in mind when reading the to-do
lists.

e Sometimes a product which uses and distributes open source software tries
to fulfill the requirement to give the recipients the license etc.” by presenting
links to general versions of these licensing files hosted somewhere on the
internet. But be aware: Although it is a good tradition—especially if you
link to the homepages of the projects for being totally transparent— it is
not sufficient to offer only the links. If you are required by the open source
licenses to handover something to your users, you must do it. It is not safe
to delegate the task to anyone hoping that they will offer the files all the
time your product is being distributed?”’. Even if it would be safe to assume

407) To give someone anything they can’t touch, feel or see is like not giving him the object ;-)

408) Additionally, in the open source community, it is a good tradition, to present these reference
data voluntarily.

409) Moreover, the advantage of doing the job oneself is that one has not to struggle with
uncommunicated implicit modifications of the link targets.

127

6 Open Source License Compliance: To-Do Lists

that the link will remain valid forever, the point is: you have to fulfill the
license, no one else.

6.2 AGPL licensed software

recipient: .
P recipient:

4your-
self

2others

i0Access: i0Access:
only- via-
Local Internet
R (S
type:
t 8 9 t g 9
ype typs.i, ype tyP‘.i» proapse type: type: type:
pro- sni- pro- sni- Y . s .
q q or snimoli proapse snimoli
apse moli apse moli q .
snimoli
. ~
FE £ / 1
'S
context: context: context: context: context: context: context:
inde- em- inde- em- inde- inde- em-
pendent bedded pendent bedded pendent pendent bedded
T T\ AN
e N e Y N N N (Y N N (1
form: form: fc;:')rzl : form: fobT;’? form: ffr : form: fobT;r:z
source source T source mery source — source ey
AGPL- AGPL- AGPL- AGPL- AGPL- AGPL-
c1 AGPL- cD c2 ACGEL-ll o5 || agpL. || AGPL-|| AGRL-|| T ge || AGRT-|| T oB
using (e]e; execu- distri- L L distribu- Ccé R S distri- s distri-
3 . distribu- distribu- . L distri- distri- . distri- .
apps execu- ting any buting ti ting an ting an distri- butin. butin buting butin buting
& libs ting a app with unmo- 'ng WL‘Z_ un- buting o modgi— o mod%— a modi- o modi— a modi-
only for || modified net-io- dified 12%1; modified || Modified || @ modi- fiod fiod fied fiod fied
- A _ ; ; ;
your: AGPL ccess soft o T Bl library fied g Bl llb'{‘a'ry Bbprary library
Sdf (+ program using a ware as as inde- as em- as em- pro- . oy - as inde- 0 Gl as em-
Sub, with net- (mod- inde- endent bedded bedded gram as gs bi- erdterh pendent bedded bedded
condi- i0-Access ified) pendent e i bina- sources X bina- bina-
; 5 binaries sources) naries sources . sources .
tions) library sources ries ries Ties

6.2.1 AGPL-3.0-C1: Using the software only for yourself under additional
restrictions

means that you received AGPL-3.0 licensed software, that you will use it only
for yourself, and that you do not hand over to any third party in any sense.
Additionally you warrants that no other than you interacts with the executed
software remotely through a computer network.

128

6 Open Source License Compliance: To-Do Lists

covers OSUC-01, OSUC-03L, OSUC-06L, and OSUC-09L*'°

requires no tasks in order to fulfill the conditions of the GNU Affero General
Public License Version 3 with respect to this use case:

e You are allowed to execute an unmodified AGPL program without
being obliged to do anything, as long as you do not give the program
to third parties. And you are allowed to embed any AGPL licensed
library, snippet or module into your own program and to execute that
program without being obliged to do anything, as long as no other
than you can interact with it remotely through a computer network
and as long as you do not give the library or your program to third
parties.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.2 AGPL-3.0-C2: Passing the unmodified software as independent
sources

means that you received AGPL-3.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-05S*!!
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.*?

e [mandatory:] Retain all existing copyright notices.

410) For details — OSLiC, pp. 112 — 123
411) For details — OSLiC, pp. 112 — 117
412) For implementing the handover of files correctly — OSLiC, p. 127

129

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.3 AGPL-3.0-C3: Passing the unmodified software as independent
binaries

means that you received AGPL-3.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B*!?
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**

e [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

[mandatory:] Retain all existing copyright notices.

413) For details — OSLiC, pp. 113 — 118
414) For implementing the handover of files correctly — OSLiC, p. 127

130

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Execute the to-do list of use case AGPL-3.0-C2 for the
source code that you publish.*!?

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.4 AGPL-3.0-C4: Passing the unmodified library as embedded sources

means that you received an AGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S*¢
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.*!"

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is
itself licensed under the AGPL-3.0, too. Let it reproduce the content
of the existing copyright notices, the software name, a link to its
homepage, the respective disclaimer of warranty, and a link to the
AGPL-3.0.

415) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

416) For details — OSLiC, pp. 120

417) For implementing the handover of files correctly — OSLiC, p. 127

131

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Arrange the the sources of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.5 AGPL-3.0-C5: Passing the unmodified library as embedded binaries

means that you received an AGPL-3.0 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B*"®
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**?

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

e [mandatory:] Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

418) For details — OSLiC, pp. 121
419) For implementing the handover of files correctly — OSLIC, p. 127

132

6 Open Source License Compliance: To-Do Lists

[mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is
itself licensed under the AGPL-3.0, too. Let it reproduce the content
of the existing copyright notices, the software name, a link to its
homepage, the respective disclaimer of warranty, and a link to the
AGPL-3.0.

[mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

[mandatory:] Retain all existing copyright notices.

[mandatory:] Execute the to-do list of use case AGPL-3.0-C4 for the
source code that you publish.*?°

[voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.6 AGPL-3.0-C6: Passing a modified program as source code

means that you received an AGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-045*%!

requires the following tasks in order to fulfill the license conditions:

[mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

[mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

420) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.
421) For details — OSLiC, pp. 116

133

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**?

e [mandatory:] Retain all existing copyright notices.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended

by the AGPL-3.0.1%

e [voluntary:] Create a modification tezt file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.7 AGPL-3.0-C7: Passing a modified program as binary

means that you received an AGPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B***

422) For implementing the handover of files correctly — OSLiC, p. 127

423) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

424) For details — OSLiC, pp. 116

134

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it."*

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the AGPL-3.0.%6

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:| Execute the to-do list of use case AGPL-3.0-C6 for the
source code that you publish.**

e [voluntary:] Create a modification text file, if such a file does not yet

425) For implementing the handover of files correctly — OSLiC, p. 127

426) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

427) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

135

6 Open Source License Compliance: To-Do Lists

exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.8 AGPL-3.0-C8: Passing a modified library as independent source code

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085"%*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the library, insert a header containing your

428) For details — OSLiC, pp. 122
429) For implementing the handover of files correctly — OSLiC, p. 127

136

6 Open Source License Compliance: To-Do Lists

copyright line and a licensing statement in the form recommended by
the AGPL-3.0.*%°

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.9 AGPL-3.0-C9: Passing a modified library as independent binary

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B*!
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

[mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

[mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it."*?

[mandatory:] Retain all existing copyright notices.

[mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that

430) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

431) For details — OSLiC, pp. 123

432) For implementing the handover of files correctly — OSLiC, p. 127

137

6 Open Source License Compliance: To-Do Lists

this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:| Execute the to-do list of use case AGPL-3.0-C8 for the
source code that you publish.**?

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the library, insert a header containing your

copyright line and a licensing statement in the form recommended by
the AGPL-3.0.3

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.10 AGPL-3.0-CA: Passing a modified library as embedded source code

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-108*3°

433) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

434) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

435) For details — OSLiC, pp. 125

138

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is
itself licensed under the AGPL-3.0, too. Let it reproduce the content
of the existing copyright notices, the software name, a link to its

homepage, the respective disclaimer of warranty, and a link to the
AGPL-3.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a

header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.%%7

e [mandatory:] Arrange the the sources of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

436) For implementing the handover of files correctly — OSLiC, p. 127
437) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

139

6 Open Source License Compliance: To-Do Lists

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.11 AGPL-3.0-CB: Passing a modified library as embedded binary

means that you received an AGPL-3.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B***
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case AGPL-3.0-CA for the
source code that you publish.**

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is
itself licensed under the AGPL-3.0, too. Let it reproduce the content

438) For details — OSLiC, pp. 126

439) For implementing the handover of files correctly — OSLiC, p. 127

440) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

140

6 Open Source License Compliance: To-Do Lists

of the existing copyright notices, the software name, a link to its

homepage, the respective disclaimer of warranty, and a link to the
AGPL-3.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a

header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.**!

e [mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.12 AGPL-3.0-CC: Executing a modified program with network
interaction

means that you received an AGPL-3.0 licensed program, an application, or server,
that you modified it, and that you let this program, application, or server
be executed by a computer in a way, that other people than you can interact
with the executed software remotely through a computer network.

covers OSUC-03N*42

requires the following tasks in order to fulfill the license conditions:

441) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.
442) For details — OSLIC, pp. 115

141

6 Open Source License Compliance: To-Do Lists

[mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a AGPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the AGPL-3.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing AGPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing

your copyright line and a licensing statement in the form recommended
by the AGPL-3.0.**

e [mandatory:] Make the source code of the executed modified program
publicly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case AGPL-3.0-C6 for the
source code that you publish.**°

e [voluntary:] Create a modification tezt file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

443) For implementing the handover of files correctly — OSLiC, p. 127

444) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

445) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

142

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.2.13 AGPL-3.0-CD: Executing a (modified) library as embedded
component with network interaction

means that you received an AGPL-3.0 licensed library, snippet, or module,
that you modified it or that you did not modified it, that you embed this
modified or unm odified library, snippet, or module into an own overarching
program, an application, or server, and that you finally let this own program,
application, or server be executed by a computer in a way, that other
people than you can interact with the executed software remotely through
a computer network.

covers OSUC-06N,0SUC-09N#46
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the AGPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the AGPL-3.0 license. If
it is not already part of the software package, add it.**"

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the complete source code of the excuted program
embedding the (modified) library publicly available (and, therefore, also
the source code of the (modified) library itself): Push the source code
package into a repository under your control and make it downloadable
via the Internet. Ensure, that this repository is online for at least 3
years after you ceased distributing the software package.

446) For details — OSLiC, pp. 120 — 124
447) For implementing the handover of files correctly — OSLIC, p. 127

143

6 Open Source License Compliance: To-Do Lists

[mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:| Execute the to-do list of use case AGPL-3.0-CA for the
source code that you publish.***

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the AGPL-3.0 licensed library and that it is
itself licensed under the AGPL-3.0, too. Let it reproduce the content
of the existing copyright notices, the software name, a link to its
homepage, the respective disclaimer of warranty, and a link to the
AGPL-3.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing AGPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the AGPL-3.0.*%

e [mandatory:] Arrange the the binaries of the on-top development of
the on-top development in a way that they are covered by the AGPL-3.0
licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the AGPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

448) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

449) For details see section ‘How to Apply These Terms to Your New Programs’ in the AGPL-3.0
license.

144

6 Open Source License Compliance: To-Do Lists

6.2.14 Discussions and Explanations

For simplifying the justifications of our AGPL interpretation, we can state, that
the AGPL-3.0 and the GPL-3.0 are very similar: apart from some differences
caused by the varying names and passings remarks*’, the most paragraphs of the
two licenses exactly offer the same text**!. Only the §13 of the AGPL-3.0 does
not match to the §13 of the GPL-3.0: §13 of the GPL-3.0 permits “[...] to link or
combine any covered work with a work lincesed under version 3 of the GNU Affero
Generasl Public License”*?; while §13 of the AGPL-3.0 deals with the “remote
network interaction”***. Therefore, the analysis of the GPL-3.0 lincense*** is also
valid for the AGPL-3.0; it is not necessary to repeat that discussion here.

So, we can focus on the difference. The AGPL-3.0 tries to close a gap of the
GPL-3.0:

Purpose of all GNU licenses is to preserve the freedom to use, to study, to share,
and to modify the GNU programs and libraries*”>. These licenses want to prevent
that users circumvent the tasks which establish and maintain this freedom: Only
if someone uses the program / library only for himself, he shall not be obliged
to do anything. But if any third party was involved into the use of the GNU
software, this third party should receive all those rights and possibilities to use
the software which all the other users already have got.

In a time, where using the benefits of a program meant ezecuting the software on
ons’s own machine (and hence having received the program at least as a binary),
it was enough to let the obligations of — for example — handing over the license or
the source code be triggered by the act of ’distributing the software’. Nowadays,
in the times of cloud software systems, users can let profit other users from the
free software without conveying the software. In these cases, they execute the
free program on their own machines, but they nevertheless do not use the free
program any longer only for themselves. So, in time of cloud service technologies,
the trigger of executing the license fulfilling tasks must be complemented by a
criterion which indicates that a third party is involved into the context of using
the software. And this criteroin must no longer presuppose that this third party
has received the software itself.

450) Very similar are the preamble and §0. Compare Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp. versus Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.

451) BEqual are §1 - 12 and §14 - §17. Compare Open Source Initiative: The GPL-3.0 License
(OSI), 2007, wp. versus Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp.

452) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §13.

453) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.

454) 5 p. 236

455) cf. Free Software Foundation: What is free software? The Free Software Definition; 2015
[n.y.] (URL: https://www.gnu.org/philosophy/free-sw.en.html) — reference download:
2015-02-20, wp..

145

https://www.gnu.org/philosophy/free-sw.en.html

6 Open Source License Compliance: To-Do Lists

For that purpose, the AGPL-3.0 states, that such an executed AGPL program
must “[...] prominently offer all useres interacting with it remotely through a
computer network [...] an opportunity to receive the Corresponding Source of
your version by providing access to the Corresponding Source from a network
server at no charge, through some standard or customary means of facilitating
copying of software”*°%. Obviously, the trigger of distributing the AGPL software
now has been expanded by the feature being able to interact with the AGPL
software remotely through a computer network.

The first consequence of this analysis is, that we can take over all the GPL uses
cases which deal with distributing the software (2others) and all the corresponding
license fulfilling tasklists of GPL-3-C2%" until GPL-3-CB**® — as we have defined
them in the GPL chapter.

The second consequence is, that we now have to subclassify the open source use
case recipient:Jyourself: we have to distinguish the use with internet input-output
access from that with only local input-output acesss.

Additionally, the AGPL limits the requirement to the condition, that the used
program is modified. The license exactly says that “[...] if you modify the
Program, your modfied version must prominently offer all useres interacting
with it remotely through a computer network [...] an opportunity to receive
the Corresponding Source of your version [...]”%. Thus, the third consequence
is, that we have to subclassify the open source use case recipient:4yourself not
only by the features ioAccess:vialnternet and ioAccess:onlyLocal, but also by the
features state:modified and state:unmodified.

Finally, there is another little complication: One can only execute a program. A
library can not be directly executed. So, the question arises, what the user has
to be do if executes an own program which uses an unmodified AGPL licensed
library or module?

On the first glance, the license in §13 says only that he has to publish the sources
too, if executes a modified program. But on further reflection, one has also to
consider the other paragraphs of the AGPL: If one embeds an AGPL licensed
library, snippet or module into an own program, then — due to the Copyleft effect
of the AGPL — this program which uses the library, snippet or module, has to be
licensed under the AGPL too. And finally, every new program has to be regarded
as a modification of the first empty file. In other words: one can only execute an
own program using an unmodified AGPL library compliantly, if one respects the
§13 for the complete software complex being comprised of the library itself and
the pure code of the overarching program.

456) cf. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.
457) 5 OSLIC, p. 224

458) 5 OSLiC, p. 235

459) ¢f. id., ibid.

146

6 Open Source License Compliance: To-Do Lists

Based on this analysis, we had only to introduce two new AGPL specific open
source use cases and could recycle the complete set of GPL specific open source
use cases:

e All GPL-3.0 use cases triggered by the distribution of the software recip-
ient:2others are transfered into the AGPL-3.0 finder and the AGPL-3.0

tasklist chapter as they have been defined in the GPL finder and the GPL-3.0
tasklist chapter.

e All combinations of recipient:Jyourself and ioAccess:onlyLocally are covered
by the old GPL ’yourself’ use case which says, that one has not do anything
as long as one uses the software only for oneself. But in the context of
AGPL, this use case has additional conditions: one has not do anything if
one does not distribute the software to other parties in any thing and if one
executes this software on one’s own machines in an environment which does
not allow anyone else than oneself to interact with it remotely through a
computer network.

e If one executes an unmodified AGPL program, which one has received and
which one has not modified, then one also has not do anything.

e If one ’executes’ an unmodified library as an embedded component of
the really executed overarching program, then one has also to license this
overarching program under the AGPL and hence has to fulfill the conditions
of §13.

e If one executes a modified AGPL program, which one has received, has to
fulfill the conditions of §13.

o [f one executes an modified library as an embedded component of the really
executed overarching program, then one has also to license this overarching
program under the AGPL and hence has to fulfill the conditions of §13 with
respect to bot parts, to the overarching program and the library.

There is a last point, which should also be discussed here. It concerns the question
of granularity:

The AGPL-3.0 requires that the “[...]| modified version (of an [executed] program)
must prominently offer all users interacting with it remotely through a computer
network [...] an opportunity to receive the Corresponding Source of your version
by providing access to the Corresponding Source from a network server at no charge
[...]7%%Y. For respecting this rule, one has to know what the term Corresponding
Source means: how many of the embedded components of the program must be
conveyed together with the overarching program.

Fortunately, the AGPL-3.0 (and the GPL-3.0) defines the used terms: “The
‘Corresponding Source’ for a work in object code form means all the source code

460) of. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §13.

147

6 Open Source License Compliance: To-Do Lists

needed to generate, install, and (for an executable work) run the object code and
to modify the work, including scripts to control those activities.*'” If one took
this statements seriously, one would have to “provide access to” the complete
software stack of the executed AGPL program — just down to the glibc.

But the AGPL does not want to be to greedy. Therefore it limits the scope by
determining, that the Corresponding Source “|...] does not include the work’s
System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part
of the work”*%2. For understanding this rule, one has to know, what the term
System Libraries means. The AGPI says, that “the ‘System Libraries’ of an
executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the work
with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.*®*” Unfortunately,
one has now to analyse, what the AGPL defines as a Major Component: “A
enquoteMajor Component, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it*%*”.

Based on these specifications, one can give some rule of thumbs concerning the
question down to which level one has to give access to the corresponding source
code of an an executed AGPL program:

e If one lets execute a modified AGPL licensed binary program, then one has
to give access to the code of

— the executed program itself
— every modified embedded component of that program

— every not freely accessible embedded component of that program

all not freely accessible tools, scripts, data which are necessary to
compile the sources of the program in a freely accessible compilation /
developement environment

But it is not necessary to give access to unmodified standard libraries,
compilers, or tools which can freely be downloaded from their standard
repositories.

e If one lets execute a modified AGPL licensed script, then one has to give

461) of. Open Source Initiative: The AGPL-3.0 License (OSI), 2007, wp. §1.
462) ¢f. id., ibid.
463) of id., ibid.
464) ¢f. id., ibid.

148

6 Open Source License Compliance: To-Do Lists

access to the code of

the executed script itself
every modified embedded script component included by the main script

every not freely accessible embedded script component included by the
main script

all not freely accessible tools, scripts, data which are necessary to to
let that main script be executed by a freely accessible interpreter

the interpreter itself if it is not freely accessible.

But it is not necessary to give access to unmodified standard script libraries,
interpreters, or tools which can freely be downloaded from their standard
repositories

6.3 Apache-2.0 licensed software

Today, the current release of the Apache open source license is version 2.0, older

versions are deprecated.*®® Because it focusses primarily on the “redistribution,
the following simplified Apache specific open source use case finder

» 466

467 can be used:

465) For details — OSLiC, pp. 29
466) of Open Source Initiative: APL-2.0, 2004, wp. §4.
467) For details of the general OSUC finder — OSLiC, pp. 104 and ??

149

6 Open Source License Compliance: To-Do Lists

Apache-2.0

recipient:
4yourself

recipient:

2others

-
state: state:
unmodified modified
form: form: type: type:
source binary proapse snimoli
form: form: context: context:
source | | binary independent embedded
e /\ e \) e N e M)
form: form: form; form:
source | | binary | | source | | binary
& l J i J i J i J
Apache- Apache-
Arsaalies Apache- Apache- Apache- Apache- 2.0-Cé6 2.0-C7 Izpoacchg- jzpoaccl;ge-
2p0_01 2.0-C2 2.0-C3 2.0-C4 2.0-C5 dis- dis- = e
7;,s7ln dis- dis- dis- dis- tributing tributing i t;n irib t;n
soﬁwé]re tributing tributing tributing tributing modified modified difi 5 ;ﬁ (‘(17
willy for unmodified unmodified modified modified library library l'rzo e l"’zo e
ou?iself software software program program as inde- as inde- g T:'ler]aj v T}t]l?"”y”aj
g as sources as binaries as sources as binaries pendent pendent em ebn? X
sources binaries sources mnaries

6.3.1 Apache-2.0-C1: Using the software only for yourself

means that you received Apache-2.0 licensed software, that you will use it only
for yourself, and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N*68

requires no tasks in order to fulfill the conditions of the Apache License 2.0 with
respect to this use case:

e You are allowed to use any kind of Apache software in any sense and
in any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

468) For details — OSLiC, pp. 112 — 124

150

6 Open Source License Compliance: To-Do Lists

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.2 Apache-2.0-C2: Passing the unmodified software as source code

means that you received Apache-2.0 licensed software which you are now going
to distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S*%”
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.*™

e [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

e [mandatory:] Ensure that the notice text file is retained in your
package in the form you have initially received it.*"

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

469) For details — OSLiC, pp. 112 — 120

470) For implementing the handover of files correctly — OSLiC, p. 127

471) The Apache license seems purposely to be a bit ambiguous: it uses the term “‘Notice’ text
file”. In its strict sense, the term refers to a file named ‘NOTICE.[txt|pdf]...]". In a weaker
sense, it may denote any (text) file containing (licensing) notices. To be sure to act according

to this requirement you should also read this term in the broader sense if there is no text file
named ‘NOTICE’

151

6 Open Source License Compliance: To-Do Lists

6.3.3 Apache-2.0-C3: Passing the unmodified software as binaries

means that you received Apache-2.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B*™
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.*™

e [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

e [mandatory:] Ensure that the notice text file is retained in or in-
tegrated into your package in the form you have initially received
it.

e [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear (especially, if you
are distributing an unmodified Apache-2.0 licensed library as embedded
component of your own work which displays its own copyright notice.)

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

472) For details — OSLiC, pp. 113 — 121
473) For implementing the handover of files correctly — OSLiC, p. 127

152

6 Open Source License Compliance: To-Do Lists

6.3.4 Apache-2.0-C4: Passing a modified program as source code

means that you received an Apache-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-045*™
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it."”

e [mandatory:] FEnsure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

e [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

e [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the program
already displays a copyright dialog, update it in an appropriate manner.

e [mandatory:| Inside of the source code, mark all your modifications
thoroughly. Generate a notice text file, if it still does not exist. Add a
description of your modifications into the notice text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software

file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

474) For details — OSLIC, pp. 116
475) For implementing the handover of files correctly — OSLiC, p. 127

153

6 Open Source License Compliance: To-Do Lists

6.3.5 Apache-2.0-C5: Passing a modified program as binary

means that you received an Apache-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B*"°
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.*""

e [mandatory:] FEnsure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

e [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

e [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the program
already displays a copyright dialog, update it in an appropriate manner.

e [voluntary:] Even if you do not want to distribute your modified
source code, mark all your modifications thoroughly.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

476) For details — OSLiC, pp. 116
477) For implementing the handover of files correctly — OSLiC, p. 127

154

6 Open Source License Compliance: To-Do Lists

6.3.6 Apache-2.0-C6: Passing a modified library as independent source
code

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085%™
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.*™

e [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

e [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

e [mandatory:| Inside of the source code, mark all your modifications
thoroughly. Generate a notice text file, if it still does not exist. Ezpand
the notice text file by a description of your modifications.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except
as required for reasonable and customary use in describing the software

file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.7 Apache-2.0-C7: Passing a modified library as independent binary

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to

478) For details — OSLiC, pp. 122
479) For implementing the handover of files correctly — OSLiC, p. 127

155

6 Open Source License Compliance: To-Do Lists

distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B**
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.**!

e [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

e [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

e [voluntary:] Even if you do not want to distribute your modified
source code, mark all your modifications thoroughly.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

prohibits . ..

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.8 Apache-2.0-C8: Passing a modified library as embedded source code

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code

480) For details — OSLiC, pp. 123
481) For implementing the handover of files correctly — OSLiC, p. 127

156

6 Open Source License Compliance: To-Do Lists

files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-105"%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the software package, add it.***

e [mandatory:] FEnsure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in your
package in the form you have received them.

e [mandatory:] Ensure that the notice text file contains at least all the
information in the notice text file that you have received.

e [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the software
that embeds this library displays its own copyright dialog, insert this
information there.

e [mandatory:| Inside of the library source code, mark all your modifi-
cations thoroughly. Generate a notice text file, if it still does not exist.
Ezpand the notice text file by a description of your modifications.***

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license.

e [voluntary:] Arrange your source code distribution so that the in-
tegrated Apache license and the notice text file clearly refer only to
the embedded library and do not disturb the licensing of your own
overarching work. It’s a good tradition to keep embedded components
like libraries, modules, snippets, or plugins in a specific directory which
contains also all additional licensing elements.

prohibits ...

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

482) For details — OSLiC, pp. 125
483) For implementing the handover of files correctly — OSLiC, p. 127
484) The term library also includes snippet, module, and plugin.

157

6 Open Source License Compliance: To-Do Lists

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.9 Apache-2.0-C9: Passing a modified library as embedded binary

means that you received an Apache-2.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B**°
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Give the recipient a copy of the Apache 2.0 license. If
it is not already part of the binary package, add it.**

e [mandatory:] Ensure that the licensing elements (especially the
specific copyright notice of the original author(s)) are retained in
your package in the form you have received them. If you compile the
binary from the sources, ensure that all the licensing elements are also
incorporated into the package.

e [mandatory:] Ensure that the notice text file contains at least all
the information in the notice text file that you have received. Create
a notice text file, if it still does not exist. Add a description of your
modifications into the notice text file.

e [mandatory:] Ensure that the notice text file is also reproduced if and
whereever such third-party notices normally appear. If the software
that embeds this library displays its own copyright dialog, insert this
information there.

e [voluntary:] Even if you do not want to distribute your modified
source code, mark all your modifications of the embedded libary thor-
oughly. 57

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the notice text file, a
hint to the software name, a link to its homepage, and a link to the
Apache 2.0 license, especially as a subsection of your own copyright
notice.

485) For details — OSLiC, pp. 126
486) For implementing the handover of files correctly — OSLiC, p. 127
487) Jibrary or snippet, or module, or plugin

158

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Arrange your binary distribution so that the integrated
Apache license and the notice text file clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the libraries, modules, snippet, or plugins
in specific directories which contain also all licensing elements.

prohibits . ..

e to promote any of your services based on the this software by trade-
marks, service marks, or product names linked to the software except

as required for reasonable and customary use in describing the software
file.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.3.10 Discussions and Explanations

e On the one hand, the Apache 2.0 license does not permit “[...]| to use the
trade names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file”**®. On the
other hand, this license alerts that all the patent licenses granted to those
who “[...] institute a patent litigation” will terminate automatically*®’.
Hence, the OSLiC generally (Apache-2.0-C1 - Apache-2.0-C9) interdicts to
promote products or services by these elements and to legally fight against
patents linked to the software.

e The Apache-2.0 also requires to “[...] give any other recipients of the
Work or Derivative Works a copy of this License”*”’. Therefore, all 20thers
use cases contain the respective mandatory condition (Apache-2.0-C2 -
Apache-2.0-C9).

e Additionally, the Apache-2.0 requires, that modifications must be marked*’!.
Thus, in all cases of passing the modified software in the form of source
code the OSLiC requires to mark the modifications and to integrate a hint
into the notice file—while in all the cases of passing the modified software
in the form of binaries it inserts only a voluntary condition (Apache-2.0-C4
- Apache-2.0-C9).

e Furthermore, the Apache-2.0 requires that one must “[...]| retain, in the
Source form of any Derivative Works that You distribute, all copyright,

488) of. Open Source Initiative: APL-2.0, 2004, wp. §6.
489) ¢f. id., l.c., wp. §3.

490) ¢f. id., l.c., wp. §4.1.

491 ¢f. id., l.c., wp. §4.2.

159

6 Open Source License Compliance: To-Do Lists

patent, trademark, and attribution notices from the Source form of the Work”
So, the OSLIC requires in all contexts (Apache-2.0-C1 - Apache-2.0-C9) that

the licensing elements are retained in the form you have received them*”?.

e Finally, the Apache-2.0 requires that the received “NOTICE text file” must
be integrated as readable copy to each package distributed in the form of
source code, or—in case of binary distibutions—must be displayed “[...]
if and wherever such third-party notices normally appear”*”?. Thus, the
OSLiC requires mandatorily that all source code distributions must include
the notice text file (Apache-2.0-C2, Apache-2.0-C4, Apache-2.0-C6, Apache-
2.0-C8) and that all distributions of binary applications which normally
show such a copyrigth screen must integrate the content of the notice file
into this screen (Apache-2.0-C5, Apache-2.0-C9). For libraries distributed
in the form of binaries it is assumed that they normally do not contain such
copyright dialogs (Apache-2.0-C7)

6.4 BSD licensed software

As an approved open source license, the BSD license exists in two versions®”!
The latest release is the BSD 2-Clause license,*”, the older release is the BSD
3-Clause license.*”® The very little differences between the two versions have to
be respected exactly.

All BSD open source licenses focus explicitely on the (re-)distribution open source
use cases, which we have specified by our token 2others. Conditions for the other
use cases specified by the token Jyourself can be derived.**” Additionally the
BSD licenses distinguishes between different forms of distribution, esp. whether
the work is distributed as a (set of) source code file(s) or as a set of binary file(s).
Use the following tree to find the BSD license fulfilling to-do lists.

492) This might confuse some readers: Yes, even if you distribute a modified version in the form
of binaries you must fulfill this condition. Moreover, you must also hand the license over to
your receipient. But, nevertheless, you are not obliged to publish the modified source code,
too. (— OSLiC, p. 29)

493) of. Open Source Initiative: APL-2.0, 2004, wp. §4.4.

494) Following the OSI, there is another ‘ancient’ BSD license—containing a fourth clause known
as advertising clause—which “(...) officially was rescinded by the Director of the Office of
Technology Licensing of the University of California on July 22nd, 1999”. Because of that
cancellation you can simply act according the cf. Open Source Initiative: The BSD 3-Clause
License, 2012, wp. if you have to fulfill the oldest of the BSD licenses.

495) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

496) of. Open Source Initiative: The BSD 3-Clause License, 2012, wp.

497) For details of the open source use case tokens see p. 104. For details of the open source use
cases based on these token see p. 77

160

6 Open Source License Compliance: To-Do Lists

3-Clause
License

2-Clause
License

recipient:
4yourself

_

recipient:
2others

state: state:
unmodified modified
form: form: type:
source binary proapse snimoli
form: form: context: context:
source binary independent embedded
e /W (0) 0
form:
source
& l J J J J
BSD2-Cé6 BSD2-C7
BSD2-C1 BSD2-C2 BSD2-C3 BSD2-C4 BSD2-C5 BSD3-Cé6 BSD3-C7
BSD3-C1 BSD3-C2 BSD3-C3 BSD3-C4 BSD3-C5 dis-
using dis- dis- dis- dis- tributing
software tributing tributing tributing tributing modified
only for unmodified unmodified modified modified library
oug'self software software program program as inde-
¥ as sources as binaries as sources as binaries pendent
sources

6.4.1 BSD-3-Clause-C1: Using the software only for yourself

means that you received BSD licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L

and OSUC-09N*78

requires no tasks in order to fulfill the conditions of the New BSD (3 Clauses)

with respect to this use case:

e You are allowed to use any kind of BSD software in any sense and in
any context without any obligations as long as you do not give the

software to 3rd parties.

498) For details — OSLiC, pp. 112 — 124

161

6 Open Source License Compliance: To-Do Lists

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.*”.

6.4.2 BSD-3-Clause-C2: Passing the unmodified software as source code

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers
covers OSUC-02S, OSUC-05S, OSUC-07S°%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.3 BSD-3-Clause-C3: Passing the unmodified software as binary

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers
covers OSUC-02B, OSUC-05B, OSUC-07B"%!

499) which may be, for example, an internet service based on this BSD software used in your own
data center

500) For details — OSLiC, pp. 112 — 120

501) For details — OSLiC, pp. 113 — 121

162

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.”’”

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.4 BSD-3-Clause-C4: Passing a modified program as source code

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of source code files or as a source code
package.

covers
covers OSUC-04S°"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

502) For implementing the handover of files correctly — OSLiC, p. 127
503) For details — OSLiC, pp. 116

163

6 Open Source License Compliance: To-Do Lists

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.5 BSD-3-Clause-Cb5: Passing a modified program as binary

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of binary files or as a binary package.

covers
covers OSUC-04B°"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.®

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits . ..

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.6 BSD-3-Clause-C6: Passing a modified library as independent source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute

504) For details — OSLiC, pp. 116
505) For implementing the handover of files correctly — OSLiC, p. 127

164

6 Open Source License Compliance: To-Do Lists

this modified version to third parties in the form of source code files or as a
source code package, but without embedding it into another larger software
unit.

covers
covers OSUC-08S°"°
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.7 BSD-3-Clause-C7: Passing a modified library as independent binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package but without embedding it into another larger software unit.

covers
covers OSUC-08B*""
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.””®

506) For details — OSLiC, pp. 122
507) For details — OSLiC, pp. 123
508) For implementing the handover of files correctly — OSLIiC, p. 127

165

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.8 BSD-3-Clause-C8: Passing a modified library as embedded source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of source code files or as a source
code package together with another larger software unit which contains this
code snippet, module, library, or plugin as an embedded component.

covers
covers OSUC-10S""
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

e [voluntary:] Arrange your source code distribution so that the li-
censing elements (particularly, the BSD license text, the copyright
notice of the original author(s), and the BSD disclaimer) clearly refer
only to the embedded library and do not affect the licensing of your
own overarching work. It’s a good tradition to keep the embedded

509) For details — OSLiC, pp. 125

166

6 Open Source License Compliance: To-Do Lists

components like libraries, modules, snippets, or plugins in separate
directories, which also contains all their licensing elements.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.9 BSD-3-Clause-C9: Passing a modified library as embedded binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package together with another larger software unit which contains this code
snippet, module, library, or plugin as an embedded component.

covers
covers OSUC-10B*!"?
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.!!

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

e [voluntary:] Arrange your binary distribution so that the licensing
elements (particularly, the BSD license text, the copyright notice of the
original author(s), and the BSD disclaimer) clearly refer only to the
embedded library and do not affect the licensing of your own overarching

510) For details — OSLiC, pp. 126
511) For implementing the handover of files correctly — OSLiC, p. 127

167

6 Open Source License Compliance: To-Do Lists

work. It’s a good tradition to keep the embedded components like
libraries, modules, snippets, or plugins in separate directories, which
also contains all their licensing elements.

prohibits ...

e to use the name of the licensing organization or the names of the
licensing contributors to promote your own work.

6.4.10 BSD-2-Clause-C1: Using the software only for yourself

means that you received BSD licensed software, that you will use it only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N°!2

requires no tasks in order to fulfill the conditions of the Simplified BSD (2
Clauses) with respect to this use case:

e You are allowed to use any kind of BSD software in any sense and in
any context without any obligations as long as you do not give the
software to 3rd parties.

prohibits nothing explicitely.

6.4.11 BSD-2-Clause-C2: Passing the unmodified software as source code

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers
covers OSUC-02S, OSUC-05S, OSUC-07S°*?
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

512) For details — OSLiC, pp. 112 — 124
513) For details — OSLiC, pp. 112 — 120

168

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.12 BSD-2-Clause-C3: Passing the unmodified software as binary

means that you received BSD licensed software which you are now going to
distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers
covers OSUC-02B, OSUC-05B, OSUC-07B”!*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.®*®

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.13 BSD-2-Clause-C4: Passing a modified program as source code

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of source code files or as a source code
package.

covers
covers OSUC-04S°16

514) For details — OSLiC, pp. 113 — 121
515) For implementing the handover of files correctly — OSLiC, p. 127
516) For details — OSLiC, pp. 116

169

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you
are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits nothing explicitely.

6.4.14 BSD-2-Clause-C5: Passing a modified program as binary

means that you received a BSD licensed program, application, or server (proapse),
that you modified it, and that you are now going to distribute this modified
version to third parties in the form of binary files or as a binary package.

covers
covers OSUC-04B°'"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.”'®

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to
let the copyright message that is shown by the running program also
state that the program is licensed under the BSD license. Because you

517) For details — OSLiC, pp. 116
518) For implementing the handover of files correctly — OSLiC, p. 127

170

6 Open Source License Compliance: To-Do Lists

are already modifying the program you can also add such a hint if the
presented original copyright notice lacks such a statement.

prohibits nothing explicitely.

6.4.15 BSD-2-Clause-Cb6: Passing a modified library as independent source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package, but without embedding it into another larger software
unit.

covers
covers OSUC-08S°"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.16 BSD-2-Clause-C7: Passing a modified library as independent binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package but without embedding it into another larger software unit.

covers
covers OSUC-08B°%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form

519) For details — OSLiC, pp. 122
520) For details — OSLiC, pp. 123

171

6 Open Source License Compliance: To-Do Lists

you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.®?!

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

prohibits nothing explicitely.

6.4.17 BSD-2-Clause-C8: Passing a modified library as embedded source
code

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of source code files or as a source
code package together with another larger software unit which contains this
code snippet, module, library, or plugin as an embedded component.

covers
covers OSUC-10S°#
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
BSD license text, the specific copyright notice of the original author(s),
and the BSD disclaimer) are retained in your package in the form you
have received them.

e [voluntary:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

e [voluntary:] Arrange your source code distribution so that the li-
censing elements (particularly, the BSD license text, the copyright

521) For implementing the handover of files correctly — OSLiC, p. 127
522) For details — OSLiC, pp. 125

172

6 Open Source License Compliance: To-Do Lists

notice of the original author(s), and the BSD disclaimer) clearly refer
only to the embedded library and do not affect the licensing of your
own overarching work. It’s a good tradition to keep the embedded
components like libraries, modules, snippets, or plugins in separate
directories, which also contains all their licensing elements.

prohibits nothing explicitely.

6.4.18 BSD-2-Clause-C9: Passing a modified library as embedded binary

means that you received a BSD licensed code snippet, module, library, or plugin
(snimoli), that you modified it, and that you are now going to distribute this
modified version to third parties in the form of binary files or as a binary
package together with another larger software unit which contains this code
snippet, module, library, or plugin as an embedded component.

covers
covers OSUC-10B*#
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that your distribution contains the original
copyright notice, the BSD license, and the BSD disclaimer in the form
you have received them. If you build the binary package from the source
code package and if this does not automatically generate and integrate
the licensing files then create the copyright notice, the BSD conditions,
and the BSD disclaimer in the form found to the in the source code
package and insert these files into your distribution manually.?*

e [mandatory:] Let the documentation of your distribution or your
additional material also contain the original copyright notice, the BSD
conditions, and the BSD disclaimer.

e [voluntary:] It is a good practice of the open source community to let
the copyright message that is shown by the running program also state
that it contains components licensed under the BSD license. Because
you are embedding this snimoli into a larger software unit, you are
developing this larger unit. Hence, you can also expand the copyright
notice of this larger unit by such a hint to its BSD components.

e [voluntary:] Arrange your binary distribution so that the licensing
elements (particularly, the BSD license text, the copyright notice of the
original author(s), and the BSD disclaimer) clearly refer only to the

523) For details — OSLiC, pp. 126
524) For implementing the handover of files correctly — OSLiC, p. 127

173

6 Open Source License Compliance: To-Do Lists

embedded library and do not affect the licensing of your own overarching
work. It’s a good tradition to keep the embedded components like
libraries, modules, snippets, or plugins in separate directories, which
also contains all their licensing elements.

prohibits nothing explicitely.

6.4.19 Discussions and Explanations

The BSD 2-Clause license has a simple structure: In the beginning, it generally
“(permits) redistribution and use in source and binary forms, with or without mod-
ification, [...]”, if one fulfills the two rules of the license.”®® The first rule concerns
the (re)distribution in the form of source code, the second the (re)distribution of
binary packages. Here are some explanations why we translated the rules into
different sets of executable tasks:

e For the “redistribution of source code”, the license requires that the package
must “ [...] retain the above copyright notice, this list of conditions and
the following disclaimer.”?¢ Hence, you are not allowed to modify any
of the copyright notes which are already embedded in the (source) files.
And from a logical point of view, there must exist an explicit or implicit
assertion that the software is licensed under the BSD 2-Clause license®" .
This is often implemented by simply adding a copy of the license into the
package. Hence, you are furthermore not allowed to modify these files or
corresponding text snippets. For our purposes, we translated the bans into
the following executable task:

Ensure that the licensing elements (particularly the BSD license
text, the specific copyright notice of the original author(s), and
the BSD disclaimer) are retained in your package in the form you
have received them.

e For the redistribution in the form of binary files, the license requires, that
the licensing elements must be “[...] (reproduced) in the documentation
and/or other materials provided with the distribution.””*® Hence, this is

525) cf. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

526) ¢f. id., ibid.

527) The BSD license requires that a re-distributed software package must contain the (package
specific) copyright notice, the (license specific) conditions and the BSD disclaimer.cf. id.,
l.c., wp You might ask, what you should do, if these elements are missing in the package you
received. If so, the package you received had not been licensed adequately. Hence, you do
not know reliably whether you have received it under a BSD license. In other words: If you
have received a BSD licensed software package, it must contain sufficient license fulfilling
elements, or it is not BSD licensed software.

528) ¢f. id., l.c., wp.

174

6 Open Source License Compliance: To-Do Lists

not required as a necessary condition for the (re)distribution as source code
package. But nevertheless, even for a distribution in the form of source
code, it is often possible to fulfill this rule, too—e.g., if you offer your own
download site for source code packages. In such cases, it is a sign of respect
to mention the licensing not only inside the packages, but also in the text
of your site. Because of that, we added the following voluntary task for all
BSD open source use cases which deal with the redistribution in the form
of source code:

Let the documentation of your distribution or your additional
material also contain the original copyright notice, the BSD con-
ditions, and the BSD disclaimer.

e Naturally, because the reproduction of the licensing elements “in the docu-
mentation and/or other materials provided with the distribution” is explicitly
required for the “redistribution in binary form”,”* we had to rewrite the
facultative task for a distribution in the form of source code as a mandatory
task for all BSD open source use cases which deals with the redistribution

in binary form.

e In case of (re)distributing the program in the form of binary files, it is
sometimes not enough, to pass the licensing elements as one has received
them. If you compile the binary package from the source code, it is not
necessarily true, that the licensing elements are also automatically generated
and embedded into the ‘binary package.” But nevertheless, you have to add
the copyright notice, the conditions and the disclaimer to this package for
acting according to the BSD license. Therefore we chose the following form
of an executable, license fulfilling task for all binary distributions:

Ensure that your distribution contains the original copyright notice,
the BSD license, and the BSD disclaimer in the form you have
received them. If you build the binary package from the source
code package and if this does not automatically generate and
integrate the licensing files then create the copyright notice, the
BSD conditions, and the BSD disclaimer in the form found to
the in the source code package and insert these files into your
distribution manually.

e Finally, we wished to insert a hint to the general (open source) tradition
to mention the open source software used and their licenses as part of the
‘copyright widget’ of an application. This is not required by the BSD license.
But it is a general, good tradition. Naturally, because of the freedom to use
and modify open source software and to redistribute a modified version of

529) ¢f. Open Source Initiative: The BSD 2-Clause License, 2012, wp.

175

6 Open Source License Compliance: To-Do Lists

it, you are also allowed to insert such references, even if they are missing.
Therefore we added a third voluntary task to honor this tradition for all
relevant open source use cases.

6.5 CDDL licensed software [tbhd]

Also, [...]

Thus, for finding the relevant, simply processable task lists, also the following
CDDL specific open source use case structure®’ can be used:

recipient:
4yourself

-

recipient:
2others

state: state:
unmodified modified
form: form: type: type:
source | | binary proapse snimoli
form: form: context: context:
source binary independent embedded
e N e M) e 1 e)
fo rm: fO rm: fo rm: fO rm:
source | | binary source | | binary
. l) . L J & i J . ¢ J
CDDL-6 CDDL-7
CDDL-1 CDDL-2 CDDL-3 CDDL-4 CDDL-5 dis- dis- CDd?S_L'S CDd]i:;_L'g
. dis- dis- dis- dis- tributing tributing et T
using e . B o tributing tributing
software tributing tributing tributing tributing modified modified p—r e
only for unmodified unmodified modified modified library library library as library as
ourself software software program program as inde- as inde- b é/d d b é’d d
v as sources as binaries as sources as binaries pendent pendent e:zuemez el:?anieZ
sources binaries

6.5.1 CDDL-1: Using the software only for yourself

means that you are going to use a received CDDL licensed software only for
yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03, OSUC-06, and OSUC-0973!

530) For details of the general OSUC finder — OSLiC, pp. 104 and ??
531) For details — OSLiC, pp. 112 - ??

176

6 Open Source License Compliance: To-Do Lists

requires ...

prohibits ...

6.5.2 CDDL-2: Passing the unmodified software as source code

means that you are going to distribute an unmodified version of the received
CDDL software to 3rd parties - in the form of source code files or as a source
code package. In this case it is not discriminating to distribute a program,
an application, a server, a snippet, a module, a library, or a plugin as an
independent or an embedded unit

covers OSUC-02S, OSUC-05S, OSUC-075"%

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits ...

6.5.3 CDDL-3: Passing the unmodified software as binaries

means that you are going to distribute an unmodified version of the received
CDDL software to 3rd parties — in the form of binary files or as a binary
package. In this case it is not discriminating to distribute a program, an
application, a server, a snippet, a module, a library, or a plugin as an
independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B>**

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits ...

e ...
6.5.4 CDDL-4: Passing a modified program as source code
means that you are going to distribute a modified version of the received CDDL

licensed program, application, or server (proapse) to 3rd parties — in the
form of source code files or a source code package.

532) For details — OSLiC, pp. 112 - 120
533) For details — OSLiC, pp. 113 - 121

177

6 Open Source License Compliance: To-Do Lists

covers OSUC-045**

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits ...

6.5.5 CDDL-5: Passing a modified program as binary

means that you are going to distribute a modified version of the received CDDL
licensed program, application, or server (proapse) to 3rd parties — in the
form of binary files or as a binary package.

covers OSUC-04B"*

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits ...

6.5.6 CDDL-6: Passing a modified library as independent source code

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties —
in the form of source code files or as a source code package, but without
embedding it into another larger software unit.

covers OSUC-085%

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits . ..

6.5.7 CDDL-7: Passing a modified library as independent binary

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties —

534) For details — OSLiC, pp. 116
535) For details — OSLiC, pp. 116
536) For details — OSLiC, pp. 122

178

6 Open Source License Compliance: To-Do Lists

in the form of binary files or as a binary package but without embedding it
into another larger software unit.

covers OSUC-08B™"

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits . ..

6.5.8 CDDL-8: Passing a modified library as embedded source code

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin (snimoli) to 3rd parties
— in the form of source code files or as a source code package together
with another larger software unit which contains this code snippet, module,
library, or plugin as an embedded component.

covers OSUC-10S"**

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits . ..

6.5.9 CDDL-9: Passing a modified library as embedded binary

means that you are going to distribute a modified version of the received CDDL
licensed code snippet, module, library, or plugin to 3rd parties — in the
form of binary files or as a binary package together with another larger
software unit which contains this code snippet, module, library, or plugin as
an embedded component.

covers OSUC-10B"*

requires the following tasks in order to fulfill the license conditions:
o ...

prohibits ...

537) For details — OSLiC, pp. 123
538) For details — OSLiC, pp. 125
539) For details — OSLiC, pp. 126

179

6 Open Source License Compliance: To-Do Lists

6.5.10 Discussions and Explanations

The CDDL offers ... which contains nearly all requirements®’. Only for some

6.6 EPL-1.0 licensed software

The Eclipse Public License clearly distinguishes the distribution in the form of
source code from that in the form of binaries: First, it allows to “distribute”
Eclipse licensed programs “in source code and in object code”.?*! Then it specifies
under which conditions one may distribute the program as a set of binaries.”*> One
of these conditions is—roughly speaking—that the distributor makes the sources
available too.”** More precisely, the EPL-1.0 has to be taken as a license with
weak copyleft (— OSLiC, p. 31). The other conditions refer to the distribution in
general—no matter what form or state is used.”** So, taken as whole, the EPL-1.0
mainly focusses on the distribution of software. Thus, for finding the relevant,
easy to process task lists, the following EPL-1.0 specific open source use case

structure®® can be used:

540) ¢f. Open Source Initiative: The CDDL-1.0, 2004, wp. §3.

541) ¢f. Open Source Initiative: EPL-1.0, 2005, wp §3.

542) ¢f. id., l.c., wp §3 top area.

543) ¢f. id., l.c., wp §3 mid area.

544) ¢f. id., l.c., wp §3 bottom area.

545) For details of the general OSUC finder — OSLiC, pp. 104 and ??

180

6 Open Source License Compliance: To-Do Lists

recipient:

recipient:
4yourself

2others

R
state: state:
unmodified modified
form: form: type: type:
source | | binary proapse snimoli
form: form: context: context:
source binary independent embedded
e 1 e M) e N e)
fo rm: fO rm: fo rm: fO rm:
source | | binary source | | binary
& l J ¢ J i J ¢ J
EPL- EPL-
EPL- EPL- EPL- EPL- 1.0-C6 1.0-C7 o R
EPL-1.0- 1.0-C2 1.0-C3 1.0-C4 1.0-C5 dis- dis- " o
C1 using dis- dis- dis- dis- tributing tributing ¢ 'bzi_' p 'blst-'
software tributing tributing tributing tributing modified modified ” :{lf;ng T ;ﬁlng
only for unmodified unmodified modified modified library library ZTZO e lr.zo e
yourself software software program program as inde- as inde- v T;?da; g 'r‘ba'r;iyda;
as sources as binaries as sources as binaries pendent pendent emoeaac eb"f caae
sources binaries sources mnartes

6.6.1 EPL-1.0-C1: Using the software only for yourself

means that you received EPL-1.0 licensed software, that you will use it only for
yourself, and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N>¢

requires no tasks in order to fulfill the conditions of the Eclipse Public License
1.0 with respect to this use case:

e You are allowed to use any kind of EPL-1.0 software in any sense and

in any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . ..

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

546) For details — OSLiC, pp. 112 — 124

181

6 Open Source License Compliance: To-Do Lists

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.2 EPL-1.0-C2: Passing the unmodified software as source code

means that you received EPL-1.0 licensed software which you are now going to
distribute to third parties in the form of unmodified source code files or
as unmodified source code package. In this case it makes no difference if
you distribute a program, an application, a server, a snippet, a module, a
library, or a plugin as an independent or as an embedded unit.

covers OSUC-02S, OSUC-05S, OSUC-07S>*"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

e [mandatory:] Give the recipient a copy of the EPL-1.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.?*®

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits ...

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

547) For details — OSLiC, pp. 112 — 120
548) For implementing the handover of files correctly — OSLiC, p. 127

182

6 Open Source License Compliance: To-Do Lists

6.6.3 EPL-1.0-C3: Passing the unmodified software as binaries

means that you received EPL-1.0 licensed software which you are now going
to distribute to third parties in the form of unmodified binary files or as
unmodified binary package. In this case it does not matter if you distribute
a program, an application, a server, a snippet, a module, a library, or a
plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B, OSUC-07B**
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

e [mandatory:] Make the source code of the software accessible through
a repository under your own control, even if you did not modify it:
Push the source code package into an internet repository and enable
the download function. Ensure that this respository is available for a
reasonable period of time.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material and explain how the
code can be obtained.

e [mandatory:] Execute the to-do list of use case EPL-1.0-C2 for the
source code that you publish.”"

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . ..

549) For details — OSLiC, pp. 113 — 121
550) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

183

6 Open Source License Compliance: To-Do Lists

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.4 EPL-1.0-C4: Passing a modified program as source code

means that you received an EPL-1.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S!
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

e [mandatory:| Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:| Give the recipient a copy of the EPL-1.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.”?

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of

551) For details — OSLiC, pp. 116
552) For implementing the handover of files correctly — OSLiC, p. 127

184

6 Open Source License Compliance: To-Do Lists

liability from the EPL-1.0 itself into that file. Update an existing
copyright screen presented by the program so that it shows the same
information.

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . ..

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.5 EPL-1.0-C5: Passing a modified program as binary

means that you received an EPL-1.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B>
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

e [mandatory:| Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors

553) For details — OSLiC, pp. 116

185

6 Open Source License Compliance: To-Do Lists

to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file. Update an existing
copyright screen presented by the program so that it shows the same
information.

e [mandatory:] Make the source code of the program accessible through
a repository under your own control: Push the source code package
into an internet repository and enable the download function. Ensure
that this respository is available for a reasonable period of time.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material and explain how the
code can be obtained.

e [mandatory:] Execute the to-do list of use case EPL-1.0-C4 for the
source code that you publish.”?*

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.6 EPL-1.0-C6: Passing a modified library as independent source code

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085°%?

requires the following tasks in order to fulfill the license conditions:

554) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.
555) For details — OSLiC, pp. 122

186

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

e [mandatory:| Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:] Give the recipient a copy of the EPL-1.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.>*¢

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . ..

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

556) For implementing the handover of files correctly — OSLiC, p. 127

187

6 Open Source License Compliance: To-Do Lists

6.6.7 EPL-1.0-C7: Passing a modified library as independent binary

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B”"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

e [mandatory:| Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of the
software. Then, copy the no-warranty clause and the disclaimer of
liability from the EPL-1.0 itself into that file.

e [mandatory:] Make the source code of the modified library accessible
through a repository under your own control: Push the source code
package into an internet repository and enable the download function.
Ensure that this respository is available for a reasonable period of time.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material and explain how the
code can be obtained.

e [mandatory:] Execute the to-do list of use case EPL-1.0-C6 for the
source code that you publish.?®

557) For details — OSLiC, pp. 123
558) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

188

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license.

prohibits . ..

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.8 EPL-1.0-C8: Passing a modified library as embedded source code

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them.

e [mandatory:| Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:| Give the recipient a copy of the EPL-1.0 license. If it
is not already part of the software package, add it. If the licensing
statement in the licensing file of the package does still not clearly state
that the package is licensed under the EPL-1.0, additionally insert your
own correct EPL-1.0 licensing file.”®

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed source code

559) For details — OSLiC, pp. 125
560) For implementing the handover of files correctly — OSLiC, p. 127

189

6 Open Source License Compliance: To-Do Lists

package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of
the software. Then, copy the no-warranty clause and the disclaimer
of liability from the EPL-1.0 itself into that file. Let the copyright
screen of your own overarching program show the same information as
a specification for the embedded component.

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EPL-1.0 adequate licensing the statement.

e [voluntary:] Arrange your source code distribution so that the inte-
grated EPL-1.0 and the licensing files clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the embedded components like libraries,
modules, snippets, or plugins in separate directories which also contains
all additional licensing elements.

e [voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.9 EPL-1.0-C9: Passing a modified library as embedded binary

means that you received an EPL-1.0 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B*%!

requires the following tasks in order to fulfill the license conditions:

561) For details — OSLiC, pp. 126

190

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Ensure that the licensing elements (particularly all
copyright notices and the disclaimer of warranty and disclaimer of
liability) are retained in your package in exactly the form you have
received them. If you compile the binary from the sources, ensure that
all these licensing elements are also incorporated into the package.

e [mandatory:] Create a modification text file if such a file does not exist.
Add a general description of your modifications to the modification text
file. Incorporate it into your distribution package.

e [mandatory:] Mark all modifications of the source code of the program
thoroughly; namely within the modified source code.

e [mandatory:| If still not existing, integrate an explicit, very promi-
nently placed ‘No warranty’ statement into the distributed binary
package. Let this statement clearly say that all (other) contributors
to the software do not accept any responsibility for the quality of
the software. Then, copy the no-warranty clause and the disclaimer
of liability from the EPL-1.0 itself into that file. Let the copyright
screen of your own overarching program show the same information as
a specification for the embedded component.

e [mandatory:] Make the source code of the embedded library accessible
through a repository under your own control: Push the source code
package into an internet repository and enable the download function.
Ensure that this respository is available for a reasonable period of time.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material and explain how the
code can be obtained.

e [mandatory:] Organize your modifications in a way that they are
covered by the existing EPL-1.0 licensing statements.

e [mandatory:] Execute the to-do list of use case EPL-1.0-C8 for the
source code that you publish.?%?

e [voluntary:] Arrange your binary distribution so that the integrated
EPL-1.0 and the licensing files clearly refer only to the embedded
library and do not disturb the licensing of your own overarching work.
It’s a good tradition to keep the embedded components like libraries,
modules, snippets, or plugins in separate directories which also contains
all additional licensing elements.

[voluntary:] Let the documentation of your distribution or your
additional material reproduce the content of an existing copyright

562) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

191

6 Open Source License Compliance: To-Do Lists

notice text files, a hint to the software name, a link to its homepage,
and a link to the EPL-1.0 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to remove or to alter any copyright notices that were contained in the
software package when you received it.

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.6.10 Discussions and Explanations

The EPL-1.0 contains a succinct section “Requirements” % complemented by some
definitions concerning a “Commercial Distribution”°%*: First, it describes what a
distributor must do for correctly distributing an Eclipse licensed program as a set
of binaries. Then, it explains, what must be done to comply with the license when
distributing the software as source code. Finally, it lists two conditions which
must be fulfilled in any case.”® With respect to this structure, we can discover
the following tasks:

e The EPL-1.0 generally requires that “Contributors may not remove or alter
any copyright notices contained within the Program”°%® where the word
‘Contributor’ has to be read as “any person or entity that distributes the
Program”, and the word ‘Program’ denotes the “initial contribution” and
all its modifications.”®” Similar to the EUPL and at least in a very strict
reading, the EPL-1.0 does not limit these requirements to the distribution
of the software (2others). But in practice it will be difficult to control the
compliant use of the software in those cases where one uses the software only
for oneself. But opposite to, for example, the EUPL, the EPL-1.0 clearly
contains this interdiction. The OSLiC solves this practical inconsistence
duplicating the message: On the one hand, it rewrites the negative condition
as a mandatory positive assertion for the 2others use cases (EPL-1.0-C2 —
EPL-1.0-C9). This should emphasize the activity to retain the copyright
notes in exact the form one has received them. On the other hand, the
OSLiC inserts the corresponding interdiction into the ‘prohibits’ section of
the 4yourself use cases (EPL-1.0-C1 — EPL-1.0-C9).

563) cf. Open Source Initiative: EPL-1.0, 2005, wp §3.
564) ¢f. id., l.c., wp §4.

565) ¢f. id., l.c., wp §3.

566) ¢f. id., ibid.

567) ¢f. id., l.c., wp §1.

192

6 Open Source License Compliance: To-Do Lists

e Furthermore, the EPL-1.0 requires that “each Contributor must identify itself
as the originator of its Contributions [...] in a manner that reasonably allows
subsequent Recipients to identify the originator of the Contribution”,”%® In
this case, ‘Contribution’ has to be read as the “initial code and documention’
together with all subsequent modifications of these parts.”® To fulfill this
condition faithfully, a developer must mark and describe his modifications of
the source code within this source code; and the distributor must describe
these modifications on the more general level of software features in a file
sometimes called CHANGES. At a first glance, the requirement to document
the source code modifications within the source code seems to be restricted to
the use cases which concern the distribution of a modified EPL-1.0 software
in the form of source code. But the EPL-1.0 allows the distribution in the
form of binaries only if the distributor also states where one can obtain the
correspoding code.”™ So, distributing the binaries implies the distribution
of the source code. Therefore the OSLiC inserts the two requirements as
mandatory clauses into all the use cases concerning the distribution of a
modified EPL-1.0 software (EPL-1.0-C4 — EPL-1.0-C9).

)

e For all distributions in the form of source code the EPL-1.0 requires that the
software “[...] must be made available under this (Eclipse Public License
1.0) Agreement” and that “[...] a copy of this Agreement must be included
with each copy of the Program.”””" Thus, the OSLiC inserts a respective
mandatory clause into the use cases (EPL-1.0-C4, EPL-1.0-C6, EPL-1.0-
C8). But the EPL-1.0 is a license with a weak copyleft®™. Therefore, this
conditions does not cover the overarching program which uses the embedded
library (EPL-1.0-C8).

e Additionally, the EPL-1.0 allows to distribute the software in the form
of binaries if the distributor “[...] effectively disclaims on behalf of all
Contributors all warranties and conditions |[...] (and) effectively excludes
on behalf of all Contributors all liability for damages |...]” in the broadest
sense.”™ This limitation of liability is very important to the EPL-1.0. Thus,
it further specifies and explains this aspect once more in another section
titled “Commercial Distribution”. There, this aspect is no longer focussed
only on a distribution in the form of binaries.”™ So the OSLiC inserts a
mandatory clause into all use cases concerning the distribution that the

568) of. Open Source Initiative: EPL-1.0, 2005, wp §3.
569) ¢f. id., l.c., wp §1.

570) ¢f. id., l.c., wp §3.

571) ¢f. id., ibid.

572) (= OSLiC, p. 31)

573) ¢f. id., ibid.

574) ¢f . id., l.c., wp §4.

193

6 Open Source License Compliance: To-Do Lists

paragraph of “No Warranty”®” and the “Disclaimer of Liability”°"® of the
EPL-1.0 must explicitly be present in the documentation of distribution
package and—if technically possible—presented by the copyright screen.

e Aside from that, the EPL-1.0 allows the distribution of the software in
the form of binaries only if the distributor clearly “[...] states that the
source code for the program is available from such Contributor (distributor)
[...]” and if he additionally “[...] informs licensees how to obtain it in a
reasonable manner [...]"°"" This requirement can only be fulfilled seriously
if the distributor himself offers the source code via a repository. It is not
sufficient to point to any external download repository in the world wide
web. Thus,—for all use cases concerning the distribution in the form of
binaries—the OSLiC follows the respective requirement introduced by the
EPL-1.0 (EPL-1.0-C3, EPL-1.0-C5, EPL-1.0-C7, EPL-1.0-C9).

e Moreover, one has clearly to state that the previous rule implies a real source
code distribution which therefore must follow the rules of distributing the
software. Thus, the OSLiC requires in all cases of a binary distribution to
execute also the task-lists of the respective source code use cases.

e Finally, the EPL-1.0 contains a patent clause stating that “if any recipient

institutes patent litigation against any entity [...] alleging that the Program
itself [...] infringes such Recipient’s patent(s), then such Recipient’s rights
granted [...by the EPL-1.0] shall terminate [...]"°". Based on this fact,

the OSLiC generally (EPL-1.0-C1 — EPL-1.0-C9) interdicts to legally fight
against patents linked to the software.

6.7 EUPL-1.1 licensed software

The European Union Public License explicitly distinguishes the distribution of
the source code from that of the binaries: In the chapter “Communication of the
Source Code,” it allows to “provide the Work either in its Source Code form, or as
Executable Code.””™ But if a piece of EUPL-1.1 licensed software is distributed
as binary package, then the license additionally requires that the distributor
either “[...] provides a machine-readable copy of the Source Code [...]" directly
together with the binaries®®® or that he “[...] indicates [...] a repository where
the Source Code is easily and freely accessible for as long as the Licensor continues

575) ¢f. Open Source Initiative: EPL-1.0, 2005, wp §5.

576) ¢f. id., l.c., wp §6.

577) ¢f. id., l.c., wp §3.

578) ¢f. id., l.c., wp §7.

579) ¢f. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §3.
580) ¢f id., l.c., wp §5.

194

6 Open Source License Compliance: To-Do Lists

to distribute [...] the Work.”*®! For respecting this conditions it is irrelevant
whether the software has been modified or not and all the other “obligations of
the licensee” refer to both forms.”*?

There is a particular aspect which has to be considered for acting in accordance
to the EUPL-1.1: Taken literally, the EUPL is a license with a weak copyleft, no
doubt. But this happens only a result of the fact that the EUPL-1.1 allows the
licensee to relicense the software by following the conditions of the “Compatibility
clause””®® and an license listed in an appendix, which also includes some licenses
with a weak copyleft.’®* But, with respect to question how to fulfill the license best,
it is safer to treat the EUPL-1.1 as a license with a strong copyleft. Concerning the
use of an unmodified or a modified library as an embedded component, a license
with a strong copyleft implies that the application which is using the (un)modified
library has also to be licensed under the same conditions as the library itself.
Thus, to find a simple to process task lists, use the following EUPL-1.1 specific
open source use case structure:*®

581) of. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §3.

582) ¢f id., l.c., wp §5.

583) ¢f. id., ibid.

584) (— OSLIiC, p. 33)

585) For details of the general OSUC finder — OSLiC, pp. 104 and ??

195

6 Open Source License Compliance: To-Do Lists

recipient:
2others

recipient:

4yourself

state:
modified

state:
unmodified

type:
type: type:
proa.pse o snimoli proapse
or snimoli

RN S — —

context: context: context: context: context:
independent embedded independent independent embedded
e N ([N (N (0
form: form: form: form: form: form: form: form: form: form:
source binary source binary source binary source binary source binary
l] ¢ N S S S S l
ity bty EUPL- EUPL- || EUPL- || EUPL- || PURI || BUPL | gupr EUPL-
EUPL- o o 1.1-C4 1.1-C5 1.1-Cé 1.1-C7 o o 1.1-CA 1.1-CB
dis- dis- dis- dis- .)
Sl (o tributin, tributin, dis diis di G- tributin, tributin, A= d-
using unmodiﬁid unmodiﬁged tributing tributing tributing tributing modiﬁeg modiﬁej tributing tributing
software unmodified unmodified modified modified . . modified modified
software software . . library library X .
only for as inde- as inde- library as library as program program as inde- as inde- library as library as
yourself endent endent embedded embedded as as endent endent embedded embedded
p pe § sources binaries sources binaries p pe . sources binaries
sources binaries sources binaries

6.7.1 EUPL-1.1-C1: Using the software only for yourself

means that you received EUPL-1.1 licensed software, that you will use it only
for yourself and that you do not hand it over to any 3rd party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L,
and OSUC-09N°%6

requires no tasks in order to fulfill the conditions of the European Union Public
License 1.1 with respect to this use case:

e You are allowed to use any kind of EUPL-1.1 software in any sense
and in any context without being obliged to do anything as long as
you do not give the software to third parties.

prohibits

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this

586) For details — OSLiC, pp. 112 - 124

196

6 Open Source License Compliance: To-Do Lists

EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.2 EUPL-1.1-C2: Passing the unmodified software as independent
sources

means that you received EUPL-1.1 licensed software which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as unmodified source code package. In this
case it makes no difference if you distribute a program, an application, a
server, a snippet, a module, a library, or a plugin as an independent or as
an embedded unit.

covers OSUC-02S, OSUC-055"%"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

e [mandatory:| Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.?*®

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.3 EUPL-1.1-C3: Passing the unmodified software as independent
binaries

means that you received EUPL-1.1 licensed software which you are now going
to distribute to third parties as an independent unit and in the form of

587) For details — OSLiC, pp. 112 - 117
588) For implementing the handover of files correctly — OSLiC, p. 127

197

6 Open Source License Compliance: To-Do Lists

unmodified binary files or as unmodified binary package. In this case it does
not matter if you distribute a program, an application, a server, a snippet,
a module, a library, or a plugin as an independent or an embedded unit.

covers OSUC-02B, OSUC-05B"%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.°"

e [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material.

e [mandatory:] Execute the to-do list of use case EUPL-1.1-C2 for the
source code that you publish.”"!

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

589) For details — OSLiC, pp. 113 - 118

590) For implementing the handover of files correctly — OSLiC, p. 127

591) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

198

6 Open Source License Compliance: To-Do Lists

6.7.4 EUPL-1.1-C4: Passing the unmodified library as embedded sources

means that you received a EUPL-1.1 licensed snippet, module or library which
you are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified source code files or as unmodified
source code package.

covers OSUC-075°%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.”

e [mandatory:| License your program, which includes the library, also
under the EUPL-1.1. Arrange the sources of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

e [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.5 EUPL-1.1-C5: Passing the unmodified library as embedded binaries

means that you received a EUPL-1.1 licensed snippet, module or library which
you are now going to distribute to third parties as an embedded component

592) For details — OSLiC, pp. 120
593) For implementing the handover of files correctly — OSLiC, p. 127

199

6 Open Source License Compliance: To-Do Lists

of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.?%

e [mandatory:] Make the source code of the embedded library and
your overarching program accessible via a repository under your own
control (even if you did not modify it): Push the source code package
into a repository, make it downloadable via the internet, and include
an easy to find description in the distribution package, which explains
how and where the code can be received. Ensure, that this repository
is online for as long as you continue to distribute the software.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material.

e [mandatory:| License your program, which includes the library, also
under the EUPL-1.1. Arrange the binaries of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

e [mandatory:] Execute the to-do list of use case EUPL-1.1-C4 for the
source code that you publish.?”

e [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

594) For details — OSLiC, pp. 121

595) For implementing the handover of files correctly — OSLiC, p. 127

596) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

200

6 Open Source License Compliance: To-Do Lists

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.6 EUPL-1.1-C6: Passing a modified program as source code

means that you received a EUPL-1.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-045"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.?%®

e [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

e [mandatory:] Mark all modifications of source code of the pro-
gram thoroughly within the source code and include the date of the
modification.

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

597) For details — OSLiC, pp. 116
598) For implementing the handover of files correctly — OSLiC, p. 127

201

6 Open Source License Compliance: To-Do Lists

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.7 EUPL-1.1-C7: Passing a modified program as binary

means that you received a EUPL-1.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of binary files or as a
binary package.

covers OSUC-04B>
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it."

e [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

e [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material.

599) For details — OSLiC, pp. 116
600) For implementing the handover of files correctly — OSLiC, p. 127

202

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Execute the to-do list of use case EUPL-1.1-C6 for the
source code that you publish.®"!

e [voluntary:] Mark all modifications of source code of the program
thoroughly within the source code and include the date of the modifi-
cation.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.8 EUPL-1.1-C8: Passing a modified library as independent source code

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085°"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

e [mandatory:| Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.%*

e [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

601) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

602) For details — OSLiC, pp. 122

603) For implementing the handover of files correctly — OSLiC, p. 127

203

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Mark all modifications of source code of the library
thoroughly within the source code and include the date of the modifi-
cation.

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.9 EUPL-1.1-C9: Passing a modified library as independent binary

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B%*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them. If you compile the binary from
the sources, ensure that all the licensing elements are also incorporated
into the package.

e [mandatory:] Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.%%

604) For details — OSLiC, pp. 123
605) For implementing the handover of files correctly — OSLiC, p. 127

204

6 Open Source License Compliance: To-Do Lists

[mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

e [mandatory:] Make the source code of the distributed software ac-
cessible via a repository under your own control (even if you did not
modify it): Push the source code package into a repository, make it
downloadable via the internet, and include an easy to find description
in the distribution package, which explains how and where the code
can be received. Ensure, that this repository is online for as long as
you continue to distribute the software.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material.

e [mandatory:] Execute the to-do list of use case EUPL-1.1-C8 for the
source code that you publish.%°

e [voluntary:] Mark all modifications of source code of the library thor-
oughly within the source code and include the date of the modification.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright

notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.10 EUPL-1.1-CA: Passing a modified library as embedded source code

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

606) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

205

6 Open Source License Compliance: To-Do Lists

covers OSUC-10S°"7
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer
to the license or to the disclaimer of warranties) are retained in your
package in the form you have received them.

e [mandatory:| Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.%%®

e [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements. If you add new
source code files, insert a header containing your copyright line and an
EUPL-1.1 adequate licensing the statement.

e [mandatory:| License your program, which includes the library, also
under the EUPL-1.1. Arrange the sources of the on-top development in
a way that they are also covered by the EUPL-1.1 licensing statements.

e [mandatory:] Mark all modifications of source code of the embedded
library thoroughly within the source code and include the date of the
modification.

e [voluntary:] Let the copyright dialog of the on-top development
clearly say, that it uses the EUPL-1.1 licensed library and that it is
itself licensed under the EUPL-1.1, too.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

607) For details — OSLiC, pp. 125
608) For implementing the handover of files correctly — OSLIC, p. 127

206

6 Open Source License Compliance: To-Do Lists

6.7.11 EUPL-1.1-CB: Passing a modified library as embedded binary

means that you received a EUPL-1.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B%%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (particularly the
copyright, patent, and trademark notices and all notices that refer to the
license or to the disclaimer of warranties) are retained in your package
in the form you have received them.If you compile the binary from the
sources, ensure that all the licensing elements are also incorporated
into the package.

e [mandatory:| Give the recipient a copy of the EUPL-1.1 license. If it
is not already part of the software package, add it.%"

e [mandatory:] Create a modification text file, if such a file still does
not exist. Add a description of your modifications to the modification
text file.

e [mandatory:] Make the source code of the embedded library and
your overarching program accessible via a repository under your own
control (even if you did not modify it): Push the source code package
into a repository, make it downloadable via the internet, and include
an easy to find description in the distribution package, which explains
how and where the code can be received. Ensure, that this repository
is online for as long as you continue to distribute the software.

e [mandatory:] Insert a prominent hint to the download repository
into your distribution or your additional material.

e [mandatory:| Execute the to-do list of use case EUPL-1.1-CA for the
source code that you publish.6!!

e [mandatory:] Arrange your modifications in a way that they are
covered by the existing EUPL-1.1 licensing statements.

e [mandatory:| License your program, which includes the library, also
under the EUPL-1.1. Arrange the binaries of the on-top development in

609) For details — OSLiC, pp. 126

610) For implementing the handover of files correctly — OSLiC, p. 127

611) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

207

6 Open Source License Compliance: To-Do Lists

a way that they are also covered by the EUPL-1.1 licensing statements.

e [voluntary:] Mark all modifications of source code of the embedded
library thoroughly within the source code and include the date of the
modification.

e [voluntary:] Let the documentation of your distribution or your
additional material also reproduce the content of the existing copyright
notice text files, a hint to the software name, a link to its homepage,
and a link to the EUPL-1.1 license, preferably as a subsection of your
own copyright notice.

prohibits ...

e to promote any of your services or products based on the this software
by trade names, trademarks, service marks, or names linked to this
EUPL-1.1 software, except as required for reasonable and customary use
in describing the origin of the software and reproducing the copyright
notice.

6.7.12 Discussions and Explanations

e The EUPL-1.1 generally “[...] does not grant permission to use the trade
names, trademarks, service marks, or names of the Licensor, except as
required for reasonable and customary use in describing the origin of the
Work and reproducing the content of the copyright notice.”%'? Therefore,
the OSLiC genreally interdicts (EUPL-1.1-C1 — EUPL-1.1-CB) to promote
any service or product based on this software by such elements.

e The EUPL-1.1 generally requires that “[...] the Licensee shall keep intact
all copyright, patent or trademarks notices and all notices that refer to the
Licence and to the disclaimer of warranties.”®'® In a very strict reading, the
EUPL-1.1 does not limit this requirement to the distribution of the software.
But in practise, it will be impossible to control the compliant use of the
software in those cases (4yourself) unless you also start to distribute the
software. Therefore the OSLiC only inserts this requirement as a mandatory
clause only for the 2others use cases (EUPL-1.1-C2 — EUPL-1.1-CB).

e The EUPL-1.1 also requires to “[...] include [...] a copy of the (EUPL-
1.1) Licence with every (distributed) copy of the Work”.®!* Therefore, all
2others use cases contain the respective mandatory condition (EUPL-1.1-C2
~ EUPL-1.1-CB).

612) of. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §5.
613) of id., ibid.
614) ¢f. id., ibid.

208

6 Open Source License Compliance: To-Do Lists

e Additionally, the EUPL-1.1 requires that the “licensee” who distributes a
modified work “[...] must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modi-
fication.”%"® Thus, the OSLiC integrates the mandatory requirement to
generate (update) a respective notice file into all ‘modification’ use cases

and recommends to mark all modifications in the source code (EUPL-1.1-C6
- EUPL-1.1-CB).

e Furthermore, the EUPL-1.1 requires that any distributor of the software
“[...] provide a machine-readable copy of the Source Code [...]" by “[...]
(indicating) a repository where this Source will be easily and freely available
for as long as the Licensee continues to distribute [...] the Work.”%'0
Therefore the OSLiC inserts a respective requirement into the task list of
all cases concerning a binary distribution (EUPL-1.1-C3, EUPL-1.1-C7,
EUPL-1.1-C9, and EUPL-1.1-CB)

e Finally, the EUPL-1.1 contains a “copyleft clause” stating that if a “[...]
Licensee distributes |[...] copies of the Original Works or Derivative Works
based upon the Original Work, this Distribution [...] will be done under the
terms of this (EUPL-1.1) Licence [...]|”. In all the use cases which do not
concern the use of an embedded component (EUPL-1.1-C2 — EUPL-1.1-C9)
this copyleft clause is already fulfilled by either distributing the modified
sources themselves or by making them accessible via a repository. In those
cases where the licensee distributes an program that uses an embedded
EUPL-1.1 licensed component (EUPL-1.1-CA — EUPL-1.1-CB), in general,
the code of the embedding program must also be distributed. Thus, with
respect to the use case (EUPL-1.1-CA) this is already fulfilled by definition.
Therefore, the OSLiC only mentions this default view in the case EUPL-
1.1-CB implying a strong copyleft effect.5"

6.8 GPL licensed software

Both versions of the GNU General Public License explicitly distinguish the
distribution of the source code from that of the binaries: On the one hand,

615) of. Open Source Initiative: EUPL-1.1 (OSI), 2007, wp §5.

616) cf European Community a. European commission Joinup: EUPL-1.1/EN;, 2007, wp. §5. To
be precise, the EUPL-1.1 also allows to directly distribute the source code together with the
binary packages (cf. id., l.c., wp. §3). With respect to the OSLiC principle to offer only one
reliable way, the OSLiC simplifies this option: It ‘only’ asks for the repository solution.

617) Formally, the EUPL-1.1 is only a license with weak copyleft. But this is only a result of
allowing to relicense the software (— OSLiC, p. 33). So, as long as you do not relicense
the embedded library with respect to the list of “compatible licenses according to article 5
EUPL-1.1" (cf. id., l.c., wp §5 and Appendix), you also have to publish the code of your
overarching work.

209

6 Open Source License Compliance: To-Do Lists
the GPL-2.0 mainly talks about copying and distributing the source code,®'®
but also mentions the specific conditions for “[...] (copying) and (distributing)
the Program [...] in object code or executable form [...]”%Y On the other
hand, the GPL-3.0 describes the “Basic Permissions” and the conditions for
“Conveying Verbatim Copies” or for “Conveying Modified Source Versions” %

before it explains the rules for “Conveying Non-Source-Forms”.%%!

GPL-2.0 and GPL-3.0 mainly talk about copying and distributing the software;
private use is nearly completely unspecified: The GPL-2.0 lists its ‘restrictions’
only with respect to the act of copying and distributing “copies of the program” %>
while the GPL-3.0 explicitly specifies that one “[...] may make, run and propagate
covered works that (one does) not convey, without conditions so long as (the)
license otherwise remains in force.” %%

As licenses with a strong copyleft, they require that any application that contains
a GPL-licensed library must itself be licensed under the same conditions as the
library.

Finally, the GPL-2.0 and the GPL-3.0 aim for the same results and share the
same spirit by requiring nearly the same task to be performed for fulfilling the
license conditions. Therefore it is appropriate to cover both versions in the same
chapter and to offer a common specialized GPL open source use case structure
for quickly finding the appropriate task list.®”* However, the task lists themselves
will be kept separate.

In the following diagram, GPL-*-C1 (GPL-*-C2, ..., GPL-*-CB) is either GPL-
2.0-C1 (and so forth), if you are looking for the GPL-2.0 use case, or GPL-3.0-C1,
... for the GPL-3.0 use case.

618) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1, §2.
619) ¢f. id., l.c., wp §3.

620) ¢f. id., l.c., wp §2, §4, §5.

621) of id., ibid.

622) ¢f. id., l.c., wp §1, §2, §4 et passim; emphasize by KR.

623) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §2.
624) For details of the general OSUC finder — OSLiC, pp. 104 and ??

210

recipient:
4yourself

6 Open Source License Compliance: To-Do Lists

unmodified

state:

recipient:
2others

N
type: 5
type: type:
05’:::2]52“ snimoli proapse
I — e S S
context: context: context: context: context:
independent embedded independent independent embedded
(N ((
form: form: form: form: form: form: form: form: form: form:
source binary source binary source binary source binary source binary
]]] I ! 1 l]
S S GPL- GPL- GPL- GPL- e St GPL- GPL-
GPL-)) *-C4 *-C5 *-Cé *-C7 ;) *-CA *-.CB
* dis- dis- X X X) dis- dis- N X
=il tributin, tributin, @ di - g tributin, tributin, G- G-
using unmodiﬁgd unmodiﬁgd tributing tributing tributing tributing modiﬁeg modiﬁeg tributing tributing
software unmodified unmodified modified modified . p modified modified
software software . . library library X X
only for . B library as library as program program . . library as library as
as inde- as inde- as inde- as inde-
yourself embedded embedded as as embedded embedded
pendent pendent . X . . pendent pendent . .
) . sources binaries sources binaries) . sources binaries
sources binaries sources binaries

6.8.1 GPL-2.0-C1: Using the software only for yourself

means that you received GPL-2.0 licensed software, that you will use it only for
yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L

and OSUC-09N%2°

requires no tasks in order to fulfill the conditions of the General Public License

Version 2 with respect to this use case:

e You are allowed to use any kind of GPL-2.0software in any sense and
in any context without being obliged to do anything as long as you do

not give the software to third parties.

625) For details — OSLiC, pp. 112 — 124

211

6 Open Source License Compliance: To-Do Lists

prohibits nothing explicitely.

6.8.2 GPL-2.0-C2: Passing the unmodified software as independent
sources

means that you received GPL-2.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-055%26
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%*"

e [mandatory:] Retain all existing copyright notices.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.3 GPL-2.0-C3: Passing the unmodified software as independent
binaries

means that you received GPL-2.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of

626) For details — OSLiC, pp. 112 — 117
627) For implementing the handover of files correctly — OSLiC, p. 127

212

6 Open Source License Compliance: To-Do Lists

unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B%%®
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%*’

e [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Execute the to-do list of use case GPL-2.0-C2 for the
source code that you publish.%*

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

628) For details — OSLiC, pp. 113 — 118

629) For implementing the handover of files correctly — OSLiC, p. 127

630) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

213

6 Open Source License Compliance: To-Do Lists

6.8.4 GPL-2.0-C4: Passing the unmodified library as embedded sources

means that you received a GPL-2.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-075%!
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.5%?

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

e [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

631 For details — OSLiC, pp. 120
632) For implementing the handover of files correctly — OSLiC, p. 127

214

6 Open Source License Compliance: To-Do Lists

6.8.5 GPL-2.0-C5: Passing the unmodified library as embedded binaries

means that you received a GPL-2.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B%*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty:.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%%*

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

[mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

[mandatory:] Retain all existing copyright notices.

633) For details — OSLiC, pp. 121
634) For implementing the handover of files correctly — OSLiC, p. 127

215

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Execute the to-do list of use case GPL-2.0-C4 for the
source code that you publish.%*

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.6 GPL-2.0-C6: Passing a modified program as source code

means that you received a GPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-045%3¢
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.5*"

e [mandatory:] Retain all existing copyright notices.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a GPL-2.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0. If
these conditions are not already met, add the missing elements.

635) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

636) For details — OSLiC, pp. 116

637) For implementing the handover of files correctly — OSLiC, p. 127

216

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-2.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the GPL-2.0.5%

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.7 GPL-2.0-C7: Passing a modified program as binary

means that you received a GPL-2.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B%*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

638) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.
639) For details — OSLiC, pp. 116

217

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%*°

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a GPL-2.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-2.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended
by the GPL-2.0.54

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case GPL-2.0-C6 for the
source code that you publish.%*?

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

640) For implementing the handover of files correctly — OSLiC, p. 127

641) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

642) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

218

6 Open Source License Compliance: To-Do Lists

6.8.8 GPL-2.0-C8: Passing a modified library as independent source code

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085%*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:| Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-2.0 licensing statements. If you add
new source code files to the library, insert a header containing your

copyright line and a licensing statement in the form recommended by
the GPL-2.0.9%

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright

643) For details — OSLiC, pp. 122

644) For implementing the handover of files correctly — OSLiC, p. 127

645) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

219

6 Open Source License Compliance: To-Do Lists

notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.9 GPL-2.0-C9: Passing a modified library as independent binary

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B%6
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%*"

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case GPL-2.0-C8 for the
source code that you publish.*®

646) For details — OSLiC, pp. 123
647) For implementing the handover of files correctly — OSLiC, p. 127
648) Making the code accessible via a repository means distributing the software in the form of

220

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-2.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-2.0.%4

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.10 GPL-2.0-CA: Passing a modified library as embedded source code

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S%"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the

source code. Hence, you must also fulfill all tasks of the corresponding use case.

649) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

650) For details — OSLiC, pp. 125

221

6 Open Source License Compliance: To-Do Lists

disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%"!

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-2.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-2.0.5%2

e [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.11 GPL-2.0-CB: Passing a modified library as embedded binary

means that you received a GPL-2.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

651) For implementing the handover of files correctly — OSLiC, p. 127
652) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.

222

6 Open Source License Compliance: To-Do Lists

covers OSUC-10B%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-2.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the GPL-2.0 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the GPL-2.0 license. If it
is not already part of the software package, add it.%**

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case GPL-2.0-CA for the
source code that you publish.%”

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-2.0 licensed library and that it is itself
licensed under the GPL-2.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-2.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-2.0 licensing statements.

653) For details — OSLiC, pp. 126

654) For implementing the handover of files correctly — OSLiC, p. 127

655) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

223

6 Open Source License Compliance: To-Do Lists

If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-2.0.%°°

e [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-2.0 licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-2.0.

prohibits nothing explicitely.

6.8.12 GPL-3.0-C1: Using the software only for yourself

means that you received GPL-3.0 licensed software, that you will use it only for
yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L
and OSUC-09N7

requires no tasks in order to fulfill the conditions of the General Public License
Version 3 with respect to this use case:

e You are allowed to use any kind of GPL software in any sense and in
any context without being obliged to do anything as long as you do
not give the software to third parties.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.13 GPL-3.0-C2: Passing the unmodified software as independent
sources

means that you received GPL-3.0 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In

656) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-2.0
license.
657) For details — OSLiC, pp. 112 — 124

224

6 Open Source License Compliance: To-Do Lists

this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-055%°8
requires the following tasks in order to fulfill the license conditions:

e [mandatory:| Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.5%?

e [mandatory:] Retain all existing copyright notices.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.14 GPL-3.0-C3: Passing the unmodified software as independent
binaries

means that you received GPL-3.0 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of
unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B°%%Y
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

658) For details — OSLiC, pp. 112 — 117
659) For implementing the handover of files correctly — OSLiC, p. 127
660) For details — OSLiC, pp. 113 — 118

225

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:| Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%"

e [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Execute the to-do list of use case GPL-3.0-C2 for the
source code that you publish.%?

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.15 GPL-3.0-C4: Passing the unmodified library as embedded sources

means that you received a GPL-3.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-075%%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

661) For implementing the handover of files correctly — OSLiC, p. 127

662) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

663) For details — OSLiC, pp. 120

226

6 Open Source License Compliance: To-Do Lists

[mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:| Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%*

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

e [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.16 GPL-3.0-C5: Passing the unmodified library as embedded binaries

means that you received a GPL-3.0 licensed snippet, module or library that you
are now going to distribute to third parties as an embedded component of
a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B%°
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

664) For implementing the handover of files correctly — OSLiC, p. 127
665) For details — OSLiC, pp. 121

227

6 Open Source License Compliance: To-Do Lists

[mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%%

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

e [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Execute the to-do list of use case GPL-3.0-C4 for the
source code that you publish.%67

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.17 GPL-3.0-C6: Passing a modified program as source code

means that you received a GPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

666) For implementing the handover of files correctly — OSLiC, p. 127
667) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

228

6 Open Source License Compliance: To-Do Lists

covers OSUC-045%%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the GPL—B.O license. If it
is not already part of the software package, add it.5%

e [mandatory:] Retain all existing copyright notices.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a GPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing

your copyright line and a licensing statement in the form recommended
by the GPL-3.0.5™

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

668) For details — OSLiC, pp. 116

669) For implementing the handover of files correctly — OSLiC, p. 127

670) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

229

6 Open Source License Compliance: To-Do Lists

6.8.18 GPL-3.0-C7: Passing a modified program as binary

means that you received a GPL-3.0 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B5™
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%™

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Mark all modifications of the source code the program
(proapse) thoroughly within the source code and include the date of
the modification.

e [mandatory:| Let the copyright dialog of the program clearly say that
it is a GPL-3.0 licensed program. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0. If
these conditions are not already met, add the missing elements.

e [mandatory:] Arrange your modifications of the program in a way
that they are covered by existing GPL-3.0 licensing statements. If you
add new source code files to the program, insert a header containing
your copyright line and a licensing statement in the form recommended

by the GPL-3.0.57

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

671) For details — OSLIiC, pp. 116

672) For implementing the handover of files correctly — OSLiC, p. 127

673) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

230

6 Open Source License Compliance: To-Do Lists

[mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

[mandatory:] Execute the to-do list of use case GPL-3.0-C6 for the
source code that you publish.®™

[voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

[voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits ...

to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.19 GPL-3.0-C8: Passing a modified library as independent source code

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-08S67

requires the following tasks in order to fulfill the license conditions:

[mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

[mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

[mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%™

[mandatory:] Retain all existing copyright notices.

674) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

675) For details — OSLiC, pp. 122

676) For implementing the handover of files correctly — OSLiC, p. 127

231

6 Open Source License Compliance: To-Do Lists

[mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

[mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the GPL-3.0.577

[voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

[voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . ..

to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.20 GPL-3.0-C9: Passing a modified library as independent binary

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software

unit.

covers OSUC-08B%"®

requires the following tasks in order to fulfill the license conditions:

[mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

[mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

677) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0

license.

678) For details — OSLiC, pp. 123

232

6 Open Source License Compliance: To-Do Lists

[mandatory:] Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.5™

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case GPL-3.0-C8 for the
source code that you publish.%®’

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing GPL-3.0 licensing statements. If you add
new source code files to the library, insert a header containing your

copyright line and a licensing statement in the form recommended by
the GPL-3.0.%%!

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

679) For implementing the handover of files correctly — OSLiC, p. 127

680) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

681) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

233

6 Open Source License Compliance: To-Do Lists

6.8.21 GPL-3.0-CA: Passing a modified library as embedded source code

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-105%%
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice. If this element is
missing, add a new file containing the main copyright notice.

e [mandatory:| Give the recipient a copy of the GPL-3.0 license. If it
is not already part of the software package, add it.%%

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-3.0.°%*

e [mandatory:] Arrange the the sources of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

682) For details — OSLiC, pp. 125

683) For implementing the handover of files correctly — OSLiC, p. 127

684) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

234

6 Open Source License Compliance: To-Do Lists

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits . ..

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.22 GPL-3.0-CB: Passing a modified library as embedded binary

means that you received a GPL-3.0 licensed code snippet, module, library, or
plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third partiesin the form of binary files or
as a binary package together with another larger software unit which contains
this code snippet, module, library, or plugin as an embedded component.

covers OSUC-10B%°
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the GPL-3.0 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice. If this element is missing,
add a new file containing the main copyright notice.

e [mandatory:] Give the recipient a copy of the GPL-3,0 license. If it
is not already part of the software package, add it.5%6

e [mandatory:] Retain all existing copyright notices.

e [mandatory:] Make the complete source code of the program embed-
ding the library publicly available (and, therefore, also the source code
of the library itself): Push the source code package into a repository
under your control and make it downloadable via the Internet. En-
sure, that this repository is online for at least 3 years after you ceased
distributing the software package.

685) For details — OSLiC, pp. 126
686) For implementing the handover of files correctly — OSLiC, p. 127

235

6 Open Source License Compliance: To-Do Lists

[mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:] Execute the to-do list of use case GPL-3.0-CA for the
source code that you publish.®®"

e [mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the GPL-3.0 licensed library and that it is itself
licensed under the GPL-3.0, too. Let it reproduce the content of the
existing copyright notices, the software name, a link to its homepage,
the respective disclaimer of warranty, and a link to the GPL-3.0.

e [mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

e [mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing GPL-3.0 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the GPL-3.0.9%%

e [mandatory:] Arrange the the binaries of the on-top development in
a way that they are covered by the GPL-3.0 licensing statements.

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the GPL-3.0.

prohibits ...

e to institute a patent litigation against anyone alleging that the software
constitutes patent infringement.

6.8.23 Discussions and Explanations

The GPL-2.0 allows to “[...] copy and (to) distribute verbatim copies of the
Program’s complete source code as you receive it [...] provided that you [a]

687) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

683) For details see section ‘How to Apply These Terms to Your New Programs’ in the GPL-3.0
license.

236

6 Open Source License Compliance: To-Do Lists

conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; [b] keep intact all the notices that refer to
this License and to the absence of any warranty; and [c] distribute a copy of this
License along with the Program.”%” The GPL-2.0 also allows to “[...] copy and
distribute [...] modifications (of the Program or any portion of it) [...] under
the terms of Section 179" while it allows to distribute binaries “under the terms
of Sections 1 and 2”.%! But the GPL-2.0 does not require any tasks if you are
using the work only for yourself. Thus, the quoted conditions of “Section 1”7 are
mandatory for all use cases concerning the distribution of an GPL-2.0 licensed

work (GPL-2.0-C2 — GPL-2.0-CB)

The GPL-3.0 uses a similar structure to establish the same requirements: In §4
it allows to “[...] convey verbatim copies of the Program’s source code as you
receive it [...] provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice; keep intact all notices stating that
this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give
all recipients a copy of this License along with the Program”. §5 also allows to
“l...] convey [...] modifications [...] under the terms of section 4 [...]” and §6
gives permission to “[...] convey a covered work in object form under the terms
of sections of 4 and 57.%°% In contrast to the GPL-2.0, the GPL-3.0 explicitly
states that one “[...] may make, run and propagate covered works that (one)
(does) not convey [distribute], without conditions so long as (the GPL-3.0) license
otherwise remains in force.”%® Moreover, giving a package to a third party for
getting a modified version back has not to be taken as a case of distribution if the
modification has only been executed on behalf and only for the purpose of the
purchaser and if the modified version is not distributed to any third party.®** If
one collects all these GPL-3.0 statements together, than one may conclude that
the tasks which fulfill the corresponding GPL-2.0 requirements together also fit
the GPL-3.0 conditions.

The GPL-2.0 allows to “[...] copy and (to) distribute the Program (or a work based
on it [...]) in object code or executable form [...] provided that you accompany it
with the complete corresponding machine-readable source code [...] on a medium
customarily used for software interchange”.%”> As a substitution for this basic
condition, the GPL-2.0 allows to “accompany” the binary distribution package

“[...] with a written offer, valid for at least three years, to give any third party,

689) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §1.

690) ¢f. id., l.c., wp §2.

691) ¢f. id., l.c., wp §4.

692) of. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §4, §5, §6.
693) ¢f. id., l.c., wp §2.

694) of id., ibid.

695) ¢f. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3, §3a.

237

6 Open Source License Compliance: To-Do Lists

for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code [...] on a
medium customarily used for software interchange”.”® The OSLiC construes
the common technique to download files from the Internet as a distribution on
a medium [being today] customarily used for software interchange. Therefore,
the OSLiC requires for all open source use cases that refer to the distribution
of binaries (GPL-2.0-C3, GPL-2.0-C7, GPL-2.0-C9, GPL-2.0-CB) to make the
corresponding source code of the library itself accessible via an Internet repository
under your own control.

The GPL-3.0 also explicitly requires to make the source code accessible in case
of distributing binaries. But opposite to the GPL-2.0, the GPL-3.0 explicitly
offers the option of giving “[...] access to copy the Corresponding Source from
a network server at no charge” as a means to fulfill the conditions.®”” So again,
the tasks which ensure to act in accordance to the GPL-2.0 license in case of
distributing binaries, also fulfill the conditions of the GPL-3.0.

The weakness that in this case “third parties [which have received the binaries]
are not compelled to copy the source code [...]” is a concession made by the GPL-
2.0.9® But the necessity to offer the source code via a repository controlled by
yourself may generally not be circumvented: The GPL-2.0 allows to redistribute
a link to an external source code repository only in case of “noncommercial

distributions” .5

Both, the GPL-2.0 and the GPL-3.0 allow you to “[...] modify your copy or
copies of the Program or any portion of it [...] and (to) copy and distribute such
modifications [...]” only under very similar restrictions and conditions:"™’

e First, modified files must be marked as modifications and the date of the
modification.”! These conditions must be respected by all open source use
cases concerning the distribution of the modified work [GPL-2.0-C6/GPL-
3.0C6 — GPL-2.0-C9/GPL-3.0-C9], because even if one primarily intends
to distribute binaries, one has also to deliver the source code. The OSLiC
captures this requirement in the mandatory condition to mark each modified
file and the voluntary condition to update / generate a general changelog.

e Second, both versions of the GPL require that all copies of the modified
software which are using an interactive interface or a method to display
messages must “[...] print or display an announcement including an ap-

696) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3b.
697) ¢f. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §6 and §6b.
698) of. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp §3, at the end.
699) ¢f. id., l.c., wp §3c.
700) ¢f. id., l.c., wp §2.
701) For GPL-2.0 see cf. id., l.c., wp. §2.
For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5.

238

6 Open Source License Compliance: To-Do Lists

propriate copyright notice and a notice that there is no warranty |[...] and
that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License.””” The OSLiC rewrites this
condition in the form that the work shall let its copyright dialog clearly
reproduce the content of the existing copyright notices, the software name, a
link to its homepage, the respective disclaimer of warranty, and a link to the
GPL-2.0-file (or GPL-3.0-file, resp.), which has to be delivered together with
the software. These conditions have to be respected if one redistributes the
received and then modified programs (GPL-2.0-C6, GPL-2.0-C7, GPL-3.0-
C6, GPL-3.0-C7) or if one distributes one’s own programs which are using
(modified) libraries as embedded components (GPL-2.0-CA, GPL-2.0-CB,
GPL-3.0-CA, GPL-3.0-CB). For those open source use cases that concern the
redistribution of received and modified libraries, etc., the OSLiC does not
mention these requirements because libraries, plugins, or snippets normally
do not have their own copyright dialogs.

e Third, the GPL requires to “ [...] cause any work (being distributed or
published), that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this (GPL.)” "™ This requirement does not depend of the
form in which the software is distributed. The OSLiC adopts this statement
in the following way:

— For all open source use cases which concern the distribution (GPL-2.0-
C2 ...GPL-2.0-CB, GPL-3.0-C2 ... GPL-3.0-CB), the OSLiC rewrites
this condition as the mandatory requirement to retain all existing
licensing elements.

— For all use cases which deal with the distribution of a modified version
of the software (GPL-2.0-C6 ... GPL-2.0-CB, GPL-3.0-C6 ... GPL-3.0-
CB), the OSHiC adds the requirement to organize the modifications
in a way that they are covered by the respective GPL-2.0 or GPL-3.0
licensing statements.

— For the use case which deal with the distribution of an embedded
library (GPL-2.0-C4, GPL-2.0-C5, GPL-2.0-CA, GPL-2.0-CB, GPL-
3.0-C4, GPL-3.0-C5, GPL-3.0-CA, GPL-3.0-CB) the OSLiC requires
also to license the on-top development under the terms of the respective
GPL-2.0 or GPL-3.0 license.

e Finally, as parts of those task lists which concern the distribution in the form
of binaries, the OSLiC reminds the reader also to execute the corresponding

702) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §2c.
For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5d.
703) For GPL-2.0 see cf. Open Source Initiative: The GPL-2.0 License (OSI), 1991, wp. §2b.
For GPL-3.0 see cf. Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §5c.

239

6 Open Source License Compliance: To-Do Lists

source code use cases because distributing the binaries without making the
corresponding sources accessible is not allowed by the GPL.

And a last issue should be addressed here. It concerns the problem of granularity.

The GPL-3.0 allows “[...] to convey a covered work in object code form [...|
provided that [one] also conveys the [...] Corresponding Source [...]”""*. For
understanding the scope of the sources one has to convey, one must known, what
the term Corresponding Source means. Fortunately, the GPL-3.0 assists its readers
to understand this term in the right way:

“The ‘Corresponding Source’ for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run
the object code and to modify the work, including scripts to control those
activities.””” Thus, if one took this statements seriously, one would have
to “provide access to” the complete software stack of the executed AGPL
program, just down to the glibc. But the GPL does not want to be to
greedy. Therefore it limits the scope:

To limit the sope, the GPL states, that the Corresponding Source “[...]
does not include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing
those activities but which are not part of the work” ™. Unfortunately, one
now has to analyze, what the term System Libraries means, if one wants to
understand this rule correctly.

Therefore, the GPI says also, that “the ‘System Libraries’ of an executable
work include anything, other than the work as a whole, that (a) is included
in the normal form of packaging a Major Component, but which is not
part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for
which an implementation is available to the public in source code form.™"”.
And for understing this sentence adequately, one has to know, what a Major
Component is.

So, finally, the GPL defines as “enquoteMajor Component |[...as| a major
essential component (kernel, window system, and so on) of the specific
operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it"®”.

Based on these specifications, one can give some rule of thumbs concerning the
question down to which level one has to give access to the corresponding source

704) cf.
705) cf.
706) cf.
707) cf.
708) cf.

Open Source Initiative: The GPL-3.0 License (OSI), 2007, wp §6.
id., l.c., wp. §1.

id., ibid.

id., ibid.

id., ibid.

240

6 Open Source License Compliance: To-Do Lists

code of an conveyed GPL binary program:

e If one conveys a GPL licensed binary program, then one has also to deliver
the code of

the dlivered program itself
— every modified embedded component of that program
— every not freely accessible embedded component of that program

— all not freely accessible tools, scripts, data which are necessary to
compile the sources of the program in a freely accessible compilation /
developement environment

But it is not necessary to deliver the code of unmodified standard libraries,
compilers, or tools which can freely be downloaded from their standard
repository.

e If one conveys a GPL licensed script, then one has also to deliver the code

of
— every modified embedded script component included by the main script

— every not freely accessible embedded script component included by the
main script

— all not freely accessible tools, scripts, data which are necessary to to
let that main script be executed by a freely accessible interpreter

— the interpreter itself if it is not freely accessible.

But it is not necessary to give access to unmodified standard script libraries,
interpreters, or tools which can freely be downloaded from their standard
repository.

6.9 LGPL licensed software

Both versions of the GNU Lesser General Public License explicitly distinguish
the distribution of the source code from that of the binaries: On the one hand,

the LGPL-2.1 mainly talks about copying and distributing the source code.”™”
But it also directly mentions the specific conditions for “[...] (copying) and
(distributing) the Library [...] in object code or executable form [...]" ™" On the

other hand, the LGPL-3.0 and the GPL-3.0—which have to be considered together
because the GPL-3.0 is included into the LGPL-3.0""'— treat the distribution of

709) ¢f. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp §1, §2, §5, §6.
T10) ¢f. id., L.c., wp §4.
) ¢f. Open Source Initiative: The LGPL-3.0 License (OSI), 2007, wp just before §0.

241

6 Open Source License Compliance: To-Do Lists

source code and the distribution of object code as different aspects of the same
phenomenon™? Additionally, LGPL-2.1 and LGPL-3.0 mainly talk about copying
and distributing the software; the private use is almost complete unspecified.”?
Finally, the LGPL-2.1 and the LGPL-3.0 aim for the same results and share the
same spirit by requiring nearly the same license fulfilling tasks. Therefore it seems
appropriate to cover both versions in one chapter’* and to offer the same LGPL
specific open source use case structure”'® for finding the corresponding task lists:

712) The GPL-3.0 contains a specific section named “Conveying Non-Source Forms” which
describes the conditions to “[...] convey a covered work in object code form [...]" (cf. Open
Source Initiative: The GPL-3.0 License (OSI), 2007, wp. §6), while the LGPL-3.0 explicitly
deals with the “object code incorporating material from (the) library header files” (cf. Open
Source Initiative: The LGPL-3.0 License (OSI), 2007, wp. §3).

713) The LGPL-2.1 lists its ‘restrictions’ only with respect to the act of copying and distributing
“copies of the library” (cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp.
§1, §2, §4 et passim) while the GPL-3.0 explicitly specifies that one “[...] may make, run
and propagate covered works that (one does) not convey, without conditions so long as (the)
license otherwise remains in force” (cf. Open Source Initiative: The GPL-3.0 License (OSI),
2007, wp. §2).

714) The exception concerns the distribution of a modified program, application, or server under
the terms of the LGPL

715) For details of the general OSUC finder — OSLiC, pp. 104 and ??

242

reciptent:
4yourself

6 Open Source License Compliance: To-Do Lists

unmodified

state:

recipient:
2others

N
type: 5
type: type:
05’:::2]52“ snimoli proapse
I — e S S
context: context: context: context: context:
independent embedded independent independent embedded
(N ((
form: form: form: form: form: form: form: form: form: form:
source binary source binary source binary source binary source binary
]]] I ! 1 l]
LeEy || LSEE LGPL- LGPL- || LGPL- || LGPL- || 5EBL- 1| LGPL- || ropr. LGPL-
LGPL-)) *-C4 *-C5 *-Cé *-C7 ;) *-CA *-.CB
* dis- dis- X X X) dis- dis- N X
=il tributin, tributin, @ di - g tributin, tributin, G- G-
using unmodiﬁgd unmodiﬁgd tributing tributing tributing tributing modiﬁeg modiﬁeg tributing tributing
software unmodified unmodified modified modified . p modified modified
software software . . library library X X
only for . B library as library as program program . . library as library as
as inde- as inde- as inde- as inde-
yourself embedded embedded as as embedded embedded
pendent pendent . X . . pendent pendent . .
. : sources binaries sources binaries)] sources binaries
sources binaries sources binaries

6.9.1 LGPL-2.1-C1:

means that you received LGPL-2.1 licensed software, that you will use it only
for yourself, and that you do not hand over to any third party in any sense.

covers OSUC-01, OSUC-03L, OSUC-03N, OSUC-06L, OSUC-06N, OSUC-09L

and OSUC-09N716

requires no tasks in order to fulfill the conditions of the GNU Lesser General

Using the software only for yourself

Public License 2.1 with respect to this use case:

e You are allowed to use any kind of LGPL-2.1 licensed software in any
sense and in any context without being obliged to do anything as long

as you do not give the software to third parties.

16) For details — OSLiC, pp. 112 — 124

243

6 Open Source License Compliance: To-Do Lists

prohibits nothing explicitely.

6.9.2 LGPL-2.1-C2: Passing the unmodified software as independent
source code

means that you received LGPL-2.1 licensed software that you are now going
to distribute to third parties as an independent unit and in the form of
unmodified source code files or as an unmodified source code package. In
this case it makes no difference if you distribute a program, an application,
a server, a snippet, a module, a library, or a plugin.

covers OSUC-02S, OSUC-058"'"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.™®

e [mandatory:] Retain all existing copyright notices.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

prohibits nothing explicitely.

6.9.3 LGPL-2.1-C3: Passing the unmodified software as independent
binaries

means that you received LGPL-2.1 licensed software, which you are now going
to distribute to third parties as an independent unit and in the form of

17) For details — OSLiC, pp. 112 — 117
718) For implementing the handover of files correctly — OSLiC, p. 127

244

6 Open Source License Compliance: To-Do Lists

unmodified binary files or as an unmodified binary package. In this case
it does not matter if you distribute a program, an application, a server, a
snippet, a module, a library, or a plugin.

covers OSUC-02B, OSUC-05B™"
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.™’

e [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [voluntary:] Retain all existing copyright notices.

e [mandatory:| Execute the to-do list of use case LGPL-2.1-C2 for the
source code that you publish.™!

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

prohibits nothing explicitely.

™19) For details — OSLiC, pp. 113 — 118

720) For implementing the handover of files correctly — OSLiC, p. 127

721) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

245

6 Open Source License Compliance: To-Do Lists

6.9.4 LGPL-2.1-C4: Passing the unmodified library as embedded source
code

means that you received an LGPL-2.1 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified source code files or as an
unmodified source code package.

covers OSUC-07S"#
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.™*

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

e [voluntary:] Retain all existing copyright notices.

prohibits nothing explicitely.

6.9.5 LGPL-2.1-C5: Passing the unmodified library as embedded binaries

means that you received an LGPL-2.1 licensed snippet, module or library that
you are now going to distribute to third parties as an embedded component
of a larger unit and in the form of unmodified binary files or as unmodified
binary package.

covers OSUC-07B™*

722) For details — OSLiC, pp. 120
723) For implementing the handover of files correctly — OSLiC, p. 127
724) For details — OSLiC, pp. 121

246

6 Open Source License Compliance: To-Do Lists

requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:| Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.™”

e [mandatory:] Make the source code of the distributed software pub-
licly available (even though you did not modify it): Push the source
code package into a repository under your control and make it down-
loadable via the Internet. Ensure, that this repository is online for at
least 3 years after you ceased distributing the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

e [mandatory:| Either distribute the on-top development and the li-
brary in the form of dynamically linkable parts or distribute the stati-
cally linked application together with a written offer, valid for at least
three years, to give the user all object-files of the on-top development
and the library, so that he can relink the application himself.

e [mandatory:] Execute the to-do list of use case LGPL-2.1-C4 for the
source code that you publish.”°

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

e [voluntary:] Retain all existing copyright notices.

prohibits nothing explicitely.

725) For implementing the handover of files correctly — OSLiC, p. 127
726) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

247

6 Open Source License Compliance: To-Do Lists

6.9.6 LGPL-2.1-Cé6: Passing a modified program as source code

means that you received an LGPL-2.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going to distribute
this modified version to third parties in the form of source code files or as a
source code package.

covers OSUC-04S™7
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Change all the notices in all files that refer to the
LGPL-2.1, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License.

prohibits . ..

e to modify the received work in a way that the resulting “modified
work” is no longer a software library (but a program). You are not
allowed to distribute a modified program under the terms of
LGPL-2.1.78

6.9.7 LGPL-2.1-C7: Passing a modified program as binary

means that you received an LGPL-2.1 licensed program, application, or server
(proapse), that you modified it, and that you are now going todistribute this
modified version to third parties in the form of binary files or as a binary
package.

covers OSUC-04B™
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Change all the notices in all files that refer to the
LGPL-2.1, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License.

prohibits ...

e to modify the received work in a way that the resulting “modified
work” is no longer a software library (but a program). You are not
allowed to distribute a modified program under the terms of
LGPL-2.1.7Y

727) For details — OSLiC, pp. 116

728) The LGPL-2.1 explictly requires that “the modified work must itself be a software library”
(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §2a). For details —
OSLiC, p. 269

729) For details — OSLiC, pp. 116

730) The LGPL-2.1 explictly requires that “the modified work must itself be a software library”

248

6 Open Source License Compliance: To-Do Lists

6.9.8 LGPL-2.1-C8: Passing a modified library as independent source code

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package, but without embedding it into another
larger software unit.

covers OSUC-085™!
requires the following tasks in order to fulfill the license conditions:

e [mandatory:| Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.”?

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-2.1 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by
the LGPL-2.1.73

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright

(cf. Open Source Initiative: The LGPL-2.1 License (OSI), 1999, wp. §2a). For details —
OSLiC, p. 269

731) For details — OSLiC, pp. 122

732) For implementing the handover of files correctly — OSLiC, p. 127

733) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1
license.

249

6 Open Source License Compliance: To-Do Lists

notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

e [voluntary:] Retain all existing copyright notices.
prohibits ...

e to modify the library in a way that it is no longer a library

6.9.9 LGPL-2.1-C9: Passing a modified library as independent binary

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of binary files or
as a binary package but without embedding it into another larger software
unit.

covers OSUC-08B™*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

e [mandatory:] Ensure that the distributed binary package contains a
conspicuous, easy to find copyright notice and disclaimer of warranty.
If these elements are missing, add a new file containing the main
copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

e [mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.”™

e [mandatory:] Make the source code of the distributed software pub-
licly available: Push the source code package into a repository under
your control and make it downloadable via the Internet. Ensure, that
this repository is online for at least 3 years after you ceased distributing
the software package.

e [mandatory:| Insert an easy to find description into the distribution
package that explains how and where the code can be retrieved.

734) For details — OSLiC, pp. 123
735) For implementing the handover of files correctly — OSLiC, p. 127

250

6 Open Source License Compliance: To-Do Lists

e [mandatory:] Execute the to-do list of use case LGPL-2.1-C8 for the
source code that you publish.”°

e [mandatory:] Mark all modifications of the source code of the library
(snimoli) thoroughly within the source code and include the date of
the modification.

e [mandatory:] Arrange your modifications of the library in a way that
they are covered by existing LGPL-2.1 licensing statements. If you add
new source code files to the library, insert a header containing your
copyright line and a licensing statement in the form recommended by

the LGPL-2.1.7%7

e [voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

e [voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of warranty, and a link to the LGPL-2.1.

e [voluntary:] Retain all existing copyright notices.
prohibits . ..

e to modify the library in a way that it is no longer a library.

6.9.10 LGPL-2.1-CA: Passing a modified library as embedded source code

means that you received an LGPL-2.1 licensed code snippet, module, library,
or plugin (snimoli), that you modified it, and that you are now going to
distribute this modified version to third parties in the form of source code
files or as a source code package together with another larger software unit
which contains this code snippet, module, library, or plugin as an embedded
component.

covers OSUC-10S™*
requires the following tasks in order to fulfill the license conditions:

e [mandatory:] Ensure that the licensing elements (especially all notices
that refer to the LGPL-2.1 and to the absence of any warranty) are
retained in your package in the form in which you have received them.

736) Making the code accessible via a repository means distributing the software in the form of
source code. Hence, you must also fulfill all tasks of the corresponding use case.

737) For details see section ‘How to Apply These Terms to Your New Programs’ in the LGPL-2.1
license.

738) For details — OSLiC, pp. 125

251

6 Open Source License Compliance: To-Do Lists

[mandatory:] Ensure that the distributed source code package con-
tains a conspicuous, easy to find copyright notice and disclaimer of
warranty. If these elements are missing, add a new file containing the
main copyright notice and the disclaimer of warranty in the form which
is textually defined by the LGPL-2.1 license itself. (Yes, repeat the
disclaimer although it is also part of the license itself and although you
are required to hand the license itself over to the receiver.)

[mandatory:] Give the recipient a copy of the LGPL-2.1 license. If it
is not already part of the software package, add it.”™’

[mandatory:] Mark all modifications of the source code of the embed-
ded library (snimoli) thoroughly within the source code and include
the date of the modification.

[mandatory:] Arrange your modifications of the embedded library in
a way that they are covered by existing LGPL-2.1 licensing statements.
If you add new source code files to the embedded library, insert a
header containing your copyright line and a licensing statement in the
form recommended by the LGPL-2.1.7

[mandatory:] Maintain the structural independence of the library.

[mandatory:] Let the copyright dialog of the on-top development
clearly say that it uses the LGPL-2.1 licensed library. Let it reproduce
the content of the existing copyright notices, the software name, a link
to its homepage, the respective disclaimer of warranty, and a link to
the LGPL-2.1.

[voluntary:] Create a modification text file, if such a file does not yet
exist. Add a description of your modifications on a functional level to
the modification text file.

[voluntary:] Let the documentation of your distribution and/or your
additional material also reproduce the content of the existing copyright
notices, a hint to the software name, a link to its homepage, the
respective disclaimer of